
Secure Information Flow in the Orc
Concurrent Programming Language

Project Report

John A. Thywissen
The University of Texas at Austin

jthywiss@cs.utexas.edu

Abstract
Orc is a concurrent, functional-like programming language. We
extend Orc’s type system with secure typing, to control the flow of
information through programs according to a security policy. This
policy is encoded in a lattice of labels that can be applied to values.
The partial order of labels specifies the allowed information flows.

The impact of Orc’s design and of concurrency in general are
discussed. The data flows and control flows among Orc program
expressions are analyzed, and the resulting rules are presented. De-
classification (approved violations of the partial order) is possible
in this design as a simple type assertion. Effects of Orc’s trust of
sites, and its current scheduling method are considered.

Twenty examples are demonstrated.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection—Information flow controls; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features—Security,
Orc; D.2.0 [Software Engineering]: General—Protection mecha-
nisms; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection

General Terms Security, Languages

Keywords Secure information flow, security types, concurrency,
declassification, Orc, stOrc

1. Introduction
Orc is a concurrent programming language that provides structured
concurrency [Kitchin et al. 2009, Orc Research Team 2009]. In the
1970s, structured programming eliminated uncontrolled goto state-
ments in favor of more abstract but constrained control flow struc-
tures, such as while loops. Orc advocates an analogous transition
for concurrency. Rather than use low-level thread create, synchro-
nize, and destroy primitives, Orc provides the programmer with
four combinators to express how to orchestrate the concurrent eval-
uation of program expressions.

Orc is a (mostly) functional language, which provides basic
constructs, like the combinators, and delegates all other work to
sites. Sites can be thought of as remote function invocation (though
most execute locally).

Final Project, 14 Dec 2009
C S 380S, Theory and Practice of Secure Systems
Fall 2009, Prof. Vitaly Shmatikov
Department of Computer Science, The University of Texas at Austin

Orc has an optional type-checked mode, which performs type
inference using the Pierce-Turner Local Type Inference method
[Pierce and Turner 2000].

A large class of envisioned Orc applications are long running
processes, for example workflow procedures. These processes can-
not be simply contained within a single user’s login session because
their duration far exceeds the duration of a typical session. Also, be-
cause Orc is focused on “orchestration” of services provided by its
sites, Orc programs tend to draw data from disparate, often remote,
sources. Therefore, it is more likely than a typical program that an
Orc program will handle data from a mix of multiple domains, out-
side of the administratively simple environment of a single user’s
login session.

This raises the question of trustworthiness of Orc programs
when they come into contact with sensitive data from various
sources.

Herein, we analyze information flows in the standard Orc se-
mantics, and construct rules for enforcing security properties using
the Orc type checker.

2. Related Work
Briefly:

Smith [2006] provides a quick, readable introduction to secure
information flow.

Sabelfeld and Myers [2003] provides an extensive survey of the
secure information flow literature.

Secure information flow control by static analysis was first pre-
sented in Denning and Denning [1977], which provides a control
flow graph based approach.

Type systems were demonstrated to be a good information flow
control mechanism in Volpano et al. [1996].

Labels can be applied by various principals in support of their
policies. Myers and Liskov [1997]’s decentralized labels approach
enables information flow in a mixed policy domain environment.

Work up to this point was in purely sequential (single-threaded)
models. Multi-threaded programs were addressed in Smith and
Volpano [1998], which requires all loops’ guards only use public
data.

Myers [1999] presents JFlow, a secure information flow ex-
tension to Java. JFlow was apparently the first secure information
flow extension for a widely-used language. Jif extends JFlow with,
among other things, decentralized information flow.

Volpano and Smith [2000] argues that strict noninterference is
not a workable policy.

Smith [2001] continues to work on the multi-threaded problem.
It relaxes the condition requiring all loop guards to not use non-
public data, but the proposed solution requires knowledge of timing
of operations.

1

Pottier and Simonet [2003] describes a derivative of ML, with
security typing.

Current state of the art includes quantitative information flow
[Clarkson et al. 2009], where the information flow rates are quanti-
fied.

3. Questions under Study
Questions raised by the problem of secure information flow in Orc
include:

• What are the various channels that information could flow
among expressions in Orc (by design and covertly), under stan-
dard Orc semantics?

• To what extent can a secure information flow policy be enforced
in standard Orc with appropriate security extensions?

• How does concurrency change the secure information flow
problem or solution, if at all?

• Can a policy be implemented reasonably that is more practical
than strict noninterference?

• Beyond the pure Orc semantic model, are there aspects of the
implementation of the Orc compiler or runtime engine that
affect information flows?

4. Contributions
Accordingly, this report provides:

• A characterization of information flow (all explicit and many
implicit paths) in existing Orc. Some implicit paths are not
considered, such as timing paths. Also, Orc sites are out of
scope and site trustworthiness is assumed.

• A description of secure information flow extensions to the Orc
language.

Also provided with this report is:

• STORC, an extended version of the Orc compiler that labels
types with a security label, and then type checks programs to
enforce information flow policy.

5. Background: The Orc Programming Language
Orc is a language that focuses on concurrency. Orc’s model of
concurrent computations is one of orchestration of the interaction
of sites. Sites perform all the computational work, and are treated
similarly to a remote function call in conventional languages. Orc
composes site calls with its four combinators: parallel, sequential,
pruning, and otherwise. When an expression in an Orc program
produces a result (called a publication), the result is propagated
based on the semantics of the combinators surrounding it. Orc is
similar to a dataflow language, in that publications become threads
of control.

For example, the Orc expression f() >x> g(x) causes the
function f to be executed, and then for each publication of f , the
result value is bound to x and g(x) is evaluated.

Sites When a site is called, it is optionally passed parameters and
execution of that site call awaits a response from the site. Orc does
not constrain the location of a site — it may be a remote call over,
say, SOAP, or it may be a local method call in the caller’s address
space. The current Orc implementation runs in a Java environment,
so site calls translate to method calls on subclasses of Site, but
that’s is nonessential to the language definition.

Parallel The first combinator, parallel, written | , has the ex-
pected meaning. Parallel executes the expressions on its left-hand
side and right-hand side in parallel, and publishes all publications
of both.

Sequential The second combinator, sequential, written � or
>x> , is a type of “fan-out” operator. Sequential executes the
expression on its left-hand side, and then for each publication of
that expression, the result value is bound to the variable specified
(x) and the right-hand side is evaluated with that binding. Note
that the right-hand side could be executed zero or more times,
depending on how many times the left-hand side publishes. For
example, (1 | 2) >x> (x + 1) results in two publications, 2 and
3. If the right-hand expression does not refer to the bound variable,
the combinator can be abbreviated � . Note that the right-hand
expression is executed once for each publication of the left-hand
expression, regardless of whether it refers to the bound variable.
All publications of the right-hand expression are published by
sequential.

Pruning The third combinator, pruning, written � or <x< , is
a type of choice operator. Pruning executes the expressions on both
sides, but the left-hand side is executed with the variable specified
(x) bound to a future. If an expression attempts to evaluate a
future, evaluation suspends until the value of the future is available.
When the right-hand side produces its first publication, that result
becomes the value of the bound variable (replacing the future) and
all further execution in the right-hand side is terminated (other
results are said to be pruned). All publications of the left-hand
expression are published by pruning.

Otherwise The fourth combinator, otherwise, written ; , is a type
of “fall-back” handler. Normally, the left-hand expression is evalu-
ated and its publications are published by otherwise. However, if all
execution ceases in the left-hand expression without publishing any
values, the right-hand expression is evaluated and its publications
are published by otherwise.

Stop stop is Orc’s “sink” — publications that arrive at stop are
discarded.

Unusually, the core Orc language performs no manipulation of
data values. In fact, Orc only “understands” futures and closures —
all other values are opaque to Orc and left to sites to interpret and
manipulate.

6. Information Flow Channels in Orc
6.1 Explicit
Information flows in Orc that are intentional can be found by
reviewing the language’s semantics. These have been presented in
several forms: tree semantics [Hoare et al. 2005], asynchronous
operational semantics [Kitchin et al. 2006], timed operational and
denotational semantics [Wehrman et al. 2008], and token semantics
(appendix A).

Data Flow Information flow within an Orc program is predomi-
nantly the data flow of the program. Data flow in Orc occurs in six
ways:

1. Constant evaluation: A literal in the program text is evaluated.

2. Variable lookup: A value in the current environment is re-
trieved.

3. Publish: The current result is propagated to the enclosing lan-
guage structure.

4. Variable binding: The current result is added to the current
environment.

2

Table 1. Combinator data flows
Combinator In Across Out
Parallel
l | r

To both l and r none From both l
and r

Sequential
l >x> r

To l l to r via x From r

Pruning
l <x< r

To l r to l via x From l

Otherwise
l ; r

To both l and
possibly r

none From either
l or r

Table 2. Combinator control flows
Combinator In Across Out
Parallel
l | r

To both
l and r

none From both l
and r

Sequential
l >x> r

To l l to r From r

Pruning
l <x< r

To l Across r (in case of
termination), and from
r to l only if data flow

From l

Otherwise
l ; r

To l Possibly l to r (in case
of termination)

From either
l or r

5. Site call and return: Parameter values are transmitted to a site
and a return value is retrieved.

6. Through the four combinators, namely, parallel, sequential,
pruning, and otherwise, detailed below.

The four Orc combinators propagate data as follows:

1. Parallel l | r: Evaluates both sides, l and r with the current
environment. All publications of l and r become publications
of the parallel combinator.

2. Sequential l >x> r: Evaluates l with the current environment.
For each publication of l, x is bound to the result and r is
evaluated with the resulting environment. The publications of
r become publications of the sequential combinator.

3. Pruning l <x< r: Evaluates r with the current environment,
and evaluates l with x bound to a future. When l attempts to
evaluate the binding of x, l will be suspended awaiting a value
in place of the future. The first publication from r replaces the
future, all further activity in r is pruned, and l is resumed (if it
was waiting). The publications of l become the publications of
the pruning combinator.

4. Otherwise l ; r: Evaluates l with the current environment, and
if one or more publications are produced, those become the
publications of the otherwise combinator. If all activity in l
ceases, then r is evaluated with the current environment, and
those publications become the publications of the otherwise
combinator.

These data flows are summarized in table 1.

Control Flow In addition to data flow, information flows in Orc
programs in the form of control flow. Since core Orc is a functional
language, control flow largely mirrors the data flow. This is sum-
marized in table 2. However, there are several subtleties to three
of the four combinators, which can be noted by comparing the two
tables:

1. Sequential: The execution of r indicates that l published, even
if r does not depend on the value produced.

2. Pruning: Since l is evaluated without waiting for r, there is
no flow in the manner of sequential. If l attempts to lookup
x, it will wait on r, but the data flow and the control flow
are identical in that case. However, the termination of all other
activity in r when it publishes is not captured in the data flow.

3. Otherwise: The execution of r indicates that l failed to publish.

Finally, site calls and returns are transfer of control flow to and
from the callee site. The site chooses to return or not. For example,
conditionals are implemented in Orc using the if site, which will
only return if the condition evaluates as true.

6.2 Covert
The usual covert channels exist in Orc:

• Termination
• Timing
• Platform leaks

Additionally, while this isn’t necessarily a proper covert chan-
nel, sites are trusted to not leak parameter values, results, or related
information.

Termination Termination or continuing operation of threads can
leak information. For example, if a login process terminates (rather
than spawning a number of subprocesses), that may indicate to
an unauthorized observer that the presented login credentials were
incorrect. Parallel systems provide an abundance of opportunities
to observe termination.

Orc, in particular, with its combinators, uses thread termination
as a routine aspect of its programs’ control flow. In this way, Orc
differs from conventional programming languages, and an infor-
mation flow control in Orc must subsume the termination channel
problem.

Timing Timing channels continue to be vexing. Orc is similar to
other parallel systems in this respect. As mentioned in the related
work, current proposed solutions to the timing channel problem
seem unworkable, and Orc does not seem to present any new
opportunities for solving this problem.

Future work could analyze Orc’s Rtimer() and Ltimer() sites
for opportunities to reduce their use as a timing channel.

Platform Platform leaks, such as power channels, electromag-
netic channels, etc. are also present in Orc, since it runs on a con-
ventional platform.

7. Enforcement of Secure Information Flow in
Orc

Here, we present STORC, security typed Orc. STORC is an exten-
sion to Orc which enforces secure information flow by means of en-
hancing the Orc type system to enforce confidentiality constraints
of security labeled data.

The existing Orc type system is supplemented with a new type,
SecurityLabledType, which has to parameters: a regular Orc
type and a security label. Security labels are values with a partial
order that form a lattice. There is a security label designated as
a default label, which all unlabeled Orc types are presumed to be
labeled with.

Programmers can annotate any Orc type with a label, and use
them in any place a type can be used. This includes ascribing
types to literals, function or site call parameters, expressions, and
so forth.

Orc’s type inference carries the security labeled types through
expressions — a type checked expression includes label checking,
as detailed below.

3

7.1 Syntax
STORC modifies Orc syntax [Orc Research Team 2009] very mini-
mally – in just two areas:

Security labels are added:

SecurityLabel ::=“{” Identifier “}”
|

And these labels may be appended to any Orc type:

Type ::=“(” Type, ∗“)” SecurityLabel

|“lambda” TypeFormals TypeListGroup

“::” Type SecurityLabel

|“Top” SecurityLabel

|“Bot” SecurityLabel

|“ ” SecurityLabel

| Identifier SecurityLabel

| Identifier “[” Type, ∗“]” SecurityLabel

For example, an integer type that has a “secret” label is written
Integer{Secret}.

7.2 Semantics
The operational semantics are completely unchanged, since Orc’s
typing is completely erased after type checking.

7.3 Typing rules
For any type T , the type is equal to itself labeled with the default
label.

T = T{}
DEFAULT

Applying another label to a labeled type results in a type labeled
with the join of the labels.

T{a}{b} = T{a ∨ b}
JOIN-LABELS

For any two types with lablels S{a} and T{b}, the type S{a}
is a subtype of T{b} iff S is a subtype of T and a ≤ b.

S ≤ T a ≤ b
S{a} ≤ T{b}

LABELED-SUBTYPES

To handle implicit (control) flows, Volpano et al. [1996] intro-
duced phrase types and typing rules for command composition.
This will not work in functional languages such as Orc. (See, for
example security typing in ML [Pottier and Simonet 2003].)

In STORC, every typing context is extended with a “control
flow label”, which can encodes the security level of the fact that
evaluation is taking place in that context. The control flow label
can be viewed as an analog of the pc variable in other secure
information flow solutions.

Typing rules are as in standard Orc, with the following changes:

7.3.1 Combinators
The combinators’ typing rules become:

Parallel passes the incoming control flow label independently to
its left side and right side. (The type, and therefore the label of the
results, remains the join of the left and right sides.)

c; Γ ` l : Tl c; Γ ` r : Tr

c; Γ ` l | r : Tl ∨ Tr
PARALLEL

Sequential passes the label of the left side’s type as the right
side’s control flow label, and joins the right side’s published value
type’s label with the left side’s label.

c; Γ ` l : Tl c′; Γ, x : Tl ` r : Tr

c; Γ ` l >x> r : Tr{label(Tl)}
SEQUENTIAL

where c′ = c ∨ label(Tl)

Pruning passes the incoming control flow label independently
to the left side and right side. (The type, and therefore the label of
the results, remains the type of the left side.)

c; Γ, x : τr ` l : Tl c; Γ ` r : Tr
c; Γ ` l <x< r : Tl

PRUNING

Otherwise passes the label of its left side’s type as the right
side’s control flow label. (The type, and therefore the label of the
results, remains the join of the left and right sides.)

c; Γ ` l : Tl c′; Γ ` r : Tr
c; Γ ` l ; r : Tl ∨ Tr

OTHERWISE

where c′ = c ∨ label(Tl)

7.3.2 Site Calls
For a site call:

• Calling a site reveals control flow to this point, so all arguments
are joined with the control flow label.

• For ease-of-use reasons, unlabeled formal parameters take label
of the corresponding argument value, if labeled. This alleviates
the need to relabel all existing routines’ type declarations.

• Similarly, if site’s result type is not labeled, it is labeled with
the join of the arguments’ labels.

c; Γ ` a1 : T1 . . .

c; Γ ` x(an) : T{c ∨ c′}
SITE-CALL-RESULT

where c′ =
_
n

label(Tn)

7.4 Comment on Soundness
Orc’s type system is intended as an aid to developers, and is not a
part of the core language. Unfortunately, the Orc type checker cur-
rently has no formal statement of the rules it enforces. Therefore,
we are unable to present a soundness proof here.

The discussion above of data flow vs. control flow in Orc is our
attempt at some justification for soundness of STORC. However,
this is not fully satisfactory, and it is future work to remedy this.

8. Beyond Strict Noninterference
One goal of this work was to investigate containment policies of
a secure information flow other than strict noninterference. Strict
noninterference quickly becomes an impractical policy in real pro-
grams.

Strict noninterference is defined as: all possible executions that
have identical “low” inputs but possibly differing “high” inputs
must have identical “low” outputs.

The canonical example of strict noninterference’s impracticality
is password checking. When the password-to-be-checked is com-
pared against the correct-password, the results of the comparison
would be precluded from being revealed to the supplier of the

4

password-to-be-checked. In fact, allowing a log in attempt to suc-
ceed or fail is a “leak”. Many computations involving mixed levels
are similar – they need access to secrets, but also need to commu-
nicate results to lower labeled contexts.

Thus, a need for declassification arises. This is a means of
annotating a program fragment with an indication of trust that leaks
of information to lower levels are permitted in specific instances.

In a security type system, practical declassification is very sim-
ple – it is just a type assertion (type cast). STORC uses Orc’s type
assertion mechanism in this manner. The declassification and pass-
word checker examples (sections 10.9 and 10.10) demonstrate this.

9. Implementation Effects
There are aspects of the implementation of the Orc compiler and
runtime engine that affect secure information flows. Two significant
ones are trust of sites and the current runtime’s scheduling policy.

9.1 Trust of Sites
An Orc program’s calls to sites, of course, reveal the arguments to
the sites. In general, we trust sites to not disclose arguments or re-
sults beyond their specification. For sites that are not trusted, for
example, println, the argument types can be annotated with ap-
propriate labels. For instance, see the password checker example’s
untrustedPrintln.

Orc trusts the infrastructure that transfers arguments and results
to and from sites. Most standard library sites run in the same Java
virtual machine as the Orc program, so malicious sites could ex-
amine the Orc program’s state and extract information not intended
for that site. This is an implementation choice that can be modified
if Orc programs often call untrusted local sites.

Additionally, remote sites have a proxy in the JVM that uses a
communications method of that site’s choice, providing opportu-
nity for malicious or poorly-designed sites to leak arguments and
results. Again, a partial solution is to declare sites with parameters
labeled appropriately for untrusted sites.

9.2 Scheduling
The Orc language makes a very limited set of guarantees about
scheduling of threads in a program, and is clear that the scheduling
of multiple “ready” threads can be nondeterministic. However,
the current reference implementation does, in fact, perform round
robin scheduling of ready threads. This opens an opportunity for
extremely high bit rate timing channels within a program. Since
STORC currently disclaims handling timing channels, this is not a
failure, but worthy of note.

10. Demonstrations
Here, we present a number of examples of small STORC programs.
The examples are presented as Orc source code, with structured
comments that indicate the program’s type as inferred by the Orc
type checker, and the program’s output. (Most of these examples
are automatically checked in STORC’s regression test procedure.)

For these examples, we use the security label lattice shown in
figure 1. The label {A0} is the default, “public” label, and is the
label lattice’s bottom element. The label {F9} is the top element.

Many examples use the Orc val syntax. val x = d applied to
the expression e is syntactic sugar for e <x< d.

A0

A1

...

A9

B0

B1

...

B9

...

...

...

...

F0

F1

...

F9

Figure 1. Security label lattice used in examples

10.1 Label use
Demonstrate the security label syntax in STORC

2 :: Integer{A2}

{-
TYPE: Integer{A2}
OUTPUT:
2
-}

10.2 Multilevel add
Demonstrate a site call combining disparate argument labels

-- Add values of different labels,
-- check that output has correct inferred label.
-- An example of arrow type parameter/result label inference.

val public = 1 :: Integer
val secret1 = 4 :: Integer{B4}
val secret2 = 6 :: Integer{A6}
val unused = 9 :: Integer{F9}

public + secret1 + secret2

{-
TYPE: Integer{B6}
OUTPUT:
11
-}

5

10.3 Parallel
Demonstrate the parallel combinator in STORC

val low = 1 :: Integer
val mid = 4 :: Integer{A4}
val high = 6 :: Integer{A6}
val unused = 9 :: Integer{F9}

low | high

{-
TYPE: Integer{A6}
OUTPUT:
1
6
-}

10.4 Sequential
Demonstrate the sequential combinator in STORC

val low = 1 :: Integer
val mid = 4 :: Integer{A4}
val high = 6 :: Integer{A6}
val unused = 9 :: Integer{F9}

high >x> low

{-
TYPE: Integer{A6}
OUTPUT:
1
-}

10.5 Pruning
Demonstrate the pruning combinator in STORC

val low = 1 :: Integer
val mid = 4 :: Integer{A4}
val high = 6 :: Integer{A6}
val unused = 9 :: Integer{F9}

low <x< high

{-
TYPE: Integer
OUTPUT:
1
-}

10.6 Otherwise
Demonstrate the otherwise combinator in STORC

val low = 1 :: Integer
val mid = 4 :: Integer{A4}
val high = 6 :: Integer{A6}
val unused = 9 :: Integer{F9}

low ; high

{-
TYPE: Integer{A6}
OUTPUT:
1
-}

10.7 Conditional simple
Demonstrate a simple control flow dependency in STORC

val low = 1 :: Integer
val mid = 4 :: Integer{A4}
val high = 6 :: Integer{A6}
val unused = 9 :: Integer{F9}

if(high > 2) >> "high > 2"

{-
TYPE: String{A6}
OUTPUT:
"high > 2"
-}

10.8 Conditional otherwise
Demonstrate another control flow dependency in STORC

val low = 1 :: Integer
val mid = 4 :: Integer{A4}
val high = 6 :: Integer{A6}
val unused = 9 :: Integer{F9}

(if(high > 2) >> "high > 2") ; "high <= 2"

{-
TYPE: String{A6}
OUTPUT:
"high > 2"
-}

10.9 Declassification
Demonstrate declassification of a level B4 value to a level A0
(public) value

val low = 1 :: Integer
val mid = 4 :: Integer{4}
val high = 6 :: Integer{6}
val unused = 8 :: Integer{8}

def declassify(secret::Integer{6})::Integer{0} =
secret:!:Integer{0}

declassify(mid) >x> x+100

{-
TYPE: Integer{0}
OUTPUT:
104
-}

10.10 Password checker
Demonstrate both a trusted site, and an untrusted site.

untrustedPrintln must only be supplied public values as
arguments.

6

checkPassword is allowed to publish a declassified Boolean.

val correctPassword = "secret" :: String{C5}

def untrustedPrintln(out::Top{A0})::Signal =
println(out)

def checkPassword(String) :: Boolean
def checkPassword(enteredPassword) =

(enteredPassword = correctPassword):!:Boolean{}

untrustedPrintln("checkPassword(wrong)="
+ checkPassword("wrong"))

>> untrustedPrintln("checkPassword(secret)="
+ checkPassword("secret"))

{-
-- The following will not type check,
-- preventing a breach:

-- Try to reveal the secret
untrustedPrintln("correctPassword=" + correctPassword)
-}

{-
TYPE: Top
OUTPUT:
checkPassword(wrong)=false
checkPassword(secret)=true
signal
-}

10.11 Adrian Quark examples
Quark [2009] gives the following nine examples of attempted
breaches. All fail the STORC type checker.

Assume the following header for all examples:

val l = Ref[Boolean]()
val h = Ref[Boolean{C6}]()

-- The following 3 lines are a workaround for
-- type variable inference
type StoreType = Boolean
def (:=)(ref::Ref[StoreType], val::StoreType) =

ref.write(val)
def (?)(ref::Ref[StoreType]) = ref.read()

h.write(true) >>

10.11.1 Memory
l := h.read()

10.11.2 Control flow
if h.read() then l := true else l := false

10.11.3 Dynamic security failure
l := false >> if h.read() then l := true else signal

10.11.4 Non-determinism
l := true | l := false | l := h.read()

10.11.5 Compositionality
(h.write(true) >>

Rtimer(10) >> if h.read() then l := true
else l := false

)
|
(Rtimer(5) >> h.write(false)
)

10.11.6 Internal Timing
(Rtimer(50) >> l := true
| (if h.read() then Rtimer(100)

else signal) >>
l := false

)

10.11.7 External Timing
l := true >>
(if h.read() then Rtimer(100)

else signal) >>
l := false

10.11.8 Synchronization
Semaphore(0) >s>
l := false >>
(s.acquire() >> l := true
| if(h.read()) >> s.release()
)

10.11.9 Non-termination
def loop(x::Boolean)::Signal = if x then loop(x)

else signal
h.write(true) >>

(Rtimer(50) >> l := true
| loop(h.read()) >> l := false
)

10.12 Timing leak
The following program demonstrates that STORC does not address
timing channels. The program simply delays for a number of sec-
onds equal to the value of the high variable.

val low = 1 :: Integer
val mid = 4 :: Integer{A4}
val high = 6 :: Integer{A6}
val unused = 9 :: Integer{F9}

val c = Clock()

Rtimer(high) >> stop ; c()

{-
TYPE: Integer
OUTPUT:
6
-}

11. Conclusion
In a system with declassification, a malicious developer could sim-
ply declassify the secrets and write them on any desired output
channel. Without declassification, but with termination and timing
channels, these channels in real systems have high enough bit rates
that a malicious developer could output substantial secrets quickly.

7

Therefore, STORC’s view of the developer is “trust, but verify”.
Design decisions for STORC were driven by an assumption that
the programmer is not malicious, but not perfect. Under this as-
sumption, this work argues that secure information flow is a very
practical addition to languages such as Orc.

Future work consists of engineering needed to make this a
production-grade language feature to be integrated into the released
version of Orc.

12. Future Work
• Add compiler support for user-declared security labels, along

with a means of specifying the partial orders among labels.
This involves syntax extensions and a more sophisticated
SecurityLabel implementation, but no changes to other parts
of STORC.

• In addition to the current support, add integrity. The current
framework supports this, with minor changes to the SecurityLabel
class.

• A more explicit declassification annotation may be desirable.
Type assertions are discouraged in Orc, so declassification
should not appear to use it. It may also be desirable to syn-
tactically differentiate declassification from “regular” type op-
erations.

• Re-implement SecurityLabledType as a parameterized type.
This and the next item bring up the question of whether labels
should be values, and therefore should Orc’s type system in-
clude dependent types. If not, then each label value could be
treated as a type for easy use of the existing parametric poly-
morphism of Orc’s type system.

• Handling labels as first class data, allowing them to be manip-
ulated at run time, rather than type checked and erased, may
seem desirable. However, this is a radical change that would
eliminate the ability to completely statically check programs’
safety.

• Add decentralized labels, as in Myers and Liskov [1997]. This
requires the introduction of principals to the security system,
and likely implies the previous item as well.

• Formalize the Orc type system, and prove soundness of STORC’s
type system.

• Investigate reducing the Rtimer, Clock and Ltimer sites’ po-
tency for use as timing channels. Current language change pro-
posals already include scoping for Ltimer; perhaps this scop-
ing can be used to track the implicit control flow dependencies.

• Investigate quantitative information flow techniques to limit
some of the covert channels’ bit rates.

Acknowledgments
Adrian Quark investigated secure information flow in untyped
Orc[Quark 2009]. Use of his examples in section 10.11 is appreci-
ated.

David Kitchin is the author of the Orc type checker, which has
become the foundation of STORC’s implementation.

References
CLARKSON, M. R., MYERS, A. C., AND SCHNEIDER, F. B. 2009. Quanti-

fying information flow with beliefs. Journal of Computer Security 17, 5,
655–701.

DENNING, D. E. AND DENNING, P. J. 1977. Certification of programs for
secure information flow. Communications of the ACM 20, 7, 504–513.

HOARE, T., MENZEL, G., AND MISRA, J. 2005. A tree semantics of an
orchestration language. In Engineering Theories of Software Intensive

Systems (Marktoberdorf, Germany, 3–15 Aug 2004), M. Broy, D. Harel,
T. Hoare, and J. Grünbauer, Eds. NATO Science Series II: Mathematics,
Physics and Chemistry, vol. 195. Springer, 331–350.

KITCHIN, D., COOK, W. R., AND MISRA, J. 2006. A language for
task orchestration and its semantic properties. In CONCUR 2006 –
Concurrency Theory (Bonn, Germany, 27–30 Aug 2006), C. Baier and
H. Hermanns, Eds. Lecture Notes in Computer Science, vol. 4137.
Springer, 477–491.

KITCHIN, D., QUARK, A., COOK, W. R., AND MISRA, J. 2009. The
Orc programming language. In Proceedings of FMOODS/FORTE 2009
(Lisbon, Portugal, 9–11 Jun 2009), D. Lee, A. Lopes, and A. Poetzsch-
Heffter, Eds. Lecture Notes in Computer Science, vol. 5522. Springer,
1–25.

MYERS, A. C. 1999. JFlow: Practical mostly-static information flow
control. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (San Antonio, Tex., USA, 20–
22 Jan 1999), A. Appel and A. Aiken, Eds. 228–241.

MYERS, A. C. AND LISKOV, B. 1997. A decentralized model for informa-
tion flow control. In Proceedings of the sixteenth ACM symposium on
Operating systems principles (Saint Malo, France, 5-8 Oct 1997). 129–
142.

ORC RESEARCH TEAM. 2009. Orc User Guide. Dept. of Computer
Science, The Univ. of Texas at Austin. http://orc.csres.utexas.edu/.

PIERCE, B. C. AND TURNER, D. N. 2000. Local type inference. ACM
Transactions on Programming Languages and Systems 22, 1 (Jan), 1–
44.

PLOTKIN, G. D. 2004. A structural approach to operational semantics.
Journal of Logic and Algebraic Programming 60–61, 17–139.

POTTIER, F. AND SIMONET, V. 2003. Information flow inference for ML.
ACM Transactions on Programming Languages and Systems 25, 1 (Jan),
117–158.

QUARK, A. 2009. Orc secure information flow. Unpublished presentation.
SABELFELD, A. AND MYERS, A. C. 2003. Language-based information-

flow security. IEEE Journal on Selected Areas in Communications 21, 1
(Jan), 5–19.

SMITH, G. 2001. A new type system for secure information flow. In Pro-
ceedings, 14th IEEE Computer Security Foundations Workshop (Cape
Breton, Novia Scotia, Canada, 11–13 June 2001). 115–125.

SMITH, G. 2006. Principles of Secure Information Flow Analysis. Ad-
vances in Information Security, vol. 27. Springer, Chapter 13, 291–307.

SMITH, G. AND VOLPANO, D. 1998. Secure information flow in a
multi-threaded imperative language. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages
(San Diego, Calif., USA, 19–21 Jan 1998), D. B. MacQueen and
L. Cardelli, Eds. 355–364.

VOLPANO, D. AND SMITH, G. 2000. Verifying secrets and relative se-
crecy. In Proceedings of the 27th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (Boston, Mass., USA, 19–21
Jan 2000). 268–276.

VOLPANO, D., SMITH, G., AND IRVINE, C. 1996. A sound type system
for secure flow analysis. Journal of Computer Security 4, 2/3, 167–187.

WEHRMAN, I., KITCHIN, D., COOK, W. R., AND MISRA, J. 2008. A
timed semantics of Orc. Theoretical Computer Science 402, 2–3 (Aug),
234–248.

8

A. Orc Token Semantics System
Orc’s operational semantics are presented here for the reader’s
reference.

The system presented here is based on the structural operational
semantics of Plotkin [2004], but instead of carrying environments
on the left of a turnstile symbol, environments are carried in to-
kens. Also, instead of rewriting portions of a program’s text to its
evaluated value, the resulting value is carried in a token.

A.1 Object Language Symbols
Phrases of object language of the Orc token semantics system
include the following kinds of syntactic symbols:

Abstract Lexeme Our abstract syntax of the source program is
composed from the following symbols: literal values, identifiers,
stop, (,), >, | , <, ; , def

=, and site declaration bodies.
For simplicity, assume all identifiers are unique – shadowing

does not occur.
A “site declaration body” specifies the location of the interface

to an Orc site. This is not elaborated further in this paper.

Value A value, which is either a literal value, a closure, or a value
returned by a site call. (In Orc, expressible and denotable values are
the same set.)

Environment A mapping from identifiers to values or ⊥, which
indicates a value that has not yet been computed.

Tag Set An ordered set of opaque values (tags) which are used to
identify groups of tokens. Sub-group membership is indicated by
superset relationships.

Token A structure used by the rewrite rules that carries state. The
notation •vρ,θ represents a token with environment ρ, tag set θ, and
result v.

Prototoken Another structure used by the rewrite rules that car-
ries state. The notation �ρ,θ represents a prototoken with environ-
ment ρ and tag set θ.

A.2 Metavariables and Abstract Grammar
The OIL-derived AST definition can be instantiated into the fol-
lowing grammar, which is used by the rewrite rules in following
sections:

Expressions d, d′, e, e′, l, l′, r, r′ ∈ Exp ::=
c – literal value

| x – variable
| stop – silent expression
| x(an) – site or function call
| l >x> r – sequential
| l | r – parallel
| l <x< r – pruning
| l ; r – otherwise
| x(xm)

def
=d e – function definition and scope

| x(xm)
def
=s e – site declaration and scope

| • e – expression ready for evaluation
| e • – evaluation complete
| x•(an) – call in progress

where • is a possibly empty sequence of:
•vρ,θ – token with result

| •ρ,θ – token without result
| �ρ,θ – prototoken

Literal values (Constants) c ∈ Con – integer literals, float liter-
als, string literals, boolean literals, signal, and null.

Variables x ∈ Var; xm is a sequence of m (≥ 0) variables,
separated by commas

Arguments ai ∈ Con ∪ Var; an is a sequence of n (≥ 0)
arguments, separated by commas

Site declaration bodies s ∈ SiteDecBod, references to sites’
locations in the external-to-Orc environment, not detailed here

External values SiteRetVal. These external-to-Orc values are
opaque values potentially returned by site calls. They are not de-
tailed here.

Closures Clo, tuples of the form 〈θ,m〉 or 〈s,m〉

Values v, v′ ∈ Val = Con ∪ Clo ∪ SiteRetVal

Environments ρ, ρ′ : Var→ Val ∪ {⊥}

Cardinalities (of argument lists) m,n ∈ N

Tag sets θ, θ′ ∈ P(Tag)

A.3 Derivation Rules
These rules operate on the abstract grammar above.

A.3.1 Values and stop

•ρ,θ c→ c •cρ,θ
LITERAL

x ∈ ρ ρ(x) 6= ⊥

•ρ,θ x→ x •ρ(x)ρ,θ

VARIABLE

•ρ,θ stop→ stop
SILENT

A.3.2 Site Calls
ρ(x) = 〈s,m〉 m = n a1...n 6= ⊥

•ρ,θ x(an)
s!〈θ′,an〉−−−−−−→ x •ρ,θ′ (an)

SITECALL-ISSUE

where θ′ = newTag(θ)

result 〈θ, v〉 ready v 6= null

x •ρ,θ (an)
θ?〈v〉−−−→ x(an) •vρ,θ′

SITECALL-RETURN

where θ′ = popTag(θ)

result 〈θ, v〉 ready v = null

x •ρ,θ (an)
θ?〈v〉−−−→ x(an)

SITECALL-NULLRETURN

A.3.3 Function Calls
ρ(x) = 〈θ0,m〉 m = n

•ρ,θ x(an)
θ0!〈θ′,an〉−−−−−−→ x �ρ,θ′ (an)

FUNCCALL-ISSUE

where θ′ = newTag(θ)

result 〈θ′, v〉 ready

x �ρ,θ (an)
θ′?〈v〉−−−−→ x �ρ,θ (an) •vρ,θ′

FUNCCALL-RETURN

where θ′ = popTag(θ)

A.3.4 Sequential Combinator

•ρ,θ (l >x> r)→ (•ρ,θ l) >x> r
SEQUENTIAL-ENTER

l •vρ,θ >x> r → l >x> •ρ′,θ r
SEQUENTIAL-PUBL

where ρ′ = ρ[x = v]

9

l >x> (r •vρ,θ)→ (l >x> r) •vρ′,θ
SEQUENTIAL-PUBR

where ρ′ = ρ \ {x}

A.3.5 Parallel Combinator

•ρ,θ (l | r)→ (•ρ,θ l) | (•ρ,θ r)
PARALLEL-ENTER

(l •vρ,θ) | r → (l | r) •vρ,θ
PARALLEL-PUBL

l | (r •vρ,θ)→ (l | r) •vρ,θ
PARALLEL-PUBR

A.3.6 Pruning Combinator

•ρ,θ (l <x< r)→ (•ρ′,θ l) <x< (•ρ,θ′ r)
PRUNING-ENTER

where θ′ = newTag(θ) ρ′ = ρ[x = ⊥θ′]

(l •vρ,θ) <x< r → (l <x< r) •vρ′,θ
PRUNING-PUBL

where ρ′ = ρ \ {x}

l <x< (r •vρ,θ)→ l′ <x< r′
PRUNING-PUBR

where l′ = substEnvValue(l,⊥θ, v) r′ = eraseTokens(θ, r)

A.3.7 Otherwise Combinator

•ρ,θ (l ; r)→ (•ρ,θ′ l) ; (�ρ,θ′ r)
OTHERWISE-ENTER

where θ′ = newTag(θ)

isLive(θ, l)

l ; �ρ,θ r → l ; •ρ,θ r
OTHERWISE-NOPUB

(l •vρ,θ) ; r → (l ; r′) •vρ,θ′
OTHERWISE-PUBL

where r′ = eraseTokens(θ, r) θ′ = popTag(θ)

l ; (r •vρ,θ)→ (l ; r) •vρ,θ′
OTHERWISE-PUBR

where θ′ = popTag(θ)

A.3.8 Site and Function Definitions

•ρ,θ (x(xm)
def
=s) e→ (x(xm)

def
=s) •ρ′,θ e

DEF-SITEDEF

where ρ′ = ρ[x = 〈s,m〉]

•ρ,θ (x(xm)
def
=d) e→ (x(xm)

def
= �ρ,θ′ d) •ρ′,θ e

DEF-FUNCDEF

where θ′ = newTag(θ) ρ′ = ρ[x = 〈θ′,m〉]

〈θ, θ′, an〉 sent

(x(xm)
def
= �ρ,θ d) e

θ?〈θ′,an〉−−−−−−→
(x(xm)

def
= �ρ,θ•ρ′,θ′ d) e

DEF-ENTERBODY

where ρ′ = ρ[x1 = a1, . . . , xm = an]

(x(xm)
def
=d •vρ,θ) e

θ!〈v〉−−−→ (x(xm)
def
=d) e

DEF-PUBBODY

((x(xm)
def
=d) e •vρ,θ)→ ((x(xm)

def
=d) e) •vρ′,θ

DEF-PUBSCOPE

where ρ′ = ρ \ {x}

¬ isLive(θ, d)

x �ρ,θ (an)→ x(an)
FUNCCALL-CLEANDEAD

where d = x’s def body

¬ isLive(θ′, e)

(x(xm)
def
= �ρ,θ d) e→ (x(xm)

def
=d) e

DEF-CLEANDEAD

where θ′ = popTag(θ)

A.3.9 Congruence Rules

l→ l′

l >x> r → l′ >x> r
SEQUENTIAL-CONGRUL

r → r′

l >x> r → l >x> r′
SEQUENTIAL-CONGRUR

l→ l′

l | r → l′ | r
PARALLEL-CONGRUL

r → r′

l | r → l | r′
PARALLEL-CONGRUR

l→ l′

l <x< r → l′ <x< r
PRUNING-CONGRUL

r → r′

l <x< r → l <x< r′
PRUNING-CONGRUR

l→ l′

l ; r → l′ ; r
OTHERWISE-CONGRL

r → r′

l ; r → l ; r′
OTHERWISE-CONGRR

e→ e′

(x(xm)
def
=s) e→ (x(xm)

def
=s) e′

DEF-SITECONGRU

d→ d′

(x(xm)
def
=d) e→ (x(xm)

def
=d′) e

DEF-CONGRUBODY

e→ e′

(x(xm)
def
=d) e→ (x(xm)

def
=d) e′

DEF-CONGRUSCOPE

e→ e′

•ρ,θ e→ •ρ,θ e′
TOKEN-CONGRU

•vρ,θ (•v
′
ρ′,θ′ e)→ •v

′
ρ′,θ′ (•vρ,θ e)

TOKEN-COMMUTE

e→ e′

�ρ,θ e→ �ρ,θ e′
PROTOTOKEN-CONGRU

�ρ,θ (�ρ′,θ′ e)→ �ρ′,θ′ (�ρ,θ e)
PROTOTOKEN-COMMUTE

•vρ,θ (�ρ′,θ′ e)→ �ρ′,θ′ (•vρ,θ e)
TOKENPROTO-COMMUTE

•vρ,θ (e •v
′
ρ′,θ′)→ (•vρ,θ e) •v

′
ρ′,θ′

TOKEN-ASSOC

10

A.4 Auxiliary Functions

newTag(θ) = {new tag value} ∪ θ

popTag(θ) = θ \ θ1, where θ1 is the most recently added element

isLive(θ, e)⇔ eraseTokens(θ, e) = e

eraseTokens(θ, e) = walk lexemes in e and erase all tokens
•,θ′ and all prototokens �,θ′ , where θ′ ⊇ θ. For all function calls
x �,θ′ (an) found in the expression e, apply eraseTokens to the
function definition body.

substEnvValue(e,⊥θ, v) = walk lexemes in e, updating to-
kens’ environments, changing any variable bound to ⊥θ to be
bound to v.

A.5 Program Launch and Results
In the following, e is specifically the entire program.

e
run program−−−−−−→ •∅,θ e

PROGRAM-RUN

where θ = newTag(∅)

e •vρ,θ
publish v−−−−→ e

PROGRAM-PUBLISH

A.6 Actions (Transition labels)

For labels on transitions, such as l in l−→:
Let a!b mean “send”, under the tag a, the value b. Sending can

be modeled as adding the pair (a, b) to a “sent” multiset.
Let a?x mean “receive” a value sent under the tag a, into the

variable x. Receiving can be modeled as selecting a pair (a, b) in
the “sent” multiset (matching on a), removing it from the multiset,
and letting x = b in the rest of the rule.

run program is an event from the environment to request start of
program execution, not further specified here.

publish v is an event sent to the environment to indicate a result
value of program execution, not further specified here.

11

	Introduction
	Related Work
	Questions under Study
	Contributions
	Background: The Orc Programming Language
	Information Flow Channels in Orc
	Explicit
	Covert

	Enforcement of Secure Information Flow in Orc
	Syntax
	Semantics
	Typing rules
	Combinators
	Site Calls

	Comment on Soundness

	Beyond Strict Noninterference
	Implementation Effects
	Trust of Sites
	Scheduling

	Demonstrations
	Label use
	Multilevel add
	Parallel
	Sequential
	Pruning
	Otherwise
	Conditional simple
	Conditional otherwise
	Declassification
	Password checker
	Adrian Quark examples
	Memory
	Control flow
	Dynamic security failure
	Non-determinism
	Compositionality
	Internal Timing
	External Timing
	Synchronization
	Non-termination

	Timing leak

	Conclusion
	Future Work
	Orc Token Semantics System
	Object Language Symbols
	Metavariables and Abstract Grammar
	Derivation Rules
	Values and stop
	Site Calls
	Function Calls
	Sequential Combinator
	Parallel Combinator
	Pruning Combinator
	Otherwise Combinator
	Site and Function Definitions
	Congruence Rules

	Auxiliary Functions
	Program Launch and Results
	Actions (Transition labels)

