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Abstract 

To the best of our knowledge, at the time of this report’s writing 

there are no published attempts at teaching a robot to distinguish 

substances by their current material state (e.g. liquid or solid) or 

to classify distinct liquids based solely on haptic data. This pro-

ject aims to create a reliable and customizable data collection 

program as a base for future work in machine learning. The pro-

gram created performs a series of behaviors at different speeds 

and is successful in collecting large amounts of effort, force, and 

position data from a Kinova robotic arm, with four different stir-

ring implements used to create motions in four distinct substanc-

es. More testing, including the implementation of a learning algo-

rithm, should be done to fully realize the goals of this project. 

This research represents an intersection between the fields of 

personal robotics and autonomous intelligence, with potential 

applications in such disparate areas as accessibility robotics, food 

preparation, and automotive technology, among others.  

Introduction and Related Work 

Liquids are an integral part of everyday life. All living or-

ganisms rely on liquids, especially water, to function and 

thrive. That said, the majority of autonomous intelligence 

research does not concern robot interaction with liquid. As 

robotics becomes more incorporated with everyday socie-

ty, it is important that these systems exhibit comprehensive 

knowledge of the world of which they are a part. Similarly, 

if autonomous robotics researchers want to expand their 

reach or collaborate with other fields, it is important that 

their work too features a broader set of applications. 

Identifying and interacting with liquids is im-

portant in everything from food production to automotive 

care, yet this is a virtually unexplored region of robotics, 

with the exception of some niche work (e.g. work done 

with submerging robots in water completely and using 

them to collect data in underwater conditions). Current 

research efforts include training robots to categorize ob-

jects as containers to hold water and utilizing neural net-

works to detect and track liquids [5]. Work has been done 

by research collaborators such as Schenk and Fox to use 

machine learning techniques to get robots to understand the 

movement of liquids, but these movements are so complex 

that so far only computer-simulated liquids have been ana-

lyzed, and these necessarily differ from real-world liquids 

[6, 7]. It is agreed that robots need to be able to reason 

about liquids in order to function in any useful way, but 

this reasoning is difficult, not only because robots working 

directly with liquids is a challenge, but because liquids 

themselves present a unique physical challenge that robot-

icists are still looking for algorithms to solve. Teams like 

Klapfer, Kunze, and Beetz have proposed such programs, 

but even the simulations of liquids often have problems 

that must be addressed before a simulated robot can at-

tempt to analyze them [6]. Groups like Griffith and Shane 

et al. have done experiments with robotic comprehension 

objects, but most of these objects are either solid or empty 

and none contained liquids [5]. In a highly related experi-

ment, Elbrechter, Maycock, Haschke, and Ritter used 3D 

video feed to teach a robot about the viscosities of different 

liquids [3]. This team had a robot shake containers of vari-

ous liquids, and had success in getting the robot to perceive 

differences among their viscosities. The robot did not di-

rectly interact with the liquids, and the hundreds of tests 

conducted were per-formed manually. The liquid set used 

was relatively small, and consisted of relatively similar 

liquids, such as milk and buttermilk. This was largely be-

cause the robot used was a kitchen assistant robot, so the 

experiment focused on kitchen-related liquids and motions 

humans might use to determine viscosity when preparing 

food. The motion used was a back-and-forth motion de-

signed to create movement on the surface of the liquid be-

ing tested, as in food preparation less direct contact is con-

sidered ideal for sanitary purposes. Alternative approaches 

to liquid classification are non-invasive. For instance, plac-

ing specially designed ultrasound sensors within a contain-

er, and measuring “acoustic impedance,” as well as other 

calibrations to characterize liquids, specifically through 

comprehending their density; this proved beneficial for 

systems developed with the culinary industry in mind 

[1][2]. Similarly, Hara et al, utilized light refraction and 

manipulation combined with depth cameras to aid robots in 

detecting the presence of a liquid in small containers, such 
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as a cup; this approach, however proved limited in scope as 

it was only effective for clear liquids and not for substanc-

es with lower rates of transparency [8]. 

Our goal is to build upon the breakthroughs made 

with water-related robotics research and expand the work-

ing substances to include additional liquids as well as sol-

ids. Ultimately, our project aims to explore the cross sec-

tion of personal robotics and autonomous intelligence, rep-

resenting an opportunity to create systems which are able 

to learn about all elements of their environments and better 

equipped to perform a greater variety of tasks more effi-

ciently and robustly.  

Overview of the Concept of Viscosity 

Viscosity is measured in pascal seconds (Pa s) or poise 

(dyne second per square centimeter [dyne s/cm2]), with ten 

poise being equal to one pascal second. A higher viscosity 

corresponds to a thicker (more viscous) fluid, with the vis-

cosities of semisolids and solids being the highest - for 

example, tar at room temperature [20o C] has a viscosity of 

30,000, and water at the same temperature has a viscosity 

of 1. Viscosity is highly dependent on temperature, with a 

higher temperature yielding more viscous gases and less 

viscous liquids [2]. This is an important consideration for 

this project, as varying temperatures will yield inconsistent 

results. We solely conduct tests with substances generally 

stores at room temperature. This is to prevent skewing that 

could occur due to liquids exhibiting an unusual viscosity 

as a result of ecologically invalid circumstances (e.g. as 

milk is often refrigerated, it potentially curdles when left in 

warmer temperatures and this would affect its viscosity). 

Table 1: Courtesy of Physics.info [4] 

Methodology 

Technical Approach: Software 

Our program is a ROS node written in C++ using the Ub-

untu operating system. It utilizes ROS messages (specifi-

cally from the topics sensor_msgs::JointState, 

geometry_msgs::WrenchStamped, and geome-

try_msgs::PoseStamped) to gather data on the posi-

tion, effort, force, and torque from the eight joints of the 

Kinova robotic arm. We create global vectors to store the 

messages received from these topics, as well as a global 

flag to indicate when to store the data to avoid recording 

when the motions of the arm are not producing relevant 

data points. Data is pushed to the vectors in callback func-

tions when applicable during trials, and the vectors created 

are passed to a file writing method once a behavior is com-

pleted. Using this, we are able to write all the data for a 

given trial, using the following naming convention: 
path_behavior_stirringImplement_stir_su

bstanceStirred_dataMessage_trial_trialN

umber_run_runNumber.csv.  

The messages in the vector are passed through 

loops and are broken into component parts; these compo-

nents are stored in the aforementioned .csv files. Each file 

also stores the timestamp from the message header, as well 

as data specific to the message. The geome-

try_msgs::WrenchStamped message stores the x, y, 

and z force and torque from 

/mico_arm_driver/out/tool_wrench, which is 

important for determining the effort the arm uses to move 

through different substances. The geome-

try_msgs::PoseStamped message gives the 3D posi-

tion coordinates and orientation quaternion of the arm’s 

end effector, which helps determine how the resistance of 

each substance affects the position of the arm, especially 

when compared to the resistance results from the control 

run using air. The sensor_msgs::JointState mes-

sage is used twice, yielding both the position and velocity 

information of the eight joints (six arm joints and two fin-

gers) and the efforts of the joints, all of which are present-

ed as arrays of float64 objects. These arrays are used to 

determine the impact the liquid has on the movement and 

force output of the entire arm. Combining this information 

with the wrench and pose data can be used to aid the robot 

in developing a more comprehensive picture of the way its 

motions affect each of the stirred substances; this under-

standing represents a rudimentary understanding of vis-

cosity and serves as the foundation for the future training.  

Figure 1: A screen capture of the C++ code for the beginning of 

a run 



 

Figure 2: A screen capture of an example call to rosrun robot-

ic_comprehension_of_viscosity behavior node showing user input 

and the subsequent file nomenclature 

In a typical run (using the command rosrun 

robotic_comprehension_of_viscosity be-

havior), the program asks the user to input the name of 

the material used to stir, the name of the substance being 

tested, and the number of iterations to run, all of which are 

used to give the .csv files specific and meaningful names. 

The user would also be asked to press enter to begin the 

run, to give the researchers time to ensure everything has 

been properly set up before trials begin: the stirring im-

plement needed to be manually placed in the robot’s grasp 

before testing could begin, and the container of the sub-

stance being stirred needed to be in a particular orientation 

at a particular height, dependent on the stirring implement 

being used. Once this is verified, the robot would move to 

a preprogrammed position (found by echoing the robot’s 

Cartesian velocity at the preferred position) using the 
seg-

bot_arm_manipulation::moveToPoseMoveIt 

method in an attempt to create consistency of starting posi-

tion across trials. The robot begins its movements at the 

slowest velocity (.1) with the longest duration (2 seconds); 

these values are doubled and halved respectively after each 

set of three movements is completed. Please see the appen-

dix for images of the robot in the starting position and var-

ious behaviors.  

The first motion to be called is the up-and-down 

behavior, during which the arm rises for the duration to 

exit the liquid completely, then lowers (running at the 

speed of velocity * -1) back into the liquid, returning to the 

starting position. During this and every behavior, data is 

published at 40Hz, ultimately creating thousands of data 

points for future analysis. The data gathered from the up-

and-down behavior provides valuable knowledge about the 

entry of the stirring implement into the substance (not rec-

orded during the initial entry when the robot is assuming 

the starting position), and also helped to distinguish be-

tween solid substances (such as beans), less viscous liquids 

(such as water), and thicker liquids (such as shampoo), as 

thicker liquids generally adhered to the stirring implement, 

while solid substances and less viscous liquids did not. The 

next motion is the back-and-forth behavior, which, similar-

ly to the up-and-down behavior, travels backwards at nega-

tive velocity for the duration, then forwards at positive 

velocity for the same amount of time. This is again useful 

for distinguishing between liquid substances and solid sub-

stances, as the solid substances tended to stay where they 

had been pushed, providing less resistance during the for-

wards part of the motion, as opposed to the liquid sub-

stances, which would move back to equilibrium immedi-

ately after being pushed. This motion also provides data 

about the linear movement of the substance being tested, 

important in studying the change in position of the joints. 

The final motion is the circle behavior, which moves the 

stirring implement in a full counterclockwise circle, most 

reminiscent of traditional human stirring. Unlike the previ-

ous two behaviors, the circle maintained a constant veloci-

ty, as the motion is difficult to execute on a scale small 

enough to fit in the container and thus difficult to modify. 

The circular motion provides the most ecologically valid 

data for robots attempting to recreate human motions such 

as mixing cake batter, although the unchanging velocity 

means this motion pro-vided different data than the other 

behaviors. There was only data gathered for one-fourth of 

the velocities of the other behaviors, as this behavior ran at 

one speed rather than four as the others did. However, 

since the circular behavior was repeated in every trial 

(staying the same as the velocities of the other behaviors 

increased), there was four times as much data gathered for 

this single velocity. The decision to repeat the circular mo-

tion with every set of behaviors was made based on the 

large and varied amount of movement data the behavior 

provides.   

After each behavior, the data collected is written 

to a file with the aforementioned naming convention, the 

velocity is doubled, and the trial duration halved; the ve-

locity and the duration are at most increased and decreased 

respectively by a factor of 8, with the final velocity being 

.8 and the final duration being 1/8th of the original time 

(equivalent to ¼ second). To show progress and allow er-

ror-checking, each file name is printed to the console as it 

is created. This resulted in a total of four runs per trial, 

each with three behaviors, each with four .csv files (one for 

each of the four messages). With the four substances and 

four stirring materials, this amounted to 786 .csv files, each 

with thousands of data points (as large amounts of data are 

pushed each 1/40th of a second).  

Technical Approach: Hardware 

The hardware used for the experiments is the two fingered, 

Kinova robotic arm. To implement behaviors, motions are 

first tested manually on the arm using both the provided 

joystick and the arm’s ability to be manipulated with hu-

man force. The arm’s Cartesian velocity is echoed often to 

ensure that the correct, relevant joint movements are being 

implemented, and the message geome-

try_msgs::TwistStamped is used to publish the 

linear movement of the desired joint at the given velocity. 

To prevent the motions from overlapping and obfuscating 



one another, a pause behavior was written that simply pub-

lished a velocity of 0 for all linear and angular velocities 

for the given duration, which is set to 3 seconds for all tri-

als used in this paper. The pause behavior is implemented 

between all behaviors, and at the beginning of the program 

to differentiate the up-and-down motion from the arm’s 

movement to the start position.  

 

Figure 3: Photo of the joint positions used for stirring trials (L); 

Close-up of the finger positioning for gripping the stirring im-

plements, shown with the wooden paint stirrer (R) 

 

 
 

 

 

The fingers of the arm are of particular interest in 

this project, as they not only grasped the stirring implement 

for the entirety of each trial, but also provided more than 

half of the data in the form of position, torque, and force 

information. While there is no code to open or close the 

fingers, this is a source of much manual effort both before 

and after the program ran. Getting a firm grip on the stir-

ring implement is vitally important, and a consistent grip is 

important for consistent data collection. Another consid-

eration is the direction of the grasp - because the arm used 

only has two fingers, the implement could fairly easily be 

knocked loose by moving in a direction parallel to that of 

the grip. This is solved fairly easily in the back-and-forth 

behavior by moving in a direction perpendicular to the 

grip, but is an unavoidable issue in the circular behavior. 

This made it even more important to establish a good grip 

on the stirring implement, a procedure that is practiced 

often by the research team but is unfortunately not able to 

be automated for the data collection utilized for this pro-

ject. An initial concern for this project is whether the Ki-

nova arm is sensitive enough to detect the differences in 

the forces and positions used to stir different substances. 

For this reason, a disparate set of substances was chosen, 

which seems to have resulted in viable data. However, 

more testing is needed to more clearly determine the sensi-

tivity of the arm, and whether or not it can distinguish the 

difference between more similar substances (e.g. the dif-

ference between juice and soda) with a reasonable degree 

of accuracy.  

Materials 

This project uses a preliminary set of substances able to be 

stirred by the robot, consisting of water, shampoo, dry 

Anasazi beans, and air. Air is chosen as the control, as it is 

easily accessible and provides limited resistance. The other 

materials were selected for their convenience and their 

frequency of use in everyday capacity, as well as their dif-

ferences in viscosity. In the case of the beans, it is decided 

that since the robot’s haptic sensitivity is relatively un-

known, an extremely different substance should be used to 

maximize the possibility of viable data. The four stirring 
 

Figure 4: The Tupperware container used to hold the test sub-

stances (L), including dry Anasazi beans (R) 

 
 

implements chosen were a wooden paint stick, a metal ic-

ing spatula with a silicon handle, a hard plastic spatula for 

mixers, and a soft plastic spatula with a hard plastic handle. 

These implements were selected due to their combination 

of availability, common usage in the real world, and their 

 
Figure 5: The stirring implements used for the trials, from left to 

right: wooden paint stirrer, metal icing spreader, plastic spatula 

and soft plastic/silicone spatula 

 
 



basic difference in material composition. In future trials, it 

would be useful to have an expanded set of both substances 

and stirring implements, as the end goal is to have the ro-

bot distinguish between very similar liquids, such as milk 

and water. It should be noted that a more comprehensive 

way of gathering data would also be useful here, as milk 

and water are typically distinguished by characteristics 

such as color, and such comprehension could be imple-

mented via visual data on the robot. 

Challenges 

This project presented many challenges, many of which 

were overcome and some of which will need to be ad-

dressed in the future. Several proved unavoidable, such as 

the aforementioned gripping issues. The Kinova arm had a 

tendency to shake when moving very slowly or very quick-

ly, which is consistent across trials but not necessarily 

within trials. This is especially concerning in this project, 

as position data is heavily used. The arm also had some 

issues moving to the programmed start position. When 

moved from the “home” position, the arm would choose 

one of a number of ways to move to the given start posi-

tion, some of which triggered an obscure bug that prevent-

ed the behaviors from running at all. To solve this issue, 

the arm was moved close to the desired starting position 

before each run; this allowed the program to successfully 

move to the starting position without human intervention. 

The initial movement is not always consistent, however, 

with the arm often moved to a position near the pro-

grammed starting point, but stopping at an angle that pre-

vented successful data collection. This is mostly remedied 

by calling the function responsible for moving the arm into 

the starting position twice in succession, although the ex-

actness of the arm’s starting position remains a confound-

ing variable.  

Another confounding variable is the position of 

the container, both in terms of exact placement on the table 

and in terms of height. Although tape was used to mark the 

container’s position, the necessary act of moving the con-

tainer to switch the substances being tested resulted in 

some shifting, which is somewhat problematic. The mo-

tions are tailored to fit in the container used, a process that 

is relatively simple but was ultimately deemed too time-

consuming to reconfigure for every trial of every substance 

and stirring material for this dataset; as such, some move-

ment naturally occurred. To compensate for the height dif-

ferences in the stirring materials, the container of the sub-

stance being stirred was either lowered or raised. The 

height aids were kept consistent across trials of each im-

plement (e.g. the number of books and the size of the 

books remained the same for the tool regardless of testing 

substance), but placement consistency across implements 

could not be achieved due to the nature of the program. 

Data from trials during which the stirring implement no-

ticeable ran into the sides of the container for extended 

periods of time were thrown out from the final collection, 

but it is possible slight bumps or other such issues are not 

noticed by the researchers and may have affected the data.  

 
Figure 6: Image of the height adjustments required for trials with 

shorter stirrers. Pictured is the shampoo run with the plastic 

spatula; two books were used to raise the container. 

 

Results 

This project is successful in terms of data collection, but 

unfortunately fell short in the goal of applying a machine 

learning algorithm to the data; the latter would have al-

lowed the team to train the robot to recognize substances 

based on differences in viscosity. The large amount of data 

collected made analysis somewhat difficult and time-

consuming, but it was ultimately determined that the robot-

ic arm used is sensitive enough to detect differences in the 

haptic and positional manipulation required to stir sub-

stances of disparate viscosities.  

 
Figure 7: The data points shown represent, from left to right (in 

columns of x, y, and z): force used when completing the circular 

motion with hard plastic in air, beans, shampoo, and water.  

 



 

 

 Brief analysis of the data collected proved that 

the robot would be able to successfully determine the dif-

ference between a solid and a liquid. See the appendix for 

an interpretation of some of the findings. Further testing is 

needed to prove whether or not the current setup is quali-

fied to help the robot determine between liquids. This indi-

cates that future work with this program on this arm is via-

ble, and further data and learning can be pursued as is a 

goal of this project. The data collection program created 

can be adjusted to include new behaviors, or modify exist-

ing behaviors, with minimal difficulty. Additionally, the 

trials and behavior runs can be made to iterate any number 

of times via user input, and velocity and duration can be 

similarly easily changed to accommodate a wide range of 

substance containers. The velocity and duration of the be-

haviors can also be changed relatively simply (keeping the 

constraints of the arm, container, and stirring implement in 

mind), making mimicking common human stirring motions 

another way to continue research in this area. The dataset 

gathered is valuable, but more valuable is what it repre-

sents - a way to easily collect and store viscosity data for a 

large variety of substances, containers, and stirring imple-

ments.  

Conclusion and Future Work 

Our ultimate goal for this project is to teach the arm to cor-

rectly classify substances (either as liquid or solid or to 

distinguish between liquids) as a result of haptic sensation.  

If successful, this project could be used as a 

springboard for research on robotic interaction with and 

comprehension of liquids, which could in turn be used to 

create robots that can work with liquids intelligently. This 

would include such activities as helping with cleaning (dis-

tinguishing between cleaning liquids as well as personal 

care items like shampoo and conditioner), cooking (deter-

mining the quality of ingredients and utilizing the viscosity 

of cake batter to gauge how much longer mixing needs to 

occur and at what point the batter is ready to be placed into 

the pan for baking), construction (testing the viscosity of 

time-sensitive materials like concrete and tar, specifically 

through stirring the mixture to prevent it from solidifying 

too early), and even automotive care (to optimize the vis-

cosity of fluids important to car performance, such as fre-

on, motor oil, and windshield washer fluid). The research 

also poses as an opportunity to advance the field of acces-

sibility robots, specifically in the area of food preparation 

and aid. Ultimately, the advances made with this research 

can open doors in several fields, and will hopefully lead to 

changes that will improve the quality of life for millions. 

  As mentioned, the main goal for the continua-

tion of this project is further data collection, with the even-

tual goal of implementing a machine learning algorithm 

that allows the robot to accurately distinguish between sub-

stances using the haptic data as a means to interpret viscos-

ity. To this end, it would be useful to implement more user 

input to make updating variables, for instance velocity or 

duration of behaviors and starting position of the arm easi-

er. The obstacles presented by the rigidity of these varia-

bles is one of the main challenges of the data collection for 

this project, and in order to meet future goals such chal-

lenges must be overcome. The data collection implemented 

in future iterations of this project should also feature great-

er breadth of substances tested, in order to more fully es-

tablish the usefulness of the data collection program and to 

make the robot’s understanding more valuable. If a more 

representative dataset could be gathered, the robot could 

apply its knowledge of viscosity and substance manipula-

tion to complete a variety of tasks as previously mentioned.  

Additionally, another way to increase the accura-

cy of measurement as well as increase the number of trials 

completed would be to place the liquids in a closed con-

tainer lined with a viscometer; the robot could then interact 

with the container through a set of hard-coded actions (e.g. 

push, shake, move in a circle, etc.), and based on the feed-

back recorded attempt to classify the liquids. The data col-

lected from these trials could prove more comprehensive 

than attempting to convert the haptic data from the arm’s 

sensors into viscosity interpretations. Additionally, to aid 

the robot in comprehending distinct albeit similarly viscous 

liquids, other forms of feedback could be employed (e.g. 

through using a Kinect camera as well as audio feedback), 

increasing the interaction between  the robot and the sub-

stances,  similar to the Elbrechter et al experiment [3]. If 

this could be successfully implemented, the arm’s learning 

would more closely mirror the proprioceptive process in-

fants use to learn to distinguish between substances, and 

future training could continue autonomously. 
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Appendix 

An example of the full sequence of movements using the wooden 

paint stirrer, L to R, top to bottom: Beginning in starting posi-

tion; the highest point of the up-down movement; coming back 

down from the up-down movement; completely down (returning 

to the starting position); beginning to move forward for the back-

and-forth movement (changed for actual trials); furthest forward; 

beginning to move backwards; back in starting position; begin-

ning to move in a counterclockwise direction; furthest to the left 

in the circular behavior (note that the fingers do not twist); past 

the furthest backwards point, beginning to move back towards the 

starting position; furthest point to the right; returning to the 

starting position 
 

 
 

 

 

 

 

 

 

 

 


