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Abstract 
This paper addresses the idea of optimizing a procedure 
through which a robot with a camera could obtain the most 
visual data while exerting the least energy. This procedure 
does not just measure the most efficient viewset for energy 
cost, but also ensures a minimum threshold for successfully 
obtaining meaningful data. In this paper, we identify a few 
key aspects of visualization that underlie this functionality. 
The actual procedure is identified by simulating robotic 
vision on Point Cloud Dataset files and estimating the cost 
for this vision using real-life energy cost metrics. The Point 
Cloud Dataset files are analyzed by finding the accuracy of 
different camera viewpoints relative to the object’s center. 
Each viewpoint is considered independently, and then 
viewpoints are strung together to create view sets. These 
view sets represent real-life instances in which all of an 
object cannot be viewed from a single perspective. We 
present the results of using this procedure, its success within 
our simulation, and future implementations of this 
procedure.  

 Introduction1   
The Building Wide Intelligence project Segway robots are 
designed to autonomously roam the Gates-Dell Complex 
main building. In providing many different services, the 
robots are required to be adept at: 
 

● Autonomously navigating and localizing in the 
diverse areas of the Gates-Dell Complex. 

● Understanding the surroundings in order to better 
service humans and navigate the building. 

● Understanding how to interact with objects while 
navigating or giving virtual tours. 

 
 Although the current robots are able to navigate 
different floors by detecting obstacles and following maps, 
they are not good at interacting with their surroundings. As 
robots that tour the building, they should be able to interact 
                                                   
1
Thanks to Jivko Sinapov for mentoring us, and to the mentors for 

providing guidance and maintaining the robots. 
 

with objects and have knowledge of the objects that 
surround them. Currently, these Segway robots have a 
Segway base, many sensors, and a camera that allow them 
to interact with their surroundings through navigation of 
different environments. With a built-in arm, one of the 
robots can correctly ascertain other traits of objects. 
However, the Segway robots lack the ability to view an 
object and construct a three-dimensional rendering of that 
object. This rendering requires multiple different views to 
be stitched together, posing the question of how to best 
obtain these different viewpoints. The best algorithm to 
obtain the best views (the greatest percentage of the object 
viewed) can be approached in a number of ways [Faugeras, 
1993]. 
 
Figure 1: Segway robots with Segway bases and cameras. Other 

sensors located in the base are used to help the robot navigate the 
Gates-Dell Complex. 

 

 Related Works  
Cost minimization algorithms all generally require a cost 
algorithm which takes into account different metrics 



[Elegbede, Chu, Adjallah, Yalaoui, 2003]. These metrics 
have to be specific to the use case. In this case, that means 
minimizing cost relative to viewing the object. Overall, in 
object recognition and reconstruction, there are many 
different methods utilized to best reconstruct the object 
into a three-dimensional model. 

Military Robots 
One such example of object reconstruction is military 
applications of robotics. In terms of national security, 
unmanned military vehicles are the future for warfare. 
With regards to national defense, many war situations are 
found in hazardous zones, where resources are scarce and 
the terrain is unforgiving. Being unmanned, the robot has 
to navigate the terrain autonomously. Even robots are 
remote-controlled, such as the majority of drones, require 
some fall-back mechanism through which they could 
readjust for the terrain [Shaker, Wise, 1987].  
 
Figure 2: Unmanned, military scouting robot that has an arm and 

a camera to navigate its surroundings. 

 
 Furthermore, in an emergency situation, the robot 

needs to have the ability to correctly and efficiently 
identify objects around it and determine how to use the 
objects. Especially with a lack of resources, many 
unmanned robots could be utilized to scout out rough 
terrains and determine strategic resources in the 
surroundings. Similarly, with regards to unmanned naval 
and space-based robots, it is pertinent for robots to have 
this visual awareness of their surroundings. Figure 2 above 
shows how most of these robots have cameras and arms to 
interact with and understand their environment. However, 
since most of these military robots are small, they have 
small batteries and need to efficiently consume that energy 
to be effective. The robot in Figure 2 follows energy usage 
minimization principles to be effective as an unmanned 
vehicle, especially in hazardous regions [Bhat, Meenakshi, 
2016]. 

Normal Aligned Radial Feature (NARF) 
A relevant methodology for filtering  images and checking 
for similarities in images can be found in the article: “Point 
feature extraction on 3D range scans taking into account 
object boundaries” by Steder, Rusu, Konolige, and 
Burgard. 

The focus of this paper is to present a keypoint 
extraction method on three-dimensional point cloud data 
for both object recognition and pose identification.  The 
authors' goal was to find the similarities between two 
different images in order to understand which parts of the 
images overlap. This allows one to determine what has 
already been scanned and help distinguish between new 
data from data that the robot has already taken into 
account. In the experiment, the paper discusses using 
single range scans, as obtained with three-dimensional 
laser-range finders, in which the data is incomplete and 
dependent on a viewpoint. In the paper they present a 
normal aligned radial feature (NARF), "a novel interest 
point extraction method together with a feature descriptor 
for points in three-dimensional range data". The NARF 
relies on detecting the borders of an object and having 
objects placed in locations where the surfaces are stable, as 
seen in Figure 3 [Steder, Rusu, Konolige, Burgard, 2011] . 

The interest point detection relies on three ideas to 
accurately detect interest points in a three-dimensional 
image. It must take borders and surface structure into 
account, select points that are reliably detectable from 
different angles, and points that are in positions that 
provide stable areas for normal estimation. The goals for 
the development of the NARF Descriptor was to identify 
the difference in occupied and free space, to make the 
descriptor robust in handling different interest point 
positions, and enable them to extract a unique local 
coordinate frame at a single point. Once this procedure and 
its calculations were explained, the paper introduces two 
different experiments that test object matching and stability 
in recognizing interest points from different distances and 
angles [Steder, Rusu, Konolige, Burgard, 2011]. 

The above methodology, combined with some 
metric for threshold energy or cost factor, is an efficient 
and optimized manner of determining the ideal set that can 
be potentially used to reconstruct the object in question. 
This is a potential area of expansion and adaptation that 
can be made to enhance the efficiency and ensure further 
accuracy of results [Steder, Rusu, Konolige, Burgard, 
2011]. 
 
 
 
 
 
 



Figure 3: An example of filtering and removing overlap of an 
image using the NARF algorithm. 

 

 

Segmentation and Analysis of Point Clouds 
Another relevant paper describes how to approach large 
objects which can range in 105 measurements in terms of 
the number of points and how to accurately stitch together 
images. Since robots need to take multiple views to 
accurately get a full three-dimensional rendering of any 
given object, it is important to consider this method of 
stitching together point clouds. This article is called “Real-
time object classification in three-dimensional point clouds 
using point feature histograms” by Himmelsbach, Leuttel 
and Wuensche. 

In this paper, the motivation behind the given task 
was to assist a robot to navigate urban traffic as well as off-
road environments. In order to achieve this goal, the 
authors combined two-dimensional and three-dimensional 
image processing techniques. Two-dimensional data was 
used for segmentation of point clouds into objects and 
three-dimensional data was used as raw point clouds to 
classify objects. The two-dimensional data was stitched 
together using information of relative position with regards 
to the entire point cloud [Himmelsbach, Leuttel, 
Wuensche, 2009].  

Beyond utilizing both forms of image processing, 
the paper goes over fast object feature extraction, a unique 
perspective to consider with military robots and object 
recognition. Since most fast objects are hard to capture, the 

techniques used to recognize and map them can be helpful 
for robots to quickly obtain information about their 
environment without having to analyze the object fully. 
The fast objects are captured by histograms over point 
features. This paper is unique in its ability to implement a 
way to incorporate two-dimensional and three-dimensional 
methodologies to solve the problem. For future purposes, 
this paper helps account for very large point clouds 
[Himmelsbach, Leuttel, Wuensche, 2009]. 

 

Figure 4: Some hand-labeled examples of point clouds used for 
training a vehicle classifier. Positive examples (top 3 rows) and 

negative examples (bottom 2 rows). 

 
For other implementations of imaging techniques, 

the paper discusses vehicle classification theories that can 
be used to classify specific vehicles. By using data sets of 
vehicles to train a vehicle classifier, the researchers hoped 
to train the visualization of vehicles to correctly identify 
the vehicle recognized. Figure 4 above gives examples of 
data points within a potential training dataset. This 
classification is especially relevant for military robots that 
need accurate classification algorithms to translate point 
cloud datasets into clumps of points that define objects. 
Visualization of objects lays the framework for object 
classification, upon which robots can eventually take 
specific actions. The training works by rewarding correct 
classifications and negating incorrect classifications. In this 



manner, the classifier generalizes rules for classifying 
vehicles or other objects [Himmelsbach, Leuttel, 
Wuensche, 2009]. 

Methodology  
Overall our goal was to determine a general trend in the 
creation of the most optimal set of views that performs an 
accurate three-dimensional scan of an object. The purpose 
of our project may be derived from the possibility of 
applying these findings to three-dimensional scans of 
unknown objects. Our project largely deals with 
simulations in rViz with objects that we already have full 
three-dimensional scans of. This allows us to test our 
findings with the data we used to derive our results from. 

In an effort to make our work as compatible and 
expandable as possible, we divided our solution into four 
key C++ files. These four portions were each made to 
complete a single overarching task that could be combined 
with the other portions of the project while still being 
easily adaptable.  

The four sections of code we have include two 
separate nodes that must run simultaneously. The first node 
is rvizView which we use to publish the point cloud dataset 
we need as a topic for the rest of the project to use. The 
second process includes three separate C++ files. This 
process contains our findPoints, generateViews, and 
generateViewset files. Together these files take the data 
published in rvizView, create viewpoints around the 
object, determine how much of the object can be seen from 
these views. Finally, generateViewset determines the most 
efficient collection of views in a collection we call a 
viewset.. 

Rviz Viewer 
The first process that our project completes was developed 
as the rvizView.cpp file. In this ROS node, we convert a 
specified Point Cloud Data (.pcd) file into a message of 
type sensor_msgs::PointCloud2. This resulting message is 
then published to a topic we titled “/cloud” in order to be 
referenced by other parts of our project as well as to 
display on the rViz simulator. Besides publishing the 
dataset to a topic, we could have passed this PointCloud2 
object into the functions we will be using it in. However, 
the main purpose behind setting up the topic was to make it 
easier for future work to send isolated object data in the 
form of a topic containing PointCloud2 data. It was also 
easier to visualize the entire object in rViz by publishing 
the .pcd to the “/cloud” topic [Kammerl, Woodall, 2016]. 
 The second process that completes the remainder 
of our project is comprised of the three remaining files. 
Only one of these files, generateViewset, contains a call 
back and runs as a ROS node. The other two files contain 
code for function calls which are used in generateViewset. 

See Figure 5 below for a visual depiction of how these files 
interact. 

 
Figure 5: A diagram displaying the behaviors and interactions 
between portions of our project. The blue arrows are used to 
display which parts of our code contain callbacks and run as 

ROS nodes. The green arrows are used to display function calls. 
The red arrows display return statements. Finally the gray 

arrows indicate that a file is publishing information. 1: 
generateViewset calls generateViews once in order to create the 

sets of views around the object. 2: generateViews calls findPoints 
once for each view created. 3: findPoints returns information 

about that view in relation to the object. 4: generateViews sends 
each view and the information obtained in step three back to 

generateViewset. 5: rvizView publishes the point cloud dataset to 
the “/cloud” topic. 

 

Generating Viewsets 
This process beings with generateViewset. Though this 
function beings the process, it is also where it ends. It 
requires both generateViews and findPoints to feed it the 
data it requires to determine the most efficient collection of 
views. Thus, we will describe the actual data being used by 
this file after discussing the files overall goal and function. 
The process begins with the assumption that 
generateViews and findPoints have correctly fed the 
information to generateViewset in the form of a two-
dimensional vector. In this two-dimensional vector, each 
element in the innermost vector contains a struct with the 
Pose for the view, a filtered cloud containing only points 
that can be seen from that view, a boolean map which 
indicates which points of the original object can be seen, 
and a double that indicates the percent of the object seen 
from that view.  



 Before searching through the views, we create 
five initial viewset_object objects that are initialized with 
the starting view of the object at five different angles. This 
portion of the code is easily expandable and adaptable to 
incorporate an assortment of camera angle positions. The 
viewset_object contains a vector of the views in this 
viewset, a boolean map that is a combination of all the 
views in the viewset, and a double holding the total 
percentage of points that can be seen, based on the 
combined boolean map. These viewset_objects will be 
filled with the best combination of views based on that 
starting position. Then these viewset_objects can be 
compared to determine the most efficient set out of these 
optimized sets. 
 The procedure we used to determine the most 
efficient set of views primarily focuses on the boolean map 
associated with each view. Each view is compared to the 
current boolean map of the viewset_object to determine 
which view would add the most information to the current 
set of views. This process occurs indefinitely until the 
viewset_object’s total percentage viewed is equal to or 
greater than a defined threshold value. This threshold value 
is the degree of accuracy desired for the three-dimensional 
scan. 

Generating Views 
The file generateViews.cpp defines a function that is called 
by generateViewset to create views, which we represent as 
Pose objects, around the object. These views are created in 
a manner that best fits the Building Wide Intelligence 
project Segway robots in the Gates Dell Complex at The 
University of Texas at Austin. These robots currently 
operate with cameras at a fixed height. However, it may 
still change its orientation. Due to the fact that the camera 
may not move its relative position on the robot, we create 
the views at a fixed height. The height is stored as a class 
constant and can be easily adapted for different heights or 
even robots that may change the height of their camera 
views. To give the best combination of angle and position 
for different camera views, we chose to create the views in 
the form of a circle around the object. If we were to expand 
our code to work with robots that may change the height of 
their cameras, such as quadcopters, we would generate 
views as a hemisphere around the object. Regardless, we 
create the positions of the camera views such that each is 
ten degrees around the the circle from the next closest 
view. The circle’s size is determined by multiplying the 
length or width of the object, whichever is larger, by 1.5. 
This value is used as the radius of the circle that we create 
the views on. The orientation of each camera is adjusted so 
that it is always looking at the center of the object. For 
each view created, generateViews makes a call to 
findPoints. The information from calling findPoints on 
each view is returned as a struct. The generateViews 
function calls returns a two-dimensional vector filled with 
this findPoints data. The elements of the outer vector 

contain a vector that corresponds to a different view 
position. Each element of this vector contains the data for 
each separate view at the position. The difference between 
the views within the outer vector is each views orientation. 
The two-dimensional vector is returned to generateViewset 
at the end of generateViews. 

Finding Visible Points 
The final component of our project is the findPoints.cpp 
file. The file consists of a primary method called 
findPoints, which is called from the above 
generateViews.cpp file. When this method is called, a 
PointCloud of the object in question and a given viewpoint 
are passed in as arguments to the method. At a high level, 
the method traverses the points of the PointCloud and 
generates a filtered cloud based on our filtering algorithm. 
In addition, the method calculates the percentage of points 
viewed from that viewpoint and generates a boolean 
structure containing data on which of the points in the 
point cloud are visible. All this data is returned to 
generateViews through a C++ struct. 

Our filtering algorithm is vital for simulating 
robotic vision within rViz. The algorithm involves 
traversing the points of the PointCloud. For each point, the 
method computes the slope between that point and the 
given viewpoint (passed as the argument). After the slope 
is calculated, the point is added to the map with the slope 
as a key and the point as the corresponding value. For now, 
this point is considered visible; thus, in the boolean 
structure, this point is entered as the key and its 
corresponding value as 1 (to designate true). As the method 
traverses the cloud, it may find a point that has the same 
slope as a point that is already in the map. If this is the 
case, the method must find the point closer to the 
viewpoint.  Using Eucledian distance formulas, the method 
determines which point is closer and accordingly update 
the map. The closer point is considered visible since it 
blocks the view of the farther point. In the case that the 
new point is relevant (closer) and the old point is not 
visible, the method updates the boolean structure and 
marks the old point as 0 (false - not viewed) and the new 
point as 1 (true - viewed). Ideally, at the end of this 
traversal, we have a map of unique slopes to the closest 
viewed points for a given viewpoint. 

Given a camera view, findPoints can determine all 
the points that a specific camera viewpoint can see. All 
these points are added to the PointCloud object. This object 
is published in generateViewset if it is one of the most 
optimal views. The final struct returned consists of: a 
geometry::Pose object of the camera view, a PointCloud 
object of the filtered cloud, a double of the percentage of 
the object viewed, and the boolean map of visible and 
hidden points. 



Results  

Once we had unit tested our code to ensure it was 
accurately producing the intended data, we applied our 
algorithm and code on different PCD data sets. As 
discussed earlier, running the code on PCD files enables us 
to check our working model in simulation. Further results 
involve applying the algorithm on the robot itself. 

The general process by which we conduct 
experiments and collect data is consistent for all PCD data 
files. Our rvizView.cpp node reads a PCD file of the object 
we wish to test (spray bottle, cup, office etc) and passes 
this object as a PointCloud through our algorithm. At the 
conclusion of the program's runtime, our algorithm outputs  
the following relevant data: 

 
● The number of points in the PCD. 
● The percentage of the object viewed in the 

optimal viewset. 
● The number of views in the optimal viewset. 
● The cost metric calculated for the robot to reach 

each view. 

Table 1: Data collected from a few PCD files of varying sizes and 
with different percentage viewed thresholds. 

Item No. of 
points 

Percent 
Viewed 

No. of 
Views 

Energy 
Cost (J) 

Distance 
Cost 

Cup 2500 97.24 2 85.40876 3.317 
Cup 2500 99.7 3 130.9583 5.086 
Cup 2500 99.88 4 131.8596 5.121 

Spray 
Bottle 2512 98.22 2 105.2095 4.086 
Spray 
Bottle 2512 99.92 3 110.5910 4.295 
Spray 
Bottle 2512 100 4 139.3782 5.413 
Hand 5080 96.98 2 131.0356 5.089 
Hand 5080 99.53 3 140.0992 5.441 
Hand 5080 100 5 152.8191 5.935 
Office 307000 32.6 1 0 0 
Office 307000 100 2 206.5311 8.021 

From the the data on the left, we are able to extract more 
useful information such as how does the cost vary as we 
increase the size of our object. This is a relevant metric that 
is required to eliminate wasteful work and optimize robot 

visualization in military applications. Collecting data from 
many object files, we graphed the relationship. 

Figure 6: Graph that represents the Energy Cost (in Joules) vs 
the Size of the Object.  

 

As we can see from above, as expected, the energy 
increases as the size of the object increases. It is interesting 
to note that while we expected a positive linear trend, the 
relationship is not actually linear. Instead, it appears to be 
logarithmic. This is confirmed via a best-fit curve. 
However, given our limited data size, this relationship may 
just be coincidental. 

In addition to the numerical figures acquired, 
below are pictures of the the rViz simulations. 

Figure 7: Robot visualizing the cup with 2 views and a 97.24% 
accuracy. 

 
 

 

 

 



Figure 8: Robot visualizing the hand gesture with 2 views and a 
96.28% accuracy. 

 
 

Figure 9: Robot visualizing the spray bottle with 4 views and a 
100% accuracy. Note: Although our algorithm outputted a 100% 
accuracy, it is much more likely that  the robot only sees about 

99% or greater. This error could be due to comparison 
inaccuracies or a lack of precision within certain calculations in 

the algorithm. 

 
From the images above, it is reasonable to conclude that 
the views considered optimal by our algorithm comply 
with our common sense. However, it is intriguing to see 
how each view adds a specific percentage of extra 
information to the rendering. More importantly, some 
views do not add significant amounts of information. As 
seen with the hand above, the robot could see 96.98% of 
the hand with two views, but required two more views to 
just another 0.46% of the hand. 

In general, we found that two views will give a 
robot a decent perception of most objects. We define a 
decent perception of objects as a visual accuracy of at least 
85%. This accuracy can be fine for object identification; 
however, for object recognition (a potential future 
application), the robot needs more complex visual data. For 
example, with the hand gesture, the robot could probably 
tell that there is a specific gesture with just three views. 
But for the robot to understand emotion in that hand 

gesture, it needs the extra two views. In the end, this 
algorithm shows us that object recognition requires more 
information about the nature of the object and the amount 
of complexity necessary for identification. Since more 
views involves energy consumption, this information is 
necessary to achieve the most cost-efficient data above a 
certain minimum. 

Future Work  
Object classification is the intended application of this 
research. Classification can be broken down into two parts: 
isolating key points of interest and then correctly 
identifying each object and its significance. 
Figure 10: Three-dimensional point cloud with objects identified 
through segmentation techniques, represented by 3D bounding 

boxes (green). 

 

Isolating Key Points 
Feature extraction within dense point cloud datasets is 
important for robots to quickly notice surroundings. As in 
the aforementioned implementation of military robots, 
scouting robots used by Defense Advanced Research 
Projects Agency need to quickly place points together into 
a single point cloud that constitutes each object. Feature 
extraction is done by utilizing two-dimensional data sets to 
measure differences in key image properties. A difference 
in texture, background, or other feature could result in a 
change from one object to the next. These segmentation 
techniques can help a robot identify different objects 
within a point cloud, as seen in Figure 10. When 
considered cumulatively, the point clouds are translated 
into smaller, condensed images which are local to that 
specific object [Himmelsbach, Leuttel, Wuensche, 2009]. 

This form of feature extraction is similar to many 
library functions that utilize image analysis to identify 
people and humans. With these images, it is easier for a 
robot to correctly identify the object, its nature, its 
properties, and its significance [Ziafati, 2016]. 



Identifying the Object and Significance 
Object identification requires taking three-dimensional 
data from the Point Cloud Dataset related to the single 
object and running it through an object classifier. For our 
research, the next step would be to train a classifier that 
could identify certain objects. For example, for a military 
robot, the classifier would be trained on datasets of 
common military weapons, resources, and key points of 
interest. On the other hand, the Segway robots in the 
Building Wide Intelligence lab would benefit from being 
able to recognize common objects found within the Gates-
Dell Complex, such as white boards, chairs, tables and 
other robots. This form of object recognition would help 
facilitate a truly seamless human-like tour experience for 
the Segway robots. 
 The training data set we would test it against 
would require examples of positive data and negative data. 
As we found in the “Point feature extraction on 3D range 
scans taking into account object boundaries” paper by 
Steder, Rusu, Konolige, and Burgard, these positive data 
sets would reflect correct examples of the object and 
negative data would reflect incorrect examples of the 
object. By giving the classifier examples of correct data 
and incorrect data, it would eventually utilize heuristics 
and commonalities spotted between the correct data. In 
addition, it would avoid commonalities between the 
incorrect data. In this manner, the classifier would allow us 
to identify important objects for the object to eventually act 
upon and interact with the environment [Aldoma et al., 
2012]. 

Acting on Objects 
Upon identifying the item, the robot should be able to act 
on the object. Although the current Building Wide 
Intelligence Segway bots have some ability to manipulate 
objects and characterize objects from these interactions, 
these interactions can be improved through visual 
feedback. Ideally, a robot could see an object, recognize it, 
and then know how to use that object. For example, the 
robot could see a squishy ball, recognize it, and know that 
it can squish the ball. This function would require training 
the robot through reinforcement learning. The robot would 
be allowed to interact with the item in any ways and good 
interactions would be rewarded while bad interactions will 
be discouraged. In this manner, the robot would lean 
towards the favorable interactions, and over time learn how 
to interact with a specific object. Upon training with many 
different objects and then linking those actions to the 
images, the robot should be able to interact with its 
surroundings. For the Building Wide Intelligence robots, 
specifically, this could mean pushing the button to call an 
elevator or moving a chair out of the way.  
 This sequence of actions is very important for 
allowing the robot to interact with its surroundings. In the 
military application explored above, the robot would be 

able to quickly scout the environment and act upon certain 
actionable objects. However, for portable robots, it is 
important to minimize the cost of these actions. 

Robot Movement for Different Size Objects 
In minimizing costs, the robot needs to accurately estimate 
the cost for a considered course of action. In the case of 
different sizes of objects, this may require moving the 
camera, using the arm to move the object around, or 
driving around the object. If the object is a wall, the 
camera has to move. If the object is a table, the robot has to 
move. If the object is a small stuffed animal, the robot has 
to move the object with the arm. Each of these requires 
different actions that use different amounts of energy. In 
the cost estimation we use for our data in this paper, we 
assume that the robot moves around the object. However, 
that may not always be the most optimal means of 
visualizing the object. Using the arm takes way less energy 
than moving a Segway base [Heinzmann, Taylor, 2007]. 
As such, we would include accurate estimation of cost for 
different modes of interaction [Mohammed, Schmidt, 
Wang, Gao, 2014]. 
 This accurate estimation would allow us to 
generalize our algorithm for finding the most optimal set of 
views for all forms of environmental interaction. This is 
the next step in more accurately identifying what is indeed 
the most optimal set of viewpoints. 

Conclusion 
Through this paper we explore determining the 

most efficient set of camera positions for a mobile robot to 
create a complete three-dimensional scan of an object. We 
explore the development of a general procedure for 
scanning an unknown object through our testing in 
simulation. We take fully developed three-dimensional 
scans and visualize, through rViz, how much of the object 
our procedure would capture as well as the cost of what we 
determine is the best set of those views. Through rviz we 
may also visualize the views in order to make 
generalizations. The biggest challenge we faced was 
adding the factor of angles to our visualization of the 
objects. What our biggest challenge in simulation was that 
the PCD files that we found had a lot of space between 
points. This space produced false results for our method of 
determining whether or not a point is can be seen from a 
view. The problem arose when the point was on the other 
side of the object from the view, but could still appear to 
be viewable because there was nothing blocking the view 
from the point. Another point of difficulty that we 
encountered was factoring in the angle between the point 
and the camera view. This was to account for the range of 
angles that the camera could see from a given orientation.  

Overall, we were able to complete our goals while 
only sacrificing a few features we wished to incorporate. 



Our project was entirely centered around simulation with 
key features made to be easily adaptable for 
implementation with the Building Wide Intelligence 
Segway robots at The University of Texas at Austin. We 
were able to generate views around an object, collect the 
required data, and determine the most effective set of these 
views. We were able to add the factor of cost as well. We 
were not able to go as in-depth with the cost function as we 
would have liked. This is because we did not factor in 
whether or not the object would be picked up by the robot 
or remain where it was found. Overall this project can be 
used as a stepping stone for further derivations of trends 
and functions. 
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