
An Overview of the Mechanisms of Oracle RDBMS
Transactions and Logs
JOHN A. THYWISSEN
The University of Texas at Austin

1

1. INTRODUCTION
We will examine how Oracle RDBMS

transactions and logs work by breaking the
concepts into three architectural “layers”:

(1) Data layer: Tables & Indices & LOBs
(2) Transaction layer: Transactions & Undo

entries
(3) Cache layer: Data blocks & Redo entries
(To simplify this discussion, we will ignore

clustering, IOTs, partitioning, compression, some
optimizations, and obsolete things.)

Note that at this point in the Oracle architecture,
SQL has long since been decomposed into simple
operations of the form “fetch block 321’s row 99”,
“update block 1234’s row 85 column 3 to 42”, or
“delete block 2222’s row 183”.

2. DATA LAYER: TABLES & INDICES & LOBS
Database objects are, of course, stored in data

files. Some types of database objects, like tables
and indexes, contain the “real” data of a database,
and some types of objects, like users or sequences,
are metadata only.

The stored form of each of these “real” data
objects is a segment. Oracle segment types are:
table, index, LOB, cluster, temporary, undo (and
some internal types that we’ll ignore). The
metadata-only objects are kept in the database’s
data dictionary, which is simply a group of tables
managed by the database system.

In a database, there are many segments and
many data files used for storage. This many-to-
many relationship is kept in the form of
tablespaces. Each segment is created in one
tablespace, and each datafile is part of one
tablespace.

So, now you know how to find the set of data
files an object might be found in. If the object is
metadata-only, it will be in the data dictionary,
which is in the system’s tablespace’s data files.
Otherwise, for “real” objects, look at the
tablespace for that object’s segment to find the set
of data files.

Files are partitioned into fixed-sized spans of
bytes called blocks, typically 8 kB long. Note that
Oracle blocks do not necessarily correspond to the
underlying operating system’s blocks.

The data dictionary lists, for each segment, the
segment header block, which, in turn, stores a list
of data blocks that belong to that segment2. A
block is identified by a 32-bit relative data block
address (DBA) which consists of a (relative) file
number (within the tablespace) and a block
number in that file. For example, DBA
0x01000014 indicates block 20 in file 4 in a given
tablespace.

The data in a block is laid out according to the
block’s type. In particular, a table data block
contains the number of rows, free space info, a row
directory, and the rows. The row directory is
simply an array of offsets into the block for the

July 2013

1 Author’s Addresses: J. Thywissen, Department of Computer Science, The University of Texas at Austin, 2317 Speedway, Stop D9500,
Austin, Texas 78712-1757, USA; email: jthywiss@cs.utexas.edu
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© 2013 John A. Thywissen

2 There are several layers of storage management complexity we’re eliding here: extents, free space lists, bitmaps, etc. These are covered in
the Oracle Concepts and administration manuals.

mailto:jthywiss@cs.utexas.edu
mailto:jthywiss@cs.utexas.edu

start of each row. Each row has a flag byte, lock
byte (discussed later), column count, and the
column data. The flag byte is used to indicate that
the row is deleted, split among multiple blocks,
etc. The column data is a sequence of variable-
sized columns, each of which starts with its length,
followed by its data.

By the way, the ROWID pseudocolumn in Oracle
SQL is a combination of object number, relative
file number, block number, and row number. This
uniquely specifies the location of a row in the
database at a particular instant.

The other block types—index blocks, LOB data
blocks, undo blocks, etc.—have structures that are
conceptually similar to table data blocks, but laid
out to suit their purpose. For example, there are B-
tree index block types that have interior (“branch”)
or leaf nodes in them.

To fetch a row, given the data block address (file
number and data block number) and row number,
read the indicated block from the file, look up the
row’s offset in the block’s row directory, and then
read the row header and column data at that offset.
To insert a row into a table data block, go to the
free space (as indicated in the block header), add a
row header and column data, update the row
directory to point to the row, and update the free
space info.

3. TRANSACTION LAYER: TRANSACTIONS
& UNDO ENTRIES

When SQL statements modify data, they do so as
part of transactions. When a transaction starts, it
is allocated a slot in a transaction table. A
transaction table is part of an undo segment header,
which also has a list of the undo blocks that are
part of this undo segment. (Each Oracle database
has one undo tablespace, with a few undo
segments (typically 10-to-30-ish). Oracle tries to
assign each active transaction to its own undo
segment, but if there are many active transactions,
sharing undo segments among multiple
transactions may occur.)

Each transaction table slot contains the
transaction’s state (active or not), some flags, a
sequence number (incremented every time the slot
is reused), snapshot SCN, and the data block
address of the last undo block that this transaction
has used (discussed later). An Oracle transaction

ID (XID) is composed of the undo segment
number, the slot number, and the sequence number,
and is written like 0x0004.016.00001a69.

At certain points in a transaction, the Oracle
instance’s system change number (SCN), a global
48-bit integer stored in the SGA, is copied to the
transaction table slot as that transaction’s snapshot
SCN. (SCNs are written like 0x0000.03ec99f5,
or in decimal 65837557.)

3.1. ITL & Lock Bytes
When a transaction starts to change a table row,

it first marks the row as changed by an active
transaction. Active transactions are tracked for
table, index, and LOB blocks using an area in the
block called the interested transaction list (ITL).
An ITL has a small number of slots, each of which
lists the transaction ID (XID), undo block address
(UBA) of the last undo record that affected this
block, a state (active/inactive), a commit SCN
(covered later) and some other data.

Each row in a block has a lock byte. To mark a
row as “in use” by a transaction, the transaction
fills its data into an unused ITL slot, and sets the
row’s lock byte to that entry’s index. A lock byte
value of zero indicates that no ITL entry applies to
this row.

3.2. Undo records
Every change to a table data block, LOB data

block, or index block in a transaction creates an
undo record, which is stored in an undo block.
The undo record contains instructions to reverse
the change made by the transaction—a delete
undoes an insert, an update to an old value undoes
an update to a new value, and so on.

Each undo record indicates: which block (AFN
& DBA) it affects, the type of operation (for
example, delete of a row), and details of the
change, and a pointer to the previous undo record
for this transaction. Since each undo record has a
pointer to the previous one, they form a singly
linked list (for each transaction). The details of the
change are operation specific. For a row update,
the details are: the row number in the block, the
column number(s) changed, and the old data.

Again, remember, at this level, operations are
not SQL statements, and tables and columns are
not referred to by name.

2! ●! J. Thywissen

July 2013

Here is a sampling of undo operation types:
—insert a table row,
—delete a table row,
—update columns in a table row,
—insert index leaf node,
—delete index leaf node,
—initialize index root block after split,
—allocate new blocks,
—and so forth.

3.3. Rollback
When a transaction rolls back, the operations in

the transaction’s undo records are applied to
reverse the effects of the transaction on the table
data, indexes, etc. This is done by following the
pointer in the transaction table to the last undo
record written, and applying its operation, and then
following its pointer to the previous undo record,
applying its operation, and so on until the end of
the transaction’s undo list. Then, the transaction
table slot for the transaction is marked as rolled-
back.

The redo log (discussed later) is written to disk.
Locks are released, and enqueued transactions

for those locks can retry.

3.4. Commit
When a transaction commits, the instance SCN

in the SGA is incremented, the transaction table
slot for the transaction has this commit SCN is
recorded, and the transaction’s slot is marked as
committed.

The redo log (discussed later) is written to disk.
The ITL entry for this transaction in blocks

where this transaction held a lock are marked as
committed and with the commit SCN. (Oracle
only does this if it can be done quickly. If this
can’t be done quickly, Oracle will skip it, leaving
the “clean out” of blocks’ lock bytes and ITLs to
whenever the blocks are read next. We’ll ignore
delayed block clean out for the rest of this
discussion.)

Locks are released, and enqueued transactions
for those locks can retry.

3.5. Consistent Read
Before a transaction uses a table, index, or LOB

block in memory (in the database buffer cache),
the ITL in the block header is examined. The need

for a read-consistent copy of the block is
determined by the following condition: The are
transactions in the ITL that are not the current
transaction; and they either 1) are active (not
committed), or 2) have a commit SCN is greater
than the snapshot SCN of the current transaction.

If this check indicates a need, then a read-
consistent copy of the block is constructed as
follows:

(1) Clone the current block—make a copy of it
in the database buffer cache.

(2) (A delayed block clean out would happen
here, if needed.)

(3) Undo uncommitted transactions (other than
the current transaction) that affect this block,
i.e. all active transactions found in the block’s
ITL. This is similar to the process as used for
rollback (described above), but only as
applicable to this block, and without any
globally visible effects, such as log write
activity or lock releases.

(4) While the highest commit SCN in the ITL is
greater than the current transaction’s snapshot
SCN, repeat the following: Pick the
transaction with highest commit SCN and
apply its undo to the block. It may be possible
that the current transaction’s snapshot SCN is
too far back in history—that there is not
enough undo data to go back that far. In this
case, the operation is aborted with the error
“ORA-01555: snapshot too old”.

Note that applying undo records not only undoes
the table row changes, but also undoes changes to
the ITL, so after a transaction is undone, the
block’s ITL is guaranteed to show the previous
transaction’s entries in the ITL. This allows
chaining backward in time through all the various
transactions’ changes to this block.

This “consistent read” copy of the block is kept
in the database buffer cache, under the same
address (DBA) as the current block, but marked as
a consistent read copy at the snapshot SCN.

3.6. Update
When a SQL UPDATE statement executes, rows

of the target table are searched according to the
WHERE clause of the statement. This search is
performed on read-consistent copies of the blocks
of the table, as described above. When a row to be

! ! ! An Overview of the Mechanisms of Oracle RDBMS Transactions and Logs ! ●! 3

July 2013

updated is identified, the current copy of the block
has the update applied to it. Note that there may
be conflicts between the state of the row in the
read-consistent copy and the current state of the
row. These conflicts may cause the update to
block and/or fail.

A change to a block’s current copy invalidates
any private read-consistent copies of that block.3
Future uses of that block may require
reconstruction of the private read-consistent copy.

3.7. Transaction Isolation Levels
Oracle supports two transaction isolation levels,

read committed and serializable. The read
committed level prohibits dirty reads, but permits
unrepeatable reads and phantoms. The serializable
level prohibits all three phenomena.

The consistent read process is used for all
queries, at either transaction isolation level. The
impact of the isolation level is simply when the
snapshot SCN is reset: At the read committed
level, the snapshot SCN is set to the current SCN
at the start of each query. At the serializable level,
the snapshot SCN is set to the current SCN at the
start of each transaction.

4. CACHE LAYER: DATA BLOCKS & REDO
ENTRIES

The foundational layer of Oracle data
management is the Oracle kernel cache layer. It
manages data blocks, their movement between
memory and data file, logs changes in the redo log
buffer, and writes the redo log buffer to the online
redo log files.

Data blocks in memory are kept in the database
buffer cache, and on disk are stored in data files.
Redo log entries in memory are kept in the redo
log buffer, and are stored on disk in the online redo
log (file).

Note that “data block” means block in a data file,
not necessarily storing table row data. For
example, data files have blocks that list all the
blocks in a segment (segment headers) and blocks
that list free space in data files. These types of
blocks have no user data in them at all, but are still
“data blocks” as far as the cache layer is
concerned. Other block types include table row

blocks, LOB data blocks, index blocks, undo
segment header blocks, and undo blocks.

Every block in a data file or in the buffer cache
starts with a 20-byte common data block header
that indicates its type, relative data block address
(DBA), the SCN when it was last changed, a
sequence number that indicates the number of
changes to this block at this SCN, some status
flags, and a checksum.

Before any change can happen to a data block,
redo (and usually undo) entries must be generated.
Any data block modification is first reified as a
change vector. A change vector exactly specifies
an operation performed on a data block, for
example: operation code 11.5 (update row part) in
block number 0x01000014, row number 0x0142,
column number 0x14, with the new data 'test'.
In addition to all the types of operations used in
undo logs (discussed above), redo logs cover
operations that are not recorded the transaction-
rollback-focused undo logs. Some examples
include: file space allocation, backups, dirty block
writes to disk, block clean outs, and checkpoints.
Also, redo logs may contain added entries that are
useful to administrators when managing the
database (“supplemental logging”).

Each change vector to be performed on a block
is first stored in the redo log buffer. Each change
vector indicates its type, the block it applies to, the
SCN and sequence number of the changed block,
in addition to the operation code and the details for
that specific operation. Change vectors generated
at the same time are grouped into redo records,
which have an SCN, a subSCN (which orders redo
records at the same SCN), and a timestamp.

After the change vector for an operation is stored
in the redo log, only then is the block in the
database buffer cache changed. The block’s last
changed SCN and sequence number are updated,
and the block is added to the list of dirty blocks.
A dirty block has been changed in memory, but not
written back to disk.

The redo log buffer is frequently written to the
online redo log file. In particular, whenever a
transaction commits or rolls back, the redo log
buffer is written to disk. However, dirty blocks in
the database buffer cache are written far less
frequently. If the Oracle instance were to abort or

4! ●! J. Thywissen

July 2013

3 This is conjecture. Details of this are not documented in the sources I’ve reviewed.

crash, the change vectors in the redo log file can be
“replayed” to recover the state of the data blocks
shortly before the time of the abort.

5. PUTTING IT ALL TOGETHER
Suppose a query results in the need to read every

row in a table. The data dictionary is used to map
the table name to an object ID, which is used to
look up the file & block number of the segment
header for the table. This lists all the table row
data blocks, each of which is read in to the
database buffer cache. Each table data block’s
ITL is examined, which may trigger the need to
create a consistent read copy of the block as
described above. Then the block’s row directory is
iterated through to find each row in the block,
which has the column data for the row.

Now, suppose a query updates a row. First, the
row is read, as described above. Even though the
data appears to the query as the consistent read
versions, the update actually changes the current
data block. A redo record is generated containing
the undo and redo change vectors for the update.
Then the undo block has an undo record added to
it4. Then, the current transaction’s information is
added to an ITL entry in the table data block.
Then, the update table row’s lock byte is set to the
new ITL entry. Then, finally, the row is updated.

If this change were on a column that has an
index, the index would be updated in a manner
very similar to the table row, including generation

of undo and redo entries, and use of the index
block’s ITL and lock bytes.

ACKNOWLEDGMENTS

This article was developed while the author was
a Graduate Teaching Assistant for Dr. P. Cannata’s
Data Management course at The University of
Texas at Austin.

REFERENCES

Oracle Corporation. 2013. Oracle Database Concepts.
Available at: http://docs.oracle.com/

Oracle Corporation. 2013. Oracle Database Administrator’s
Guide. Available at: http://docs.oracle.com/

Oracle Corporation. 2013. Oracle Database Reference.
Available at: http://docs.oracle.com/

LEWIS, Johnathan. 2011. Oracle Core: Essential Internals for
DBAs and Developers. Apress: New York. ISBN
978-1-4302-3954-3.

LEWIS, Johnathan. Oracle Scratchpad [blog]. Available at:
http://jonathanlewis.wordpress.com/

DYKE, Julian. Oracle Internals [Web site]. Available at:
http://www.juliandyke.com/

ADAMS, Steve. Oracle Internals Notes [Web site]. Available
at: http://www.ixora.com.au/notes/ and http://
www.ixora.com.au/q+a/

LITCHFIELD, David. Oracle Forensics series of papers. 2007–
2010. Available at: http://www.databasesecurity.com/
oracle-forensics.htm and http://www.v3rity.com/
research.php

! ! ! An Overview of the Mechanisms of Oracle RDBMS Transactions and Logs ! ●! 5

July 2013

4 Assuming the undo block was already allocated, and assuming there is space in it for this new undo record.

http://docs.oracle.com
http://docs.oracle.com
http://docs.oracle.com
http://docs.oracle.com
http://docs.oracle.com
http://docs.oracle.com
http://jonathanlewis.wordpress.com/
http://jonathanlewis.wordpress.com/
http://www.juliandyke.com/
http://www.juliandyke.com/
http://www.ixora.com.au/notes/
http://www.ixora.com.au/notes/
http://www.ixora.com.au/q+a/
http://www.ixora.com.au/q+a/
http://www.ixora.com.au/q+a/
http://www.ixora.com.au/q+a/
http://www.databasesecurity.com/oracle-forensics.htm
http://www.databasesecurity.com/oracle-forensics.htm
http://www.databasesecurity.com/oracle-forensics.htm
http://www.databasesecurity.com/oracle-forensics.htm
http://www.v3rity.com/research.php
http://www.v3rity.com/research.php
http://www.v3rity.com/research.php
http://www.v3rity.com/research.php

