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Abstract

Advances in the field of cognitive science and develop-
mental behavior has shown that infants typically learn
via association and through visual-manual exploration
(Johnson 2010). To mimic this developmental learning
in robotic agents, the robot must be able to interact
with objects and learn features as a result of its actions.
Specifically, this project intends to move past using only
visual cues in order to discern the characteristics and be-
havior of objects. In order to achieve this, we will utilize
various machine learning algorithms to train the robot to
be able to accurately predict future results. The process
will consist of three major parts, 1) having our robotic
arm manipulate different objects and recording all state
information, 2) picking pertinent features to use as a
basis for classification, and 3) training based on these
features and then predicting the trajectory of objects de-
pending on how the robot interacts with it. As of now,
we have a small data set which we can analyze to pro-
ceed with the second and third part mentioned above.

Introduction
As humans, after our early ages, we are able to accurately
discern what objects are like. This means being able to
understand objects based on their shape, size, density and
other such features. We can fairly easily predict what will
happen to a half-full water bottle if we push it near the top
and contrast that with the result of pushing it at the bottom.
With our understanding of the physical world, we know that
pushing at the top is likely to make it tip over (because of
torque), and pushing it at the bottom will at most make it
slide across the surface it’s on (or perhaps do nothing at all).
Results of this type obviously depend on the action taken,
its relative position with regards to the object in question,
and how much force is used to complete the action. Clearly,
it is not possible to "hard-code" this knowledge into any
physical agent as it is highly-dimensional and not feasible to
encode every combination. As such, it is necessary that we
explore other avenues in order to create such understanding
in our, or any, robots.
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Figure 1: A robot delivering a tray of food. Such a robot
needs to understand the balance of the objects it is carrying,
meaning that it needs to idea of the way those objects behave
when certain actions are applied to them.

There are many applications for this kind of understand-
ing. In the general case, knowing how objects behave and
react to certain actions will allow a robot to make more com-
plex decisions in a complex environment. The uses for such
intelligence are widespread, and we demonstrate this variety
by listing some examples of what our robot could potentially
do. Consider the case where we want the robot to deliver
an object to someone, as seen in the figure 1 above. It may
know how to get somewhere, but it is not entirely useful if
the arm cannot safely pick up an object. If we want to reach
for something and there is an obstacle in the way, being able
to consider the consequences of moving the obstacles with-
out any harm would be a useful skill to have. Furthermore,
understanding objects in the surroundings could allow the
robot to do neat things like cleaning! The specific applica-
tions of understanding object dynamics are seemingly limit-
less.

Related Work
This ability to understand object dynamics is a fairly impor-
tant aspect of "intelligence" for any physical agent that must
interact with its surroundings. To implement this ability in



Figure 2: A hierarchical clustering of 20 categories based on
the confusion matrix encoding how often each pair of cat-
egories is confused by the robot’s context-specific category
recognition models (Sinapov et al. 2014).

our robots in the Building Wide Intelligence (BWI) Lab, we
look towards some studies in human development as well as
similar robotic experiments. We see from research in cogni-
tive science that human infants typically learn in two ways
- by association and by visual-manual exploration (Johnson
2010). This second method occurs when children play with
toys or objects and then gain some understanding of them.
Similarly, we hope to train our infant-like robotic arm to
manipulate objects, and glean data from said manipulation.
If we can store data on the characteristics of the action and
the resulting movements, perhaps we can predict what those
actions will result in when applied in the future. In essence,
can we use the results of previous iterations to guess the
trajectory of subsequent ones.

Parts of our process are similar to the work seen in
(Sinapov et al. 2014). This experiment attempted to classify
a large group of objects into several categories based on
multiple features. Sinapov et al. grouped 100 objects into 20
groups and further clustered the groups into a hierarchy as
seen in figure 2. The features Sinapov et al. extracted were
from visual, proprioceptive, and audio data. Proprioception
takes into account the nearby parts of the body (in our case
this will be the arm) as well as the relative motions of these
parts. This paper makes the point that multiple sensory
modalities can provide different different viewpoints and
insights on certain events. As such, we too use both visual
and proprioceptive data to understand the dynamics of the
objects we are studying. However, as of now, we use a

smaller subset of items than those used in this work.

As our data primarily results from the pushing of various
objects in different ways, the idea of push affordances and
object affordances came into play. Montesano and Dag
show the relation between affordances and sensori-motor
coordination as well as categorization of objects (Montesano
et al. 2008) (Dag et al. 2010). Clearly, these are pertinent
as our robot needs to understand how far something can be
pushed, and how different categories of objects will behave
in different scenarios.

For the complete work-flow to achieve this goal, see the
Methodology section.

Methodology

Problem Formulation

Intelligent physical agents (robots) should be able to
understand objects. However, currently the agents do not
yet have an understanding of the dynamics of objects, i.e.
how would an object react if action A was acted upon the
object. If we can teach our robots to play with objects and
then learn from them that, the way infants do, then we could
make our robots more "intelligent". The robot we will be
using to train and collect data from is the Kinova robot
arm in the Building Wide Intelligence (BWI) Lab (Larsson
1990). The arm sits on top of a Segway base. The arm itself
has six degrees of freedom and has 2 gripper fingers.

To solve this problem, we designed an experiment in three
stages: collecting data, extracting features, and predicting re-
sults from machine learning algorithms.

Collecting Data

We have currently collected data only for the pushing
motion, although we plan to extend this soon to dropping as
well as squeezing objects. In order to add robustness to our
final understanding of the object, we add extra parameters to
the actions. For example, we vary the angle and orientation
at which the object is originally placed before testing our
motion. Furthermore, we change the position on the object
where the motion is performed, i.e. the top, middle, or
bottom of an object if it is vertical, or different sides if its
horizontal. Lastly, we applied different velocities to the
object in question. The flow of this procedure can be seen
below in figure 4. Examples of this are shown in figure 3.
Note that though these parameters have only been enacted
for the pushing action so far, they are easily extended to the
other actions we want to teach the robot about.



(a) Arm height: low (b) Arm height: middle (c) Arm height: high

Figure 3: The push behavior was tested with 3 different heights for each object: low and close to the table as seen in 3a, near
the middle of the object as seen in 3b, and at the top of the object as seen in 3c

Figure 4: A flow chart of the experiment and actions per-
formed on each object. For each action, each object was
tested with different heights and velocities.

In Sinapov’s paper, ’Grounding semantic categories in
behavioral interactions: Experiments with 100 objects’,
Sinapov et al., trained the robot on a large data set (100
objects) with a few data points/behaviors. However, in this
project we want to focus on learning the dynamics of objects
and will instead be training the arm robot on a smaller set
of objects (currently about 5) but with many variations
of actions/behaviors (dozens of actions). In addition, the
original location of the object will be kept the same to
remove any noise from the background.

The raw data that we will collect will include both visual
and proprioceptive data. Visual data will include the col-
or/ RGB frames, SURF to extract the main feature points,
and optical flow of before, during, and after the action is
performed. The proprioceptive data collected will detail the
force each joint applies during the action. In addition, the
position and orientation of the arm and object before and
after the action is performed, and the qualities of the action
performed (the parameters on actions detailed above). These
parameters and results as a whole will provide a means by
which we can extract features to analyze the important com-
ponents of these actions, and thus allow the robot to make
informed decisions in the future.

Extracting Features
Given that the raw data exists, we want to extract the impor-
tant features from the raw signals. The main questions we
want to answer from the data collected are

1. Is there any change to the position or orientation of the
object?

2. How far away did the object end up?

3. How long did the object take to get to it’s final position?

4. What path/trajectory did the object take?

These questions can be answered by using SURF to
extract the main feature points, and using optical flow of the
images we collected.

The proprioceptive data collected on the forces used by
each of the joints (sampled at 500 Hz) will provide many
data points. Obviously, this yields too many data points to
feasibly feed and train in a machine learning model. To solve
this issue and extract the main features, the time (horizontal
axis) will be discretized into ten temporal bins, as shown
in Figure 5. A similar technique can used to extract impor-
tant auditory signals (should we choose to include them) as
shown in Figure 9 in the future work section.



Figure 5: Illustration of the proprioceptive feature extraction
routine. The input signal is sampled during the execution
of a behavior at 500Hz and consists of the raw torque values
for each of the robot’s seven joints. Features are extracted by
discretizing time (horizontal axis) into 10 temporal bins, re-
sulting in a 7 x 10 = 70 dimensional feature vector. (Sinapov
et al. 2014).

Machine Learning Algorithm and Predicting
Results of Actions
Once the input and output signals have been collected,
they will be fed into a machine learning models to train
the physical agent to be able to predict the effects of the
actions it performs on various objects, i.e. be able to predict
the trajectory the object will take as the result of a push at
certain angle and velocity. For example, Sinapov showed
that it was possible to train the physical agent to predict and
classify possible trajectories and object will take, as shown
in Figure 6 (Sinapov et al. 2008).

Figure 6: All twelve leaf outcome classes of the learned tax-
onomy for the L-Stick tool. The dark trajectory shows the
outcome prototype for each leaf class in the learned tax-
onomy, while the lighter trajectories visualize the observed
outcomes that fall within vj (Sinapov et al. 2008).

There are several possible machine learning models that

could be used to train the robot. Some examples include
category recognition model, k-nearest neighbor model, de-
cision tree learning, reinforcement learning, deep learning,
and neural networks. WEKA (Waikato Environment for
Knowledge Analysis) may be used as a simple and efficient
way to test which machine learning models seem promising
and are worth investigating further. As we further come to
understand the nature of our specific inputs and outputs, we
will be able to determine which machine learning will be
best to use to finally train the Kinova arm to actually under-
stand object dynamics.

Metric for Success and Evaluation
We will measure our success in three main ways: Accuracy
of prediction from the machine learning model, ability to
classify objects, and ability of judging behavior of new ob-
jects it has not seen before.

Machine Learning Prediction
We will want to see how accurately the robot can predict the
trajectory objects will take. For example, we will compare
the predicted trajectory (as mentioned above) with the actual
trajectory.

Classification
We want to see how accurately the robot can classify objects
into separate categories (i.e. empty box, full box, empty bot-
tle, etc.). Some means by which this can be done are outlined
in (Blum, Langley 1997), and upon utilizing these methods
to classify, we can calculate our accuracy samples as fol-
lows:

%Accuracy =
#correct classifications
#total classifications

× 100

.

Novel Objects
Last, but not least, we will want to see the the trained robot
will be able to predict the trajectories of objects and classify
new objects it has not yet seen or been trained on yet. Some
ways in which can utilize trajectories and our visual data
can be found in (Morris, Trivedi 2008), and we are likely to
combine some of those methods with (Sinapov et al. 2008)

Results and Difficulties
Data Collected
As we can see from the above Methodology section, the fea-
ture extraction and training via machine learning models are
yet to take place. We have however, collected data for which
to go forward with. For each action and trial performed,
point clouds were taken before and after the action were
performed as seen in figure 7. In addition to taking point
cloud images before and after every action, color and RGB
frames were taken throughout the duration of the action. An
example of before and after color and RGB frames can be
seen in figure 8. Besides the PCL point clouds, and RGB
frames, videos from a side view were taken for all of the tri-
als. A video of some sample trials and actions can be found



here: https://www.youtube.com/watch?v=Msy-0bmPLAI.

(a) Side PCL point cloud before the push action

(b) Side PCL point cloud after the push action

(c) PCL point cloud from the robot’s point of view
(above the object)

Figure 7: This first two set of figures depict the before 7a
and after 7b of a push action with the qualities of height:
high, velocity:high, push type: point. The third PCL image
7c highlights that the PCL images can be viewed from dif-
ferent angles: side, bottom, top (as it is in this figure).

In addition to all of the visual data collected, haptic and
proprioceptive data was collected into a .csv file for each
action performed. For each of the six joints on the Kinova
arm, the efforts/ forced used and position were recorded. In
addition, the position and orientation of the end effector, and
position of the fingers of the arm were logged with the corre-
sponding timestamp. For each action performed (over a pe-
riod of 0-2 seconds), approximately 700 sets of haptic data
was logged. A small sample table of the data collected can
be seen in table 1 and table 2.

(a) Dumbo before the push action

(b) Dumbo after the push action

Figure 8: This set of figures depict the before 8a and after
8b of a push action on Dumbo the stuffed elephant with the
qualities of pushing at the left (as a substitute for low height),
low velocity (.2), and push type: point.

Difficulties
Some reasons for this delay include limited time to work
on the robot arm as other groups’ projects also took up
significant amounts of the available time. Second, and more
importantly, the Kinova arm driver seems to be a little
fickle. For example, while scripting our push behavior,
we ran into multiple issues in trying to issue "move to"
commands in conjunction with cartesian velocity com-
mands. The robot had trouble doing both successfully,
and often even failed to accomplish each task individually.
A substantial amount of time was devoted to this issue,
which slowed down the data collection process significantly.

However, we do have data, and the means to collect more,
so we can move forward with the next stages of our experi-
ment.

Future Work
Continuation
There is much future work and extensions that can be done
with this project. Going per the original plan, now that we
have the some data collected and the means to collect more
data, we should then extract the useful features from the
data, feed inputs and outputs through various machine learn-
ing models, and finally testing and predicting future actions.



effort_1 effort_2 effort_3 effort_4 effort_5 effort_6

0.32103 -0.35896 0.312259 0.0320839 -0.193873 -0.115048
0.28555 -0.351233 0.333562 0.0289658 -0.193441 -0.108928
0.306941 -0.336975 0.337113 0.0371578 -0.188801 -0.113836
0.290681 -0.384471 0.351234 0.0167756 -0.19472 -0.12256

jointpos_1 jointpos_2 jointpos_3 jointpos_4 jointpos_5 jointpos_6
-0.623698 0.359012 -0.399437 -1.51844 1.20666 0.644978
-0.623698 0.359012 -0.399437 -1.51844 1.20666 0.644978
-0.623698 0.359012 -0.399437 -1.51844 1.20666 0.644978
-0.623698 0.359012 -0.399437 -1.51606 1.20666 0.644978

Table 1: A sample of the haptic data for action push on a pool noodle with the parameters: height: low, velocity: high, and
push-type: hand. Efforts is the amount of force each join is using, while jointpos is the position each of the joints is in.

toolpos_x toolpos_y toolpos_z toolor_x toolor_y toolor_z toolor_w finger_1 finger_2 timestamp

0.183333 0.0910539 -0.0390667 -0.49328 0.50904 0.482359 0.514668 7344 7344 1481317885
0.183333 0.0910539 -0.0390667 -0.49328 0.50904 0.482359 0.514668 7344 7344 1481317885
0.183333 0.0910539 -0.0390667 -0.49328 0.50904 0.482359 0.514668 7344 7344 1481317885
0.183629 0.0911109 -0.0390584 -0.492974 0.509316 0.482056 0.514971 7344 7344 1481317885

Table 2: A sample of the haptic data for action push on a pool noodle with the parameters: height: low, velocity: high, and
push-type: hand. Toolpos is the position the end effector is in, toolor is the orientation the end effector is in, and finger_1 and
finger_2 refer to whether the respective fingers are open or closed.

Extension
In addition, to continuing through with the original plan,
there are many new and exciting extensions to this project.
Besides just testing with a pushing action, we could also test
with this with dropping, pressing, squeezing, and lifting the
object. If possible, this experiment could also be generalized
to more motions, not just the actions we’ve trained and
tested on previously.

Some other extensions include using more objects for
data. This way the robot has a bigger data set of knowledge
to train and pull from. Furthermore, we could also add audio
as a parameter for our experiment and teaching as (Sinapov
et al. 2014) also used audio to help classify and categorize
objects. Auditory input would be useful to distinguish,
categorize, and learn the effects of an action, as the audio
after an object falls has its own unique set of features. To
better extract features from audio input, a discrete Fourier
transform could be performed as shown in 9 by (Sinapov et
al. 2014).

One of the biggest future goals of this project is to be able
to get an understanding of an object based on its motion. For
example, if the robot sees a bottle roll one way, it should
be able to know and understand the bottle is full, versus if
the bottle rolled another way. In a sense, it’s doing the re-
verse learning and using the knowledge it has to predict and
categorize the object instead of predicting the results of an
action. This could be accomplished by using object affor-
dances as (Dag et al. 2010) and (Montesano et al. 2008) did
to categorize objects and to imitate actions, respectively. An
affordance encodes and describes the relationship between

an object, action, and result–three things that we are already
keeping track of and storing.

Figure 9: Illustration of the auditory feature extraction pro-
cedure. The input consists of the discrete Fourier transform
spectrogram of the audio wave recorded while a behavior is
executed. The spectrogram encodes the intensity of 129 fre-
quency bins and was calculated using a raised cosine win-
dow of 25.625 ms computed every 10.0 ms. To reduce the
dimensionality of the signal both the time and the frequen-
cies were discretized into 10 bins, resulting in a 10 x 10 =
100 dimensional feature vector. (Sinapov et al. 2014)

Conclusion
In essence, we attempt in this paper to each robots how
different kinds of objects behave when they are acted upon
in a certain way. The necessity stems from wanting capable,
"intelligent" robots doing meaningful work, and the means
by which we hope to enable robots to do so comes from the



cognitive sciences.

Though our multi-stage project still has a ways to go,
we have collected data upon which we intend to train the
robot in the ways mentioned previously. Analyzing the data
and the actions using our own mental heuristics, we can
tell almost exactly what the robot’s interaction with each
object will yield (it will fall over, or roll, etc., depending on
the parameters). Now, the goal is simply to allow the robot
to do the same, or at least have similar predictive abilities
on a small subset of actions enacted on a (for now) a small
subset of objects.
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