Robot Interaction and Display via The Internet

Authors: Walter Sagehorn and Jonathan Butler

Abstract:

This paper presents an implementation of a web-robot interface that facilitates
interaction with ROS-based robot and a user on the internet. The system is
designed to accomplish two tasks: allowing researchers to monitor and debug
robots remotely, and creating new way for non-researchers to interact with the
robots. During an event, like Explore UT, visitors could use the website to view
not only where the robot is, but also its surroundings via a live stream. This project
seeks to convenience researchers and engage visitors. In the future, the project
could be expanded to incorporate more than just data streaming. For example,
researchers could give path goals or high-level objective goals through the website.
There are major changes that need to be made for that to become a reality, for
instance, implementing security measures to insure only those authorized to control
the robot can control the robot. If these changes are carried out, this project has

potential to become a research tool for the lab at UT and labs across the world.

Introduction:

Having the robots displayed on a webpage for all to see has many benefits. It can
be used to ‘wow’ the public or it could be used by those in the lab to monitor the

progress of the robots as they go about their given tasks.

Background and/or Related Work:
There has been extensive research done in regards to the combination of
robotics and the internet, however, since the topic is so broad there are many

directions in which to take it. The paper we found, titled, “A Multimodal Interface

to Control a Robot Arm via the Web: A Case Study on Remote Programming”

from IEEE, reflects closely to the overall end goal of the project. It details the
controlling of arm robots via a web interface, which is something we hope that we
can do with our robots and we hope can be applied to not just the segbots, but all of
the robots in the laboratory. A statement from the paper, “Enabling remote
programming of the robot system permits the operator to develop external
programs that take control over the whole set of robotic functions,” explains why it
would be beneficial to connect the robots to the web. Completing this functionality
would not only be beneficial for our robots but for any systems that would use the

code.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1546366&tag=1
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1546366&tag=1

Technical Approach:

The hardest part in terms of technical difficulty was the dynamic loading of
the topics available to stream. Upon accessing <robot IP>:8080 when
web-video-server is running, it returns a stripped-down HTML page that lists the
available topics, and links to both the stream and a snapshot. However, the format
of the page it links to isn’t ideal; we would rather have the url of the stream itself
(to provide a the “src” of our , which displays the stream) than a page
displaying nothing but the stream (which is what it provides). We’ve decided to
just disregard the snapshot altogether as it wouldn’t be very fulfilling to the
purpose of this project. The data was processed by the main server process and
passed to a dynamic template (using the Jinja2 library) that generated the HTML
for the page. But first, in order to extract the information needed from the raw
HTML, the python library BeautifulSoup was used to transform the robot response
into a Python object that can be manipulated and returned. The data returned
wasn’t just going to be standard “a href” links-- include information that can be
used by a JavaScript (more specifically, JQuery) function that manipulates the
source of the video feed. By using this method, we can change which topic is being

displayed without reloading the page. This not only improves user experience, it

also prevents the backend from serving the same pages again and again, which
would potentially cause scalability issues in terms of server stress.

However, the image source is still the robot’s IP, so the traffic is still coming
directly from the robot. Considering this, the site is more of a wrapper that
surrounds the video feed, enables users to more easily switch between streams, and
acts as a easy way to retrieve robot IPs. However, the user experience using the site
is considerably better than pure web-video-server. A nice user interface allows
on-technical users, like visitors during Explore Texas, to utilize the site as well.
Obviously, there are issues with streaming directly from the robot. It wouldn’t take
much to DDoS a laptop that’s already nearly DoS’ing itself. Ideally, the website
would request one instance of each stream from the robot, and serve multiple
instances from the server to clients.

Another difficulty encountered was the task of parsing the HTML received
from the robot. Since the goal is to code in a general and reusable way so that the
program doesn’t break when future changes are made to other robot code. For
instance, let’s say that the robot gets a new sensor that publishes to a topic the
web-video-server deems a video. We want to not only not break, but also be able to
integrate that new topic into the viewing options. To do this, the BeautifulSoup

parsing algorithm must be robust and non-assuming.

When analyzing the html output given by the robot, we noticed a possible
error in the web-video-server HTML generation code: a tag immediately
followed by a tag. The issue occurs twice in the code output by the segbots
running normally. After looking into it, it seems to occur when a topic group is
evaluated as video type, but the individual topic are unable to be streamed. For
example, /nav_kinect/projector/ is listed as a topic group but contains no topics. It
may not be fair to call this an error, but it seems strange to include a category of
topics without checking if it contains content.

Most visitors don’t carry a laptop with them when touring the GDC, so
particular attention was given to mobile UI (user interface). The library
Flask-Mobility is an add-on for Flask that detects mobile user-agents and delivers
alternative page templates to the user. In our case, the CSS was modified to make
some elements appear vertically instead of horizontally in order to fit everything on
a narrow screen. The fact that nearly all researchers will access the site through a
computer and nearly all visitors will access the site through mobile devices could

be taken into account to deliver content that is more suitable for each party.

Evaluation:

The site is more or less functional as intended. The only thing that was
stopping us from being able to get everything working and doing a demonstration
was the complications with the “nixons-head” server. In theory, the website should
run and perform its current function: to display video topics from the robots. We
weren’t able to do much testing without the server available. Some testing was
performed on the robots when the site was incomplete and later, when it was

complete, with sample IP JSON and robot replies. Everything worked as intended.

Conclusion and Future Work:

In conclusion, the project turned out well. We did not get everything
functioning that we had hoped to, however the progress we made was good
considering the difficulties encountered. Specifically, the complications with
“nixons-head” prevented sufficient testing and demonstration, but we still
completed the basic, working framework of the website. If we could get the server
online we could tie up the loose-ends in our project and have a functioning
website; for now the simple version is a very good start. As for future work, we
hope to improve on the layout of the site as well as its functionality. We hope to
add the ability to control, send goal positions etc., and fully display every aspect

feasible about our robots onto the webpage. Since we were not able to display

other topics besides video topics, displaying topics such as position and velocities
will be our top priority. We think all of this is definitely possible to do and hope
that it can become useful for our robots as well as other labs who may find some

use for displaying and controlling their robots from the web.

References:

Alexander, B., Hsiao, K., Jenkins, C., Suay, B., & Toris, R. (2012). Robot Web
Tools. IEEE. Retrieved from

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6377438&tag=1

Marin, R., Sanz, P. J., Nebot, P., & Wirz, R. (2005). A Multimodal Interface to
Control a Robot Arm via the Web: A Case Study on Remote Programming. IEEE, 52(6).
Retrieved from

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1546366&tag=1

Welcome to Flask [Flask Documentation]. (n.d.).

http://flask.pocoo.org/docs/0.10/

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6377438&tag=1
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1546366&tag=1

