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ABSTRACT

In a reinforcement learning setting, the goal of transfer learn-
ing is to improve performance on a target task by re-using
knowledge from one or more source tasks. A key problem in
transfer learning is how to choose appropriate source tasks
for a given target task. Current approaches typically require
that the agent has some experience in the target domain, or
that the target task is specified by a model (e.g., a Markov
Decision Process) with known parameters. To address these
limitations, this paper proposes a framework for selecting
source tasks in the absence of a known model or target
task samples. Instead, our approach uses meta-data (e.g.,
attribute-value pairs) associated with each task to learn the
expected benefit of transfer given a source-target task pair.
To test the method, we conducted a large-scale experiment
in the Ms. Pac-Man domain in which an agent played over
170 million games spanning 192 variations of the task. The
agent used vast amounts of experience about transfer learn-
ing in the domain to model the benefit (or detriment) of
transferring knowledge from one task to another. Subse-
quently, the agent successfully selected appropriate source
tasks for previously unseen target tasks.
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1. INTRODUCTION

Many learning tasks provide limited prior knowledge and
minimal environmental feedback. Temporal difference meth-
ods have shown many successes in learning such tasks. How-
ever, in complex domains training the agent can be compu-
tationally expensive and may require large amounts of expe-
riential data. Thus the goal of transfer learning is to re-use
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previously learned knowledge when learning to solve a new
task. After all, human beings (as well as other primates)
rarely solve new problems from scratch but instead transfer
learned skills to novel situations [17, 4, 12].

In a typical transfer learning scenario, the agent solves a
target task by leveraging knowledge from 1 or more source
tasks. An agent may transfer individual samples [27, 15, 14],
a learned action-value function [28, 6], a policy [9, 8], or a
model [18, 7]. Most current research in TL assumes that a
good source task has already been identified [29]. The main
limitation of the few existing approaches to source task selec-
tion is that they typically require the agent to already have
some experience (e.g., training samples) in the target do-
main or for the target domain to be specified using a model
(e.g., a Markov Decision Process) with known parameters.

To address these limitations, we propose a framework
for selecting appropriate source tasks that uses meta-data
— more specifically, attribute-value pairs — associated with
each task. Our main hypothesis is that given parameters
or attributes that describe two tasks, an agent may learn
the benefits (or lack thereof) of transferring knowledge from
one of them to the other. To test this hypothesis, we con-
ducted a large-scale experiment in the Ms. Pac-Man domain
in which the agent played over 170 million games spanning
192 variations of the task. For each source-target task pair,
the agent measured the jump start in performance on the
target task as a result of applying value-function transfer
[30]. Subsequently, the agent learned a regression model of
the transferability for any given pair and successfully used
it to select appropriate source tasks for a new set of target
tasks. To our knowledge, this is the largest computational
experiment in transfer learning conducted to date.

The rest of the paper is organized as follows. Section 2
gives an overview of related works and discusses where this
study falls in the landscape of the field. Section 3 provides
background on temporal difference learning and value func-
tion transfer methods that were used in this paper. Section
4 describes the framework for learning and using an inter-
task transferability model, while Section 5 describes the do-
main and the experiment that was conducted to test the
framework. Finally, Section 6 summarizes the results, and
discusses the limitations and implications of this work.

2. RELATED WORKS

In recent years, research in transfer learning (TL) has
improved the performance of reinforcement learning meth-
ods by enabling them to re-use knowledge from one task to
another (see [29] and [13] for a review). For example, an



agent may transfer individual samples [27, 15, 14], a learned
action-value function [28, 6], a policy [9, 21, 8], or a model
[18, 7]. In situations where the state and/or action spaces
differ across tasks, an agent can learn an inter-task mapping
[3] or use a hard-coded one provided by a human teacher
[31]. Most TL methods assume that the source task has
already been selected and that it is indeed a good source
task for the target task [29]. In a more general case, how-
ever, an agent may have to choose appropriate source tasks
on its own when faced with learning a complex novel task.
This problem is referred to as source task selection and has
received relatively little attention [29]. This problem is par-
ticularly important when some of the potential source tasks
may be irrelevant to the target task, in which case the agent
can suffer from negative transfer.

The few existing methods for source task selection typi-
cally assume that the agent has some experience (e.g., train-
ing samples) in the target task or that a model of the target
task is available to the agent. For example, the method de-
scribed by Lazaric et al. [15] enables an agent to select rele-
vant samples from known source tasks by comparing them to
samples collected in the target task. In their experiments,
the agent was able to effectively choose samples from two
source tasks to speed up learning on the target task. A dif-
ferent approach to the problem is that of Nguyen et al. [18]
where instead of transferring samples, the method transfers
learned expectation models of how the environment changes
as a result of the agent’s actions. In that framework, the
agent learns expectation models from a set of known source
tasks and then dynamically identifies which of these mod-
els are useful when learning the new target task. Similarly,
Perkins and Precup [19] describe an approach in which the
agent learns reinforcement learning options on a set of source
tasks and then uses them on a target task. While learning
the target task, the agent estimated the value of known op-
tions by maintaining a belief about the target task’s identity
with respect to the known tasks.

Another model-based approach to the problem is described
by Ammar et al. [2]. The authors propose a novel similar-
ity measure for Markov Decision Processes which is shown
to be effective at selecting good source tasks for a target
task. Like other model-based approaches for transfer learn-
ing, the method proposed by Ammar et al. requires that
the agent has access to a good estimate of the target task’s
MDP, which in practice may not always be available.

In contrast to existing methods for source task selection,
this paper addresses the problem under the assumption that
no samples from the target task are available. Instead, we
consider the case where tasks are described using a fixed-
length feature vector and thus, the agent is tasked with
learning transferability across tasks using such meta-data.
While most existing methods are evaluated only on a sin-
gle target task, our empirical evaluation is conducted using
a large-scale experiment in which the agent learns pairwise
task transferability for a large number of tasks.

Another area of research that is relevant to this study is
that of case based reasoning (CBR) [1, 16]. When faced
with a new problem, CBR methods typically find similar
problems (i.e., cases) that have already been solved in the
past and re-use their solution. This is typically done by the
use of a similarity function that can be used to identify rele-
vant cases. The major limitation of applying CBR for source
task selection is that it requires the similarity function to be

indicative of whether or not transferring from one task to an-
other will result in positive or negative transfer. Therefore,
while we evaluate the approach of using task descriptors to
compute task similarity and select sources accordingly, the
work here proposes that an agent can learn to directly pre-
dict the outcome of transfer from the task descriptors.

3. BACKGROUND

A Markov Decision Process (MDP) M is defined by a 5-
tuple (S, A,P,R,v) where S is the set of states, A is the
set of actions, P : § x A — II(S) is a transition function
that maps the probability of moving to a new state given
an action and the current state, R : S x A — R is a reward
function that gives the immediate reward of taking an action
in a state, and v € [0,1) is the discount factor.

At each step, the agent is able to observe its current state,
and must choose an action according to its policy m : S — A.
The goal of an RL agent is to learn an optimal policy 7~
that maximizes the long-term expected sum of discounted
rewards. One way to learn the optimal policy is to learn
the optimal action-value function Q*(s,a), which gives the
expected reward for taking action a in state s, and following
policy 7™ after:

Q"(s,a) = R(s,a) + 73 P(s']s,a) max Q" (', a')

S

Common temporal difference methods for learning the
action-value function include Q-learning [24, 33] and Sarsa
[23]. The optimal policy is then to choose arg maxq, @ (s, a)
in each state. These temporal-difference methods are espe-
cially useful for problems with large and continuous state
spaces which are challenging for approaches that directly
try to learn the MDP. In this paper, our experiments were
conducted using the Sarsa algorithm [23]. We used Sarsa as
a simple representative base learning algorithm, though in
principle our methodology is equally applicable to any RL
algorithm that learns a value-function.

Since the policy consists of taking the action with the
highest action-value, transferring a policy is equivalent to
transferring the action-value function. For example, if the
function Q* (s, a) is represented using a parameterized func-
tion approximator, then value function transfer is achieved
by using the parameters learned in a source task to initialize
the function’s parameters in the target task. In other words,
the agent starts learning the target task while acting under
the policy learned in the source task. When a good source
task is available, value function transfer has been shown to
speed up learning by initializing the policy to something
better than random exploration [28].

Common measures used to evaluate the result of trans-
fer typically compare the learning trajectory on the target
task after transfer with the trajectory that was produced
by learning the target task from scratch [29]. In this work,
we used the jumpstart measure to quantify transferability.
This measure looks at the difference between the initial per-
formance after transfer and the initial performance without
transfer. Let R?**°"¢ ¢ RX be the reward curve after learn-
ing the target task for K episodes such that r°¢""¢ ¢ R
is the expected reward after learning for k episodes. Simi-
larly, let Rt™msfem ¢ R be the reward curve for learning
the target task after transferring a policy from the source
task. The jump start metric can then be defined by:
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The parameter m determines the size of the temporal win-
dow which is used to compute the jump start after the onset
of training on the target task. Other measures of trans-
ferability include asymptotic performance improvement (or
detriment) as well as time-to-threshold [29]. Due to the
large-scale nature of our experiment, we used the jump start
measure defined above since computing it requires a rela-
tively small number of training episodes on the target task.

4. MODELING TASK TRANSFERABILITY

In this section, we introduce the proposed framework for
modeling inter-task transferability. The proposed frame-
work described here is independent of the RL and TL meth-
ods that were described in the previous section.

4.1 Notation and Problem Formulation

Let 7 be the set of possible tasks. Let Tsource C T be
a set of tasks for which the agent has learned a policy and
let Tiarget C T be another set of tasks that represents the
set of target tasks to be learned by the agent. For each task
T; € T, let F; € R" be a feature descriptor for the task that
is known to the agent.

Given a target task T € Tiarget, the goal of the agent is
to select a task T; € Tsource such that T; serves as an ef-
fective source for learning 7. Thus, given a task pair, T;
and T}, let B(T3,T;) € R denote the benefit of transferring
the policy learned in T; to the task Tj, where B(T3,T;) > 0
indicates positive transfer, while B(T;, T;) < 0 indicates neg-
ative transfer. In this work, the transfer benefit is estimated
using the jump-start measure defined in Section 3, though
in principle, other measures can be appropriate as well.

We assume that for each pair of source tasks (73, 7;) such
that T3, T; € Tsource, the agent has a reliable estimate for
B(T;,T;). Next, we describe how the agent can use these
estimates to predict the expected transfer benefit between
tasks in Tsource and tasks in Tiarget.

4.2 Predicting the Benefit of Transfer

Here, the task of the agent is to learn a function which,
given two arbitrary tasks 7; and T, from 7, can predict
whether T; is a good source task for 7. More specifically,
the function should produce the estimate B(Tji,Tj), i.e.,
the expected benefit of transferring from 7; to T;. Since
B(T;,T;) € R, a natural solution for modeling the transfer-
ability between two tasks is to train a regression model.

Let F; = [fiyl, fioy oo, f—b,n} and Fj; = [fj,h ijz, ey ijn]
be the features for a pair of tasks (7;,7;). To train a regres-
sion model on task pairs, a third feature vector is computed,
X% such that it captures some aspects of how the two fea-
ture vectors F; and Fj are related. The. feature vector X%
was computed such that each element z}’ is defined by:
where € is a very small number to avoid divisions by 0. In
other words, the vector represents the change along the n-
dimensional features space relative to the feature values of
the first task in the pair.' The function that computes how
two tasks are related was designed to be sensitive to the
order of the tasks in the pair since preliminary experiments
suggested that task transferability is not always symmetric.

Given this representation and a dataset { X" } 1, 7, € Tuourece
a regression model M is trained such that:

M(XY) = B(T3,T;)

Once trained on pairs of tasks from Tsource, the regression
model is subsequently used to select source tasks for the
tasks in Tiarger. Given a target task T}, the task T; € Tsource
that maximizes M (X ") is selected as the source task. Next,
we describe the performance measures that were used to
evaluate the framework proposed here.

4.3 Evaluation

4.3.1 Performance Measures

For each target T; € Ttarget, the best possible source task
is defined by:

T = Arg MaAXT; e Tsource B(Tl7 TJ)

Let T; be the source task selected by the model. To com-
pare the model’s choice for a source task to the optimal
source task, we define the loss as:

loss(T3) = B(T*,Ty) — B(T,, T;)

We also evaluated the ranking of source tasks induced by
the regression model. For a given target task Tj, let R; =
[Tt1y, Tiay, - - -, T(py] be the ranked list of source task ac-

cording to the learned regression model, i.e., B(T{k},Tj) >

B(T{x413,Tj). For each position k in the ranking, let rel), =
B(Tyxy,Tj) be a measure of the relevance of the result at
that position. A common measure to evaluate the quality of
a ranking is the Discounted Cumulative Gain (DCG) [11]:

rel
log2 (k)

P
DCGy(R;) =reli +»
k=2

where p < P. The normalized DCG (NDCG) is computed
by _PCGE)

Dcc(Rgﬂsf)
ranking of source tasks. A normalized DCG of 1.0 would
indicate a perfect ranking.

4.3.2 Baseline Comparison

For a baseline comparison, we consider the naive approach
of selecting the most similar task according to the feature
vectors used to describe the tasks. In other words, given
target task 7}, the naive method would select the source
task 7; that minimizes the squared distance between F; and
Fj, i.e., Lo(F;, F}). The baseline approach does not perform
any learning but nevertheless, we hypothesize that it will
perform better than randomly selecting a source task.

where R5*' is the true (i.e., best possible)

5. EXPERIMENTS AND RESULTS

To evaluate the proposed framework, we conducted a large-
scale experiment in the Ms. Pac-Man domain. The following
subsections describe the domain, the experimental method-
ology, and the results of the experiment.

1Other representations for the vector X% were explored as well,
including raw difference (i.e., fjr — fjx) as well as ratio (i.e.,
fi.i/ fj,i). Representations that captured the absolute or squared
distance between F; and F}; did not perform as well as they were
not sensitive to the order of the tasks in the pair.



Figure 1: Screen shots of the game Ms. Pac-Man. In
our experiments, the agent played 192 variations of
the task, spanning 4 different mazes, shown above.
The top-left image shows a sample configuration at
the start of a game.

5.1 The Ms. Pac Man Domain

The framework for learning task transferability was eval-
uated using the Ms. Pac-Man domain, shown in Figure 1.
The goal of the Ms. Pac-Man agent is to traverse a maze
and earn points by eating edible items such as pills, while
avoiding ghosts. The game typically starts with a large num-
ber of pills, four power pills located near each corner, and
four ghosts that are initially placed in a lair that is inac-
cessible to Ms. Pac-Man. Shortly after the game starts, the
ghosts leave their lair and may either chase Ms. Pac-Man
or move about randomly. If a ghost catches Ms. Pac-Man,
the game is over (we did not model the number of lives that
are typically available to a human player). Whenever the
agent eats one of the four power pills, the ghosts themselves
become edible by Ms. Pac-Man for a short amount of time
and their speed is reduced. If a ghost is eaten during that
time, Ms. Pac-Man earns points and the ghost is sent back
to the lair for a fixed amount of time, after which it starts to
operate as normal. The agent’s action space consists of four
actions, up, down, left, and right, though not every action is
available in every state. Ms. Pac-Man eats pills, power pills
and ghosts (when edible) whenever she gets within a small
distance threshold of the object. Table 1 lists the rewards
Ms. Pac-Man can get for different events in the game. The
game ends when all the pills are gone, Ms. Pac-Man is eaten
by a ghost, or 2000 time steps pass. >

2An original game play video (not associated with this work)
could be found at http://youtu.be/c4n_6NFYVLY at the time of

Table 1: The Reward Structure of the Ms. Pac-Man
Domain

Event H Reward (points)
Ms. Pac-Man eats a pill 10

Ms. Pac-Man eats a power pill 50

Ms. Pac-Man eats a ghost 200

Apply a multiplier of 2 to
the usual reward for each
additional ghost that is
eaten

Ms. Pac-Man eats an additional
ghost while they are still edible

Ms. Pac-Man is eaten by a ghost || Game Over
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Figure 2: An example baseline test for one of the
192 tasks. The dark line indicates the reward av-
eraged after 10 different runs (shown as the lighter
lines), each starting with a different random seed.
In this example, the policy converged after about
700 episodes.

In our experiments, we used the Ms. Pac-Man implemen-
tation described by Taylor et al. [26]. The raw state space
of the game is highly dimensional and also specific to each
magze, thus making it unsuitable for learning. Therefore, in
practice the state space in the Ms. Pac-Man game is typ-
ically represented by a set of local features that are ego-
centric with respect to Ms. Pac-Man’s position on the board
(see [22, 5, 25] for a representative sample of approaches). In
this work, we used 7 heavily-engineered features defined in
[26]. These features calculate properties such as the safety
of junctions, and scores for the amount of pills and ghosts
that could potentially be eaten along a certain direction.
The agent learned the game using the Sarsa RL algorithm
[23]. The action-value function was represented by a simple
linear function approximator over those 7 features.

5.2 Experimental Methodology

We generated 192 variations of the Ms. Pac-Man task by
varying several parameters that dictate the dynamics of the
game:

e Maze: each game was played on one of four different
mazes, shown in Figure 1.

e Number of ghosts: the number of ghosts present in
the game was varied from 1 to 4.

e Ghost slowdown: when Ms. Pac-Man eats a power
pill, the ghosts become edible and their movement

writing this paper.



Table 2: The task features that were known to the
agent

Feature

H Description

number-of-ghosts

The number of ghosts in the game (1 to
4)

ghost-slowdown

The amount of speed reduction that the
ghost undergoes when Ms. Pac-Man eats
a power pill. The values ranged from 1 to
4.

ghost-type

The behavior of the ghosts. There are
three possible values: Random, Standard,
and Chaser.

num-nodes

The number of nodes in the maze graph

num-pills

The number of regular pills in the maze

distance-to-ghost

The distance between Ms. Pac-Man and
the ghosts at the start of the game

distance-power

The average distance between power pills

distance-lair

The average distance between the ghost
lair and the power pills

junctions- The average number of junctions that lie

between- on the shortest path between any pair of

junctions junctions

eccentricily The average eccentricity of nodes in the
graph. The eccentricity for a node w is
defined as e(u) = maz{d(u,v) : v € V}
where d is the shortest-path function for
a pair of nodes and V' is the total set of
nodes in the graph.

eccentricity- The average eccentricity of junctions (i.e.,

Junction nodes with more than 2 neighbors). The

eccentricity for a junction node w is de-
fined as e(u) = maz{d(u,v) : v € J}
where J C V is the set of nodes that are
junctions.

graph-diameter

The diameter of the graph is defined as
diam(G) = maz{e(u)|u € V}.

num-nodes-d2

Number of nodes with 2 neighbors

num-nodes-d3

Number of nodes with 3 neighbors

num-nodes-d/

Number of nodes with 4 neighbors

speed is reduced. The ghost-slowdown parameter spec-
ified the amount of speed reduction and varied from 1
to 4, in increments of 1. When the Ghost slowdown is
set to n, then the ghosts remain stationary every n'”
game step when they are edible. Thus, a higher value
makes the ghosts move faster, while a value of 1 makes
them stop moving completely.

e Ghost type: the ghosts behaved according to one of
three different modes: Standard, Random, and Chaser

The three different ghost behaviors are as follows: (1)

Standard ghosts chase Ms. Pac-Man 80% of the time and
move randomly the other 20%. When Ms. Pac-Man eats
a power pill, the ghosts start moving away from the agent
and eventually revert to their original behavior once they
are no longer edible; (2) Random ghosts choose a random
direction when reaching a junction 100% of the time. This

makes it easier for Ms. Pac-Man to avoid them, but harder
for Ms. Pac-Man to catch ghosts after eating a power pill.
(3) Chaser ghosts have the same behavior as the Standard
ghosts when inedible. However, after Ms. Pac-Man eats a
power pill, they continue moving towards Ms. Pac-Man in-
stead of fleeing. This makes it easy for Ms. Pac-Man to learn
to eat ghosts (sometimes also too easy, since Ms. Pac-Man
can learn to just stay in place and let the ghosts come to it,
which does not transfer well to the normal setting).

Varying the four parameters resulted in 4 x4 x4 x 3 = 192
versions of the game. These 192 tasks constituted the full
set of tasks 7. To compute transferability for all pairs of
tasks, the agent first learned to play each task from scratch
for 2,500 episodes (the number of total episodes was cho-
sen such that the agent’s policy converged on each of the
192 tasks). Each episode consisted of playing a full game of
Ms. Pac-Man. After each episode, the policy was frozen and
the agent played an additional 10 games to compute a reli-
able estimate for the expected reward at each point during
training. This procedure was repeated 10 times for each task
in order to account for the stochastic nature of the domain.
Thus, the agent played a total of 192x 2,500 x (1410)x 10 =
50, 800, 000 games to compute the baseline performance re-
ward curves. Figure 2 shows an example baseline test for
one of the 192 tasks. The bold line indicates the average
reward curve from the 10 different runs.

Once the baseline curves were computed, the benefit of
transfer was estimated for all task pairs. To do so, for
each of the 36,672 pairs of tasks (73,7;) in T, the agent
learned on task 7} for 30 episodes starting with the pol-
icy learned on task T; (i.e., the agent transferred the policy
from source task T; to target task 7). This process was
repeated 10 times for each pair, such that in each run, a
different one of the 10 policies computed during the baseline
run was used as a starting point. Thus the agent played
36,672 x 30 x (1 4+ 10) x 10 = 120,101,760 games. The
average reward with transfer and the average baseline re-
ward over the first 30 episodes were then used to compute
the jump start measure. The jump start measure requires a
parameter m that denotes the size of the temporal window
(in terms of number of episodes) to be used when averaging
the rewards (see Section 3). We computed the jump start
measure for m =1, 3, 5, 10, 15, and the maximum, 30.

All told, to compute both the baseline reward curves as
well as the transfer reward curves, the agent had to play over
170 million games. This type of an experiment would be next
to impossible on a single computer and therefore, we used
our department’s Condor Cluster system [10]. A learning
episode typically took about 0.5 — 0.75 seconds, though this
duration could vary depending on the cluster machine being
used. Based on logged data, the experiment took over 2,300
hours of compute time spread over 192 individual machines.
We believe that this is the largest computational experiment
in transfer learning to date.

The framework for learning task transferability proposed
in Section 4.2 requires that the agent has access to a real val-
ued feature vectors that describes each task. Table 2 shows
the task features that were used in our experiments. All of
the features, except for ghost-type, are numeric. The ghost-
type feature was originally nominal and therefore was con-
verted into 3 different binary features, one for each type of
ghost behavior. Thus, F; € R'7. The features that were used
to describe the tasks corresponded to the parameters used to
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Figure 3: An example transfer result for a given
target task and two potential source tasks. Task A
is clearly the better source task, resulting in a large
positive transfer.

Figure 4: An example transferability matrix com-
puted for each pair of the 192 tasks considered in
our experiments. In this matrix, the entry at ¢,
amounts to the resulting jumpstart(30) measure af-
ter transferring the policy learned on task 7T; to task
T;. Light values indicate high jump start while dark
values indicate low (possibly negative) jump start.

generate the tasks, as well as graph-based features induced
by the maze in each task. The features were not specifically
selected or tuned to maximize performance. The graph-
based features included domain specific attributes (e.g., the
distance between Ms. Pac-Man’s starting position and the
Ghosts’ lair) as well as general graph-based features such as
eccentricity and a histogram of the nodes’ degrees (the last
three features in the Table 2).

In our experiments, we explored two different implemen-
tations for the regression model M described in section 4.2:
1) Linear Regression, and 2) M5 Model trees [20]. Lin-
ear Regression was selected due to its simplicity, while the
M5 Model tree was selected as it is able to handle non-
linear problems. Both implementations can be found in the
WEKA machine learning library [34]. The WEKA imple-
mentation uses a modified version of the original tree induc-
tion algorithm, called M5P [32] which added pruning as a
part of the training stage.’

5.3 Results

3 All source code and implementations that were used to conduct
this experiment will be made publicly available upon publication.
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Figure 5: Histograms of the jump start measures for
two randomly chosen target tasks (i.e., a histogram
over the values in a given column of the transfer-
ability matrix). For the first target task (top his-
togram), virtually all source task result in positive
transfer, while for the second, there are a large num-
ber of source tasks that induce negative transfer.

5.3.1 The Transferability Matrix

Figure 3 shows an example transfer result for a target
task and two different source tasks. In this case, transfer-
ring the policy from one of the source task to the target
task results in positive transfer, while the other source task
induces negative transfer. Figure 4 shows the whole transfer-
ability matrix computed for the set of 192 tasks considered
in our experiments. In this example, each entry contains the
expected benefit of transfer according to the jumpstart(30)
measure for each pair of tasks (in other words, the jump start
was computed over the first 30 training episodes on the tar-
get task). White values indicate high jump start while black
values indicate low (possibly negative) jump start.

The order of the columns and rows of the matrix is not
random but rather, the entries are sorted first according to
the maze, then ghost-type, then ghost-slowdown, and then
finally, number-of-ghosts. The last 1/4 set of columns in the
matrix appear brighter than the rest because those tasks
were much more likely to benefit from transfer. These tasks
corresponded to tasks with the fourth maze, which proved
to be much more difficult for the agent than the other three
mazes. The grid-like pattern shows that transfer is not ran-
dom and hence, we hypothesized that the parameters that
define the tasks may be useful in predicting the benefit of
transfer across tasks.

Figure 5 shows a histogram of the jump start measures
for two randomly chosen target tasks (i.e., a histogram over
the values in a given column of the transferability matrix).
Even though the shapes of the histograms are similar, one of
the target tasks is much more likely to benefit from transfer.
For the first target task (top histogram), virtually all source
tasks result in positive transfer. For the second target task,
however, there are a large number of source tasks that in-
duce negative transfer, which further motivates the need for
effective source task selection.

5.3.2 Regression Model Performance

The performance of the regression model used to estimate
transferability was evaluated using 10-fold cross validation
at the task level. In other words, during each run, the tasks
were split into 10 sets such that 9 of these formed the set



Table 3: Regression Model Performance measured
by Correlation Coefficient

Transferability Linear Regression | M5P Model Tree
Measure

jumpstart(m = 1) 0.54 0.74
jumpstart(m = 3) 0.64 0.85
jumpstart(m = 5) 0.65 0.87
jumpstart(m = 10) 0.66 0.87
jumpstart(m = 15) 0.65 0.86
jumpstart(m = 30) 0.61 0.83
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Figure 6: Source Task Selection loss for three trans-
ferability measures. The two regression models were
compared with the baseline source task selection
model and with random source task selection.

Tsource while the remaining fold was considered as the set
of target tasks Tiarget. The regression model was trained on
all pairs of tasks (73, 7T;) such that T;,T; € Tsource and then
tested on all pairs of tasks induced by the cross product of
ﬁourae X ﬂa,rget-

Table 3 shows the performance of the two regression algo-
rithms that were used to predict the jumpstart(m) measure
for different values of m, the size of the temporal window
used to computed the jump start. The results are reported
in terms of the Correlation Coefficient (CC) between the ac-
tual and the predicted values. These results show that the
difficulty of modeling task transferability depends on the
measures used to estimate the benefit of transfer. For ex-
ample, modeling the jump start after just 1 training episode
on the target task is more difficult than modeling the jump
start after 10 episodes on the target task. Overall, the CCs
are high enough that we expect the ranking induced by the
regression models to be useful for source task selection.

5.3.3 Source Task Ranking and Selection

Next, the framework for source task selection proposed
in this paper was evaluated in terms of the expected loss,
i.e., if the agent selects the source task that maximizes the
expected transferability according to the regression model,
how much worse does it do compared to selecting the optimal
source task that it has already learned. Figure 6 shows the
result of this test for two different regression algorithms, as
well as the baseline approach. In addition, as a sanity check
we computed the loss when randomly selecting a source task.

As we expected, the baseline approach which selects a
source task based on task similarity in the task feature space
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Figure 7: Evaluation of source task ranking using
the learned regression model and the baseline case-
based reasoning approach. The ranking was evalu-
ated using the Normalized Discounted Cumulative
Gain (DCG)p) and the jumpstart(m = 5) measure (the
results were similar for the remaining values of m
used in this study). The value for p, the number of
elements to be considered in the ranking (starting
at position 1) was set to 20.

performs better than randomly selecting a source task. Fur-
thermore, the proposed method for learning task transfer-
ability substantially outperforms the baseline approach. While
the Linear Regression (LR) model performed worse in terms
of Correlation Coefficient when compared to the M5P Tree
(M5P), the top source task selected when using LR tended
to be a better source task than the one selected by M5P. The
results so far were computed when approximately 172 tasks
(i.e., 9 out of 10 folds) were available for training the regres-
sion model. An important question is whether performance
would suffer as the training set becomes smaller. To obtain
an answer, the number of tasks used to train the model was
varied from 2 to 30 and we found that the expected loss
converges after about 20 tasks (i.e., 400 pairs) are available
for learning the regression.

The quality of the rankings were further evaluated us-
ing the Normalized Discounted Cumulative Gain measure.
The results of this test are shown in Figure 7. Overall, LR
performed the best. These results conclusively show that
inter-task transferability can be learned even without sam-
ples or models of the target task. In particular, when faced
with a new target task, a single good source task can be
selected for transfer. These results naturally raise the ques-
tion of whether it is possible to chain together multiple such
source tasks sequentially to do even better. We examine
that question next.

5.3.4 Multi-stage Transfer

In this section, we explore whether we can chain together
a sequence of tasks 71 — T — ... — Tiarget, such that
learning 77 makes it “easier” to learn 75, which makes it
“easier” to learn T3, and so on. For simplicity, consider two
stage transfer: we are looking for source tasks 71 and 15
such that transferring from 77 — T2 — Tiarger gives better
performance than training directly on Tiqrge: or any of the
one-stage transfers 71 — Tiargetr and To> — Tiarget-

Candidates for the tasks 77 and 75 can be determined
recursively using the transferability matrix. We simply look
at the column corresponding to the target task, and select
the row (i.e. source task) that provides the best transfer.
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The selected task then becomes the column for the next
recursive stage.

A key question that we have not addressed so far is how
to decide how many episodes to spend on each source task.
Training on each of the subtasks 77 and 75 until convergence
before transferring to Tiarger would be equivalent to just
training on 75 until convergence and performing single stage
transfer to Tiarget. Therefore, in this preliminary test, we
used a heuristic approach based on the intuition that an
agent should train on a source task until additional training
does not improve performance on the target.*

We hand-selected several of the more challenging tasks
to serve as Tiarget. The results for one such target task
are shown in Figure 8. All methods of transfer resulted in
a jump start, but there was no benefit to using two stage
transfer over single stage transfer. The results were similar
for the other target tasks and overall, we were not able to
find a two-stage transfer that was significantly better than
its one-stage counterpart. Our hypothesis is that value func-
tion transfer is not suitable for two-stage transfer, since sin-
gle stage transfer already initializes the policy in some area
of the search space, and adding more stages does not no-
ticeably refine this area. We leave for future work whether
alternative RL and TL methods would facilitate finding a
better two-stage transfer result.

4 We define the target performance to be the total reward accu-
mulated by the agent on the target task, for a fixed number of
episodes (i.e. the area under the learning curve). Let Apgse be
the total reward accumulated by training directly on the target
task without using transfer, and let Afmnsfer be the total re-
ward accumulated on the target task after training on the source
task for z episodes, and using value function transfer. We used
an incremental approach where the agent trained on the source

task for 10 episodes, and used this to compute Afmnsfer. If the
difference (Afmnsfw — Apaseline) Was positive and increased, the

agent trained on the source for 10 more episodes. This process
was repeated until the difference no longer increased, at which
point training on the source task was halted.

6. CONCLUSION AND FUTURE WORK

This paper proposed a framework for source task selection
in settings where neither samples from the target task, nor
a model of the task, are available to the learning agent. In-
stead, the agent used task descriptors (i.e., a low-dimensional
feature vector describing some aspects of the task) to learn
the expected benefit of transfer, i.e., transferability, between
source tasks and target tasks. The framework was evaluated
using a large-scale experiment in which the agent learned to
play 192 variations of the Ms. Pac-Man game. To test our
framework, the agent played over 170 million games, making
this, to the best of our knowledge, the largest computational
experiment in transfer learning conducted so far. Our results
show that an agent can indeed learn to predict the transfer-
ability for an arbitrary pair of source-target tasks, provided
training pairs for which the benefit (or detriment) of transfer
is known. The learned transferability model was then used
to effectively select relevant source tasks that improve the
agent’s learning performance on a given target task.

There are several limitations and open questions that need
to be considered for future work. While efficiency was not
addressed in this paper, in practice generating a large set of
data using every source-target pair is expensive. We found
that only a small fraction of the source tasks are needed
for the source task selection loss to converge and we believe
that simple active learning frameworks can further reduce
the number of task pairs needed to learn the transferability
model. In our experiments, the agent learned the source
tasks for the maximum amount of allowed time but we have
also found that policies can successfully be transferred even
when there is only limited exploration in the source task.
Therefore, efficiency may also be improved if the agent can
autonomously decide when to stop learning a source task
and transfer the policy to a target task.

Evaluating efficiency in a setting like this poses additional
challenges as it depends strongly on the number of potential
target tasks to be solved by the agent in the future. To get
a strong transfer result, the time (e.g., number of episodes)
spent training on source tasks needs to be taken into ac-
count when comparing the performance with training with-
out transfer. When there is only one target task, the amount
of learning spent on source tasks is bounded by the amount
of time required to learn the target task from scratch. Most
recent frameworks for evaluating transfer assume that there
is indeed only one target task [29] and therefore, there is a
need to identify good measures for quantifying strong trans-
fer results in the setting where the set of target tasks is large
and potentially larger than the set of source tasks.

One aspect of the framework that makes it applicable in a
wide variety of settings is that it is agnostic with respect to
the reinforcement learning algorithm or transferring learn-
ing method being used. At the same time, this property
limits the potential for deeper theoretical analysis. Another
open question is whether a similar methodology can be used
to discover and subsequently model two-stage transfer, i.e.,
situations in which the agent learns multiple source tasks
in a precise order such that learning on the target task is
improved. A follow-up result from this study is that two-
stage transfer sequences are rare or perhaps non-existent in
the task space we considered. Future work will examine
whether this is a limitation of the domain, or a limitation of
the transfer learning method (i.e., value-function transfer).
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