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Abstract

We present both a more intuitive controller design for
maneuvering a Kinova robotic arm and a method for
classifying actions from demonstration. First, we dis-
cuss designing the layout of our new Xbox controller
and testing it against the built-in Kinova arm joystick.
Second, we use a machine learning algorithm to im-
plement a method of using demonstrations from a con-
troller to classify primitive actions. Using this method
of classification, we additionally propose a way of par-
titioning a recording of multiple actions in order to in-
dividually classify each of the primitive actions that, in
combination, composed the higher-level action.

Introduction
1.1 Joystick Controller
The first problem our project addresses is improving the
control system for the Kinova robotic arm used in the Uni-
versity of Texas at Austin (UT) Learning Agents Research
Group (LARG) Build-Wide Intelligence (BWI) lab. The cur-
rent setup for controlling the arm is inconvenient and unintu-
itive. The built-in joystick sacrifices intuitiveness for design
simplicity.

Figure 1: Built-in Kinova arm joystick.

For example, one must switch between multiple “modes” to
move the arm in an angular or linear manner and to ma-
nipulate the end-effectors. Although people who are famil-
iar with the robot arm should not find the current setup too
technically complicated, inexperienced users may find it dif-
ficult to control the robot arm. This is especially problematic
if these inexperienced users are teaching the robot using a
learning from demonstration. As robotics moves out of the

lab and into everyday life, and as learning from demonstra-
tion becomes a more prevalent technique for machine learn-
ing, better control systems will be necessary in order to pro-
tect both humans and their robot counterparts.

As a starting point in our goal of creating an intuitive con-
troller, we decided to use a pre-existing Xbox controller. The
core benefit of such a controller is that it allows a user to
move the arm both in a linear and angular manner simulta-
neously. This alleviates the need to switch between modes,
a major pain point of the built-in joystick.

1.2 Actions
A byproduct of robots becoming more widespread in ev-
eryday life will be the need to democratize use of the new
technology by allowing users who are not well-versed in
robotics to teach robots new tasks. As Argall et. al. describe,
enabling a robot to learn from demonstration allows users
of all backgrounds and experience levels to teach robots to
perform tasks.

With this in mind, we provide a method of determining
a classification for a primitive action based on an accumu-
lated dataset of actions demonstrated to the robot. We define
a primitive action as a simple action with limited variabil-
ity (lift, push, grasp, sweep) that can then be combined with
other primitive actions to form a higher-level action (pick
up an object, go to home position). Classifying actions from
a dataset requires the use of machine learning to determine
classification. Based on the nature of the data collected, the
k-Nearest Neighbors algorithm is especially suited for ana-
lyzing the data.

Related Work
Our work in designing an intuitive controller for the robotic
arm is related to “An Effective and Intuitive Control Inter-
face for Remote Robot Teleoperation with Complete Haptic
Feedback” by Glover et. al. In their research, they use a sec-
ond robotic arm, physically manipulated by a human sub-
ject, the movements of which are mimicked by a different
robotic arm. Glover et. al. concluded that having a more in-
tuitive control over an arms movements, in addition to haptic
and visual feedback, improved participants performance in
completing a set of tasks. Though we did not have the re-
sources to conduct an experiment on nearly as grand a scale,
their approach to robotic arm control, intuition in control



over simplicity in design, is something we tried to imple-
ment in our controller.

Furthermore, our work builds off research conducted
using a Leap Motion Controller, “Intuitive and Adaptive
Robotic Arm Manipulation using the Leap Motion Con-
troller,” by Bassily et. al. They describe using a Leap Mo-
tion Controller to control a Kinova arm, the same arm that
we use in our project. The authors developed an algorithm
to allow an ideal mapping between a users hand and robot
arms movement using the Leap Motion Controller. This ma-
nipulation method was specifically created to further a ma-
jor goal of modern robotic research helping individuals with
physical disabilities perform “Activities of Daily Living” in
the context of “Ambient Assisted Living.” Although, our re-
search does not relate as closely to that sub-field, their con-
clusions about the intuitiveness of their controller were help-
ful in shaping our design.

In addition to research related to controllers, our project
also builds off of several previous experiments that uti-
lize learning from demonstration techniques. “A Survey of
Robot Learning From Demonstration,” referenced earlier, by
Argall et. al. provides a survey of research in robotic learn-
ing by demonstration and explains various methods to teach
robots using this technique. The paper discusses two tech-
niques for learning: generalizing after all actions have been
completed and updating a policy as training data becomes
available. Our project implements the second technique be-
fore testing a new action submitted to the dataset, our policy
waits for a human to indicate the veracity of its classifica-
tion and updates its previous classifications based on input.
Thus, our learning is also supervised.

Another experiment that uses the second technique in
learning from demonstration, updating a policy as more data
becomes available, is “Learning Manipulation Actions from
a Few Demonstrations” by Abdo et. al. In this experiment, a
robot attempts to learn from a human based on few demon-
strations. The robot then asks the demonstrator for more ex-
amples of a task if it is not confident enough to complete the
given task with information is has already gathered. Some
of this work involves teaching robots more basic actions,
though these are not presented as “primitives.” Rather, the
experiment focuses on a robot chaining together what it has
learned from previous demonstrations, rather than from a
subset of smaller actions.

“Learning Task Sequences from Scratch: Application to
the Control of Tools and Toys by a Humanoid Robot” by
Arsenio applies learning from demonstration to real-world
tasks. The paper discusses teaching complex action se-
quences to a robot that visually observes human teachers
completing similar tasks. He describes the learning process
in three general steps: first, the robot recognizes an object
using the objects color, luminance, and shape cues and gen-
erates object models; second, it associates the object with
a corresponding action; lastly, the robot learns both the se-
quence of events that comprise a task as well as the objects
being acted on. In the process, the robot uses Markov chains
and kinetics-mapping to extract information about a partic-
ular task it is trying to learn.

“Learning Similar Tasks From Observation and Practice”

by Bentivegna et. al. describes a case study in which re-
searchers taught a robot, using learning from demonstration
and learning from practice, to solve a marble maze. This pa-
per focuses on the use of “local representations” of a situa-
tion, descriptions which focus on features of the board local
to the robot, and builds off of previous research in which
the authors used “global representations,” descriptions that
include the specific location of the ball on the board. They
claim that using a global representation helps the robot de-
velop skills specific to a particular situation, while a local
representation allows a robot to generalize the data it col-
lects. After completing their experiment, they noted that the
robot achieved its goal much more slowly than its human
teachers, indicating that practice would help the robot im-
prove its skills. After the robot practiced the game sixty
times, the researchers noticed both an increase in the aver-
age velocity of the robots movements and in the number of
times it successfully completed the maze. To buttress their
claims, the authors ran the same experiment using a software
maze and demonstrated similar success. Most significantly,
this experiment relied on the use of a set of primitive actions
that the robot could perform on the marble maze. These ac-
tions were highly specialized and specific to the experiment.
At each stage of the maze, the robot chose which primitive
action to complete based on the local and global representa-
tions.

Our work builds most closely off of Bentivegna et. al. be-
cause we too are focusing on what we deem to “primitive”
actions. However, in some ways, our experiment generalizes
their results. While their primitives are specific to complet-
ing a marble maze, we teach the arm primitives that can be
combined into a larger variety of sequences. Thus, we incor-
porate aspects of Arsenios work as well.

Methodology
3.1 Controller Design
Our goal in designing the layout of the new controller was
to create a setup that was as easy as possible for new users
to learn. In creating this intuitive design we solicited ad-
vice from fellow Freshman Research Initiative classmates
as well as Undergraduate Mentors in the LARG BWI Lab.
We wanted our controller to feel as natural as possible and
we did not want new users to be surprised by any of the
robotic arms movements. A key to accomplishing this was
artificially lowering the velocities we sent to the arm. The
Xbox controller driver node produced values between [-1,
1] for the two joysticks on the controller which we multi-
plied by 0.6. Our final controller layout choice is displayed
in Figure 2.

In working with the controller, we used several ROS
nodes already integrated into the larger BWI codebase. We
used the joy node to receive input from the Xbox controller.
We relied on the existing the MICO arm drivers Cartesian
velocity topic and the existing segbot arm manipulation top-
ics finger position and home arm methods to publish the con-
trollers commands.

In addition to designing a controller that would be used
generally in the lab, we wanted to design the controller so



Figure 2: Xbox Controller Layout

that other researchers in the lab could customize it for their
experiments. Thus we did not map the four colored buttons
on the controller to any actions. An individual working on an
experiment that is focused on grasping, for example, can use
the buttons as shortcuts for grasp-specific actions without
worrying about overwriting other controls.

3.1.1 Collecting Arm Data
The time when the controller is being used is a prime op-
portunity to collect data for future experiments. We wrote a
bash script, capture all to collect and store the finger posi-
tion, joint efforts, joint states, tool position, point cloud, and
video topics from the arm and the Xtion camera. Thus data
can be replayed and used in future experiments.

3.2 Classifying Primitive Actions
This section of our project involved generalizing primitive
actions learned from demonstrations in order to classify per-
formed actions. We collected various data points from the
arm for each actions performed and classified the actions us-
ing temporal bins, the k-Nearest Neighbors machine learn-
ing algorithm (k-NN), and dynamic time warping.

3.2.1 Types of Data
The trajectories of our actions were represented by three dif-
ferent types of data: joint positions, joint velocities, Carte-
sian positions, and Cartesian orientation. Because each data
type is measured using disparate units, we needed to com-
bine three different distance functions to calculate a distance
between two time-steps. Comparing the the joint positions
required calculating the distance between two radians to cre-
ate a value in the range [-π, π]. The velocities posed an inter-
esting problem. The values were measured in the rage [-1, 1]
with many being closer to 0 than either bound. This meant
that subtracting the velocities produced a small value that
had little to no impact on the final difference between two
actions. This meant that one of the most defining differences
between actions was being overpowered by the other factors
whose differences resulted in larger values. By weighting
the differences between the velocities, we were able to give
them enough of an impact in the final difference to influence
the classification. We ensured, however, that their impact

would not overpower the other factors. The positions lay on
a three-dimensional Cartesian system. Therefore, we were
able to calculate the distance between positions using Eu-
clidean distance for three points. The Cartesian orientation is
recorded in quaternions and therefore required a quaternion
distance function to compute the distance between them. By
summing the three distances we computed the difference be-
tween two time-steps to use in the k-NN algorithm.

3.2.2 Using Temporal Bins
Our initial attempt at classifying actions utilized ten tempo-
ral bins similar to the method used by Sinapov et. al. Using
this strategy, we recorded the raw data from an action then
divided it evenly into 10 temporal bins. We then averaged the
values in each bin and used that average as the value from
the bin. Given these temporal bins, we then applied the k-NN
algorithm to classify the action. While this approach made it
easy to calculate a difference between the bins and generate
a difference between the two actions, it did not prove to be
precise enough for the classifier to successfully differentiate
between different actions.

Figure 3: Comparing two actions using temporal bins. Ac-
tion x is linearly compared to Action y with each bin being
compared to the corresponding bin for the other action. Each
difference is summed to calculate the difference between the
two actions.

We concluded that because we shrank the data down into
ten averages, we did not have precise enough data to use to
calculate an accurate difference for the robot to make dis-
tinctions between actions.

3.2.3 k-Nearest Neighbors
To classify actions, we used the k-Nearest Neighbors ma-
chine learning algorithm. k-NN classifies recorded actions
based on the majority of the k nearest labels to the recorded
action as shown in Figure 4.

Since our data includes more than two different actions,
we run the possibility of a tie in the classifier. In order to
break the tie, we subtract 1 from k until the tie is broken
as shown in Figure 5. The k-NN classifier is trained using
supervised learning from a user and will add to the training
set only when the user confirms the correct classification.
The classifier can also run unsupervised but will not add to
the training set.

3.2.4 Dynamic Time Warping
Without the temporal bins there is no set number of time-
steps for each action. Because of this, the number of time-
steps in each action can vary with some being as low as
90 with others going upward toward 300 time-steps. This
meant we could no longer use a linear mapping between the



Figure 4: k-NN classifier classifying the unknown label
marked ‘x’. The classifier is using k = 3 to find three closest
neighbors. Since red has the majority of the three, the clas-
sifier would determine x to belong to the red classification.

Figure 5: k-NN breaking a tie. On the left with k = 5 there
is a tie between the red and blue with 2 reds, 2 blues, and
1 green. The right show the tie breaker with k = 4 which
breaks the tie between the 2 reds and 2 blues with 2 reds, 1
blue, and 1 green.

time-steps. In order to compare the trajectories of the two ac-
tions, we implemented dynamic time warping as described
by Koang et. al. To perform dynamic time warping, we gen-
erate an n ×m matrix where n is the number of time-steps
in action x and m is the number of time-steps in action y.
We populate this matrix with the difference between each
time step in x compared against each time step in y such
that index i in row 0 would be

costs[0][i] = distance(x[i], y[0])

From this, we calculate the least costly path from (0, 0) to
(n−1,m−1) following the conditions that the path may not
move left or up in the matrix. A more detailed description of
the conditions that must be met by dynamic time warping is
described by Keough et. al.

By doing this, we “warp” the mapping between the time-
steps from action x and action y to find the optimal compar-
ison between the two trajectories. This allows us to compare
actions with different lengths making a comparison of the
raw values possible.

Figure 6: Getting the least costly path through the matrix of
distances. The path starts at the green square (0, 0) and must
end at the red square (n - 1, m- 1) and moves down and to
the right.

Figure 7: The difference between using a direct mapping
of time-steps and using DTW. Top, direct mapping restricts
comparing each time step to the matching one on the other
action and does not work as well with different length trajec-
tories. Bottom, DTW allows for the time-steps to be mapped
to the best matching time step to provide a more accurate
distance measure.

Results
4.1 Controller Experiments
For our comparison experiment between our Xbox con-
troller and the built-in joystick, we recruited seven students
who had never used either controller. We gave the students a
minute and a half to learn the movements of each controller
and then had the students complete three tasks with each
joystick in a random order.

4.1.1 Tasks Performed in Experiment
Task 1: Place an animal object into a bowl
Task 2: Stack three objects on top of each other
Task 3: Pour pinto beans into a bowl from a plastic container

4.1.2 Results of the Experiment
Data from our experiment showed that majority of the stu-
dents preferred the new Xbox controller.

The average improvement in time for Task 1, Task 2, and
Task 3 were 133 seconds, 293 seconds, and 179 seconds re-
spectively. Moreover, the median improvement for Task 1,



Figure 8: Differences between a recorded lift and the other
actions in the dataset. Shows how close each other action is
to the recorded one and which actions were the closest. In
the case of k = 3 the three nearest neighbors would be two
lifts and one sweep making the classification for the action
a lift.

Figure 9: The above graph describes the result of the exper-
iment. It shows the number of students who performed each
task faster using the XBox and Joystick controller.

Task 2, and Task 3 was 34 seconds, 138 seconds, and 39 sec-
onds. The recorded timings indicate that, on average, 80%
of the time tasks were completed faster with the Xbox con-
troller. Although this percentage may suggest that the Xbox
controller is clearly better, it is misleading because we only
recorded data from seven people. However, the current data
does suggest that the experiment should be replicated with
more participants to get more-accurate data.

4.2 Classifying Results

Our initial attempt at classifying actions utilized the tem-
poral bin strategy in order to create a uniform number of
time-steps to compare between different actions. When this
did not produce desired results, we converted to using the
raw data and the dynamic time warping approach in order to
classify actions. To test, we used a training set of 100 actions
that contained 17 lifts, 34 pushes, 29 sweeps, and 20 grasps
and tested against a test set of 39 actions.

Figure 10: Out of the seven people who participated in the
experiment five of them said they preferred Xbox controller
and two said they preferred Joystick after completing all the
tasks with both controllers.

4.2.1 Temporal Bins Results
While the temporal bins made it simpler to compare differ-
ent actions by allowing a direct comparison of time-steps,
the details of each data point that created the distinction be-
tween the different classifications were lost when we took
the average of a group of bins. This proved not to be much
of a problem with a working set limited to the actions “lift”
and “sweep.” However, upon adding the action “push” to the
set, the classifier began to confuse the “push” and “sweep”
actions resulting in the wrong classification roughly 50% of
the time. Initially, we added more examples to the training
set in an attempt to reduce the errors by increasing the num-
ber of examples to compare against. However, this did not
improve our results by any noticeable factor.

4.2.2 Dynamic Time Warping Results
By switching to using dynamic time warping instead of us-
ing the temporal bins strategy, we were able to more accu-
rately classify actions. The first dataset achieved an 82% ac-
curacy, incorrectly classifying 9 actions, while the second
dataset achieved a 74% accuracy, incorrectly classifying 13
actions.

Conclusion and Future Work
5.1 Controller
Though our controller experiment data indicated that our
new controller is superior to the old joystick, we recognize
that this conclusion is based on little data. One could build
off our work by running a more extensive experiment with
more participants and tasks.

In addition, our experiment focused on people who had
never used an arm robot controller. The results of the exper-
iment may not be applicable or relevant for people who use
the built-in joystick extensively. However, even if the built-
in joystick is easier to learn, the wireless controller could fix



Figure 11: Results from test sets for classifying actions. The
classifier performed 82% accurate and 74% on two inde-
pendent tests with 50 actions each. The results still show
some confusion between actions with the several actions be-
ing mislabeled as grasps.

a major pain point for lab researchers by allowing a user to
maneuver the arm without switching modes.

Furthermore, our controller layout was based on our in-
tuition and input from mentors. We may have showed that
our controller is better than the old joystick, but that con-
clusion is relevant to the controller as a whole. Future ex-
periments could run extensive A/B tests on all aspects of
the controller to determine if our layout is indeed the most
intuitive. We concede that results could be improved if the
controller layout was slightly different we made a guess
based on our intuition. Immediate next steps we would like
to take are adding a second mode that would allow a user
to tele-operate the Segbot base. There is a danger in allow-
ing such a quick transition between controlling the arm and
base, so we would need to add various hurdles for a user to
jump through to ensure that they wanted to switch to “base
mode.”

Finally, once we complete the aforementioned steps, we
plan to add our work to the lab code-base and put our con-
troller into regular use.

Figure 12: Controller Layout for Tele-operation of the Seg-
way Base

5.2 Classifying from Demonstration
By using temporal bins, we did not have much of success in
having the robot correctly identify the demonstrated primi-
tive action in the beginning. It was not until we implemented
Dynamic Time Warping that we started to see a significant
improvement in the robots classification of the demonstrated
actions. Our desired accuracy for the classifier was 80%.
Given the performed tests, our classifier performed near the
desired accuracy, but did not exceed it one test classified
82% of performed actions and another classified 74% cor-
rect. We would need to run more tests to determine the true
accuracy of the classifier. Due to these results, we conclude
that the classifier performs near the desired accuracy but
does not completely meet the desired accuracy.

Possible future work on this project could include chain-
ing together the primitive actions to form complex actions
such as opening a door or putting an item back into a shelf.
This makes it possible for people with little experience in
robotics to be able to “program” them to help out people.

Another possible extension is to have the robot be able
to break up a complex action into simple primitive actions.
For example, given the task of putting an object on a shelf,
the robot can break it up into simple actions such as: send
the arm near the object, grasp the object, lift the object up,
sweep the arm towards the shelf, push the object into the
shelf, and then release the object.

A final area of future research ties together the two sec-
tions of our project more closely by creating a controller
that can predict how the user wants to manipulate the arm
based on dynamic action classifications. This can help cre-
ate smoother transitions between arm states.
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