

CS 378: Autonomous Intelligent Robotics

Instructor: Jivko Sinapov

http://www.cs.utexas.edu/~jsinapov/teaching/cs378/

Multimodal Perception

Announcements

Final Projects Presentation Date: Thursday, May 12, 9:00-12:00 noon

Project Deliverables

- Final Report (6+ pages in PDF)
- Code and Documentation (posted on github)
- Presentation including video and/or demo

Multi-modal Perception

The "5" Senses

The "5" Senses

[http://edublog.cmich.edu/meado1bl/files/2013/03/Five-Senses2.jpg]

The "5" Senses

[http://edublog.cmich.edu/meado1bl/files/2013/03/Five-Senses2.jpg]

Seeing Hearing Touch Taste Smell

[http://neurolearning.com/sensoryslides.pdf]

MAKING SENSE OF THE SENSES

There are many opinions about how many senses we have

SENSORY MODALITY	Conservative	Accepted	Radical
Vision			
Light			
Colour			
Red			
Green			
Blue			
Hearing	-		
Smell			
2000 or more receptor types			
Taste			
Sweet			
Salt			
Sour			
Bitter			
Umami			
Touch			
Touch Light touch			
Touch Light touch Pressure			
Touch Light touch Pressure Pain			
Touch Light touch Pressure Pain Cutaneous			
Touch Light touch Pressure Pain Cutaneous Somatic			

Mechanoreception			
Balance			
Rotational acceleration			
Linear acceleration			
Proprioception – joint position			
Kinaesthesis			
Muscle stretch – Golgi tendon organs			
Muscle stretch – muscle spindles			
Temperature			
Heat			
Cold			
Interoceptors			_
Blood pressure			
Arterial blood pressure			
Central venous blood pressure			
Head blood temperature			
Blood oxygen content			
Cerebrospinal fluid pH			
Plasma osmotic pressure (thirst?)			
Artery-vein blood glucose difference (hunger?)			
Lung inflation			
Bladder stretch			
Full stomach	-		
TOTAL	10	21	33

How are sensory signals from different modalities integrated?

[Battaglia et. al. 2003]

Locating the Stimulus Using a Single Modality

Standard Trial Comparison Trial

Is the stimulus in Trial 2 located to the left or to the right of the stimulus in Trial 1?

Locating the Stimulus Using a Single Modality

Standard Trial Comparison Trial

Is the stimulus in Trial 2 located to the left or to the right of the stimulus in Trial 1?

Fig. 3. Results for one subject on the auditory-only trials. The horizontal axis shows the comparison locations (in degrees of visual angle away from the center of the workspace), and the vertical axis shows the percentage of trials in which the subject judged the comparison stimulus as depicting an event located to the right of the event depicted in the standard stimulus. The curve fitted to the data points is a cumulative normal distribution.

Fig. 4. Results for one subject on the visual-only trials. The solid and dashed curves are cumulative normal distributions fitted to the data points in the lowest-noise and highest-noise conditions, respectively.

Multimodal Condition

Standard Trial Comparison Trial

Fig. 5. Results for one subject on the visual-auditory trials. The solid and dashed curves are cumulative normal distributions fitted to the data points in the lowest-noise and highest-noise conditions, respectively.

Fig. 1. Optimal model of sensory integration based on MLE theory. (a) Visual and auditory signals are equally reliable indicators of event location. (b) Visual signal is a more reliable indicator of event location.

[Ernst, 2006]

Figure 2. In this visual-haptic set-up used by Ernst and Banks [29] observers view the reflection of the visual stimulus binocularly in a mirror using stereo-goggles. The haptic stimulus is presented with two PHANTOM[™] force-feedback devices, one each for the index finger and thumb of the right hand. With this arrangement the visual and the haptic virtual scenes can be independently manipulated.

Take-home Message

During integration, sensory modalities are weighted based on their individual reliability

Further Reading

Ernst, Marc O., and Heinrich H. Bülthoff. "Merging the senses into a robust percept." *Trends in cognitive sciences* 8.4 (2004): 162-169.

Battaglia, Peter W., Robert A. Jacobs, and Richard N. Aslin. "Bayesian integration of visual and auditory signals for spatial localization." *JOSA* A 20.7 (2003): 1391-1397.

Sensory Integration During Speech Perception

McGurk Effect

McGurk Effect

https://www.youtube.com/watch?v=G-IN8vWm3m0

https://vimeo.com/64888757

Object Recognition Using Auditory and Proprioceptive Feedback

Sinapov et al. "Interactive Object Recognition using Proprioceptive and Auditory Feedback" International Journal of Robotics Research, Vol. 30, No. 10, September 2011

What is Proprioception?

"It is the sense that indicates whether the body is moving with required effort, as well as where the various parts of the body are located in relation to each other."

- Wikipedia

Why Proprioception?

Why Proprioception?

Why Proprioception?

Hard

Soft

Exploratory Behaviors

Lift:

Drop:

Shake:

Crush:

Objects

Sensorimotor Contexts

Sensory Modalities audio proprioception lift shake drop press push Sensory Modalities

Feature Extraction

Time

Feature Extraction

Training a self-organizing map (SOM) using sampled joint torques:

Training an SOM using sampled frequency distributions:

Feature Extraction

Discretization of joint-torque records using a trained SOM

 $P_i = p_1^i p_2^i \dots p_{l^{P_i}}^i$ is the sequence of activated SOM nodes over the duration of the interaction

Discretization of the DFT of a sound using a trained SOM

sequence of activated SOM nodes over the duration of the sound

Object Recognition accuracy using $\kappa\text{-}NN$ model

Behavior	Audio	Proprioception	Combined
Lift	17.4 %	64.8 %	66.4 %
Shake	27.0 %	15.2 %	29.4 %
Drop	76.4 %	45.6 %	80.8 %
Crush	73.4 %	84.6 %	88.6 %
Push	63.8 %	15.4 %	65.0 %
Average	51.6 %	45.1 %	66.0 %

Accuracy vs. Number of Objects

Accuracy vs. Number of Behaviors

Results with a Second Dataset

- Tactile Surface Recognition:
 - 5 scratching behaviors
 - 2 modalities: *vibrotactile* and *proprioceptive*

Artificial Finger Tip

Sinapov et al. "Vibrotactile Recognition and Categorization of Surfaces by a Humanoid Robot" IEEE Transactions on Robotics, Vol. 27, No. 3, pp. 488-497, June 2011

Surface Recognition Results

Chance accuracy = 1/20 = 5 %

100 objects

Exploratory Behaviors

grasp

lift

hold

shake

drop

tap

poke

push

press

Object Exploration Video #2

Coupling Action and Perception

Action: poke

Time

Sensorimotor Contexts

	audio (DFT)	proprioception (joint torques)	proprioception (finger pos.)	Color	Optical flow	SURF
look						
grasp						
lift						
hold						
shake						
drop						
tap						
poke						
push						
press						

Sensorimotor Contexts

	audio (DFT)	proprioception (joint torques)	proprioception (finger pos.)	Color	Optical flow	SURF
look						\checkmark
grasp		\checkmark	>			\checkmark
lift		~				
hold		~				\checkmark
shake		~				
drop		~				\checkmark
tap		~				
poke		\checkmark				\checkmark
push	\checkmark	~			\checkmark	\checkmark
press		~				\checkmark

Feature Extraction: Proprioception

Feature Extraction: Audio

Feature Extraction: Color

Color Histogram $(4 \times 4 \times 4 = 64 \text{ bins})$

Feature Extraction: Optical Flow

Feature Extraction: Optical Flow

Feature Extraction: SURF

Feature Extraction: SURF

Feature Extraction: SURF

Dimensionality of Data

audio (DFT)	proprioception (joint torques)	proprioception (finger pos.)	Color	Optical flow	SURF
100	70	6	64	10	200

Data From a Single Exploratory Trial

	audio (DFT)	proprioception (joint torques)	proprioception (finger pos.)	Color	Optical flow	SURF
look						
grasp		~	>			\checkmark
lift		>				
hold		>				
shake		>				
drop		>				
tap		>				
poke		>				
push		~			\checkmark	\checkmark
press		~				\checkmark

Data From a Single Exploratory Trial

	audio (DFT)	proprioception (joint torques)	proprioception (finger pos.)	Color	Optical flow	SURF
look						\checkmark
grasp		~	~			
lift		~				\checkmark
hold		~				
shake		~				\checkmark
drop		~				\checkmark
tap		~				
poke		~				
push		~				\checkmark
press	\checkmark	~			\checkmark	\checkmark

x 5 per object

Overview

Context-specific Category Recognition

Observation from pokeaudio context Recognition model for poke-audio context

Distribution over category labels

Context-specific Category Recognition

• The models were implemented by two machine learning algorithms:

 \succ K-Nearest Neighbors (k = 3)

Support Vector Machine

Support Vector Machine

• <u>Support Vector Machine</u>: a discriminative learning algorithm

Input Space

Feature Space

[http://www.imtech.res.in/raghava/rbpred/svm.jpg]

- Finds maximum margin hyperplane that separates two classes
- 2. Uses Kernel function to map data points into a feature space in which such a hyperplane exists

Combining Model Outputs

Model Evaluation: 5 fold Cross-Validation

Recognition Rates (%) with SVM

	Audio	Proprioception	Color	Optical Flow	SURF	All
look			58.8		58.9	67.7
grasp	45.7	38.7		12.2	57.1	65.2
lift	48.1	63.7		5.0	65.9	79.0
hold	30.2	43.9		5.0	58.1	67.0
shake	49.3	57.7		32.8	75.6	76.8
drop	47.9	34.9		17.2	57.9	71.0
tap	63.3	50.7		26.0	77.3	82.4
push	72.8	69.6		26.4	76.8	88.8
poke	65.9	63.9		17.8	74.7	85.4
press	62.7	69.7		32.4	69.7	77.4

Distribution of rates over categories

Can behaviors be selected actively to minimize exploration time?

Active Behavior Selection

• For each behavior $b \in \mathcal{B}$, estimate C^b_{ij} such that

$$C_{ij}^{b} = \frac{Pr(\hat{y} = y_i | y = y_j) + Pr(\hat{y} = y_j | y = y_i)}{2}$$

• Let $\hat{\mathbf{p}} \in \mathbb{R}^{|\mathcal{Y}|}$ be the vector encoding the robot's current estimates over the category labels and let \mathcal{B}_r be the remaining set of behaviors available to the robot

Example with 3 Categories and 2 Behaviors

Active Behavior Selection: Example

Active Behavior Selection

- 1) Compute the set $\mathcal{Y}_K \subset \mathcal{Y}$ such that it contains the K most likely object categories according to $\hat{\mathbf{p}}$.
- 2) Pick the next behavior b_{next} with an associated confusion matrix that is least likely to confuse the categories within the set \mathcal{Y}_K , i.e.,

$$b_{next} = \underset{b \in \mathcal{B}_r}{\operatorname{arg\,min}} \sum_{y_i \in \mathcal{Y}_K} \sum_{y_j \in \mathcal{Y}_K/y_i} C_{ij}^b$$

- 3) Update the estimate $\hat{\mathbf{p}}$ using the classifiers associated with the sensorimotor contexts of b_{next} .
- 4) Remove b_{next} from \mathcal{B}_r . If $|\mathcal{B}_r| \ge 1$, go back to step 1).

Active vs. Random Behavior Selection

Active vs. Random Behavior Selection

Discussion

What are some of the limitations of the experiment?

What are some ways to address them?

What other possible senses can you think of that would be useful to a robot?

References

Sinapov, J., Bergquist, T., Schenck, C., Ohiri, U., Griffith, S., and Stoytchev, A. (2011) *Interactive Object Recognition Using Proprioceptive and Auditory Feedback*. International Journal of Robotics Research, Vol. 30, No. 10, pp. 1250-1262

Sinapov, J., Schenck, C., Staley, K., Sukhoy, V., and Stoytchev, A. (2014) *Grounding Semantic Categories in Behavioral Interactions: Experiments with 100 Objects.* Robotics and Autonomous Systems, Vol. 62, No. 5, pp. 632-645

THE END