
Structural Induction in Programming Language Semantics
A Note for C S 386L Students

John A. Thywissen

The University of Texas at Austin
jthywiss@cs.utexas.edu

Programming language syntax and semantics use
various structured objects. Languages and derivations
(proofs) are two examples. Often, one wishes to prove
that a property holds for some set of these structured
objects. Typically these objects are defined recursively,
so induction is a natural proof approach. Structural
induction is one pattern of inductive proof.

In this note, we will (1) define this kind of struc-
tured object, then (2) present general induction axiom
schemes, then (3) specialize them to induction on lan-
guages and derivations, and finally (4) discuss their ap-
plication in operational semantics.

1. Definitions: Structures, Atoms,
Components, and Constituents

We start with some basic definitions of the objects and
how they are composed. Following Burstall [2]:

A domain over which structural induction is to be
applied is a domain of objects generated by a set of
constructor functions, which take objects as arguments
and yield objects.

An object is either an atom or a structure, further
defined as follows.

DEFINITION 1 (Atom). An atom is an object that was
constructed with a nullary constructor function.

DEFINITION 2 (Structure). A structure is an object
that was constructed with a constructor function given
a non-empty, finite sequence of objects as arguments.

DEFINITION 3 (Component). An object’s components
are the arguments given to the the constructor function
to create the object.

We write A −< B to mean A is a component of B. For
example, if object A is constructed via f(B,C), then
B −< A and C −< A. Atoms have no components.

DEFINITION 4 (Constituent). An object A is a con-
stituent of an object B iff A is identical with B, or if
A is a constituent of a component of B.

This is a relation on objects. We write A ≤ B to mean
A is a constituent ofB. This relation≤ induces a partial
order on the objects O. The component relation −< is
the covering relation of the constituent relation ≤.1

DEFINITION 5 (Proper constituent). An object A is a
proper constituent of an object B iff A is a constituent
of B and A is not identical to B, i.e. A ≤ B ∧A 6= B.

We write A < B to mean A is a proper constituent of
B.

2. Structural Induction: Strong Form
Burstall presents the structural induction axiom schema
as:

AXIOM 1 (Structural Induction, strong). If, for some
set of objects O, an object has a certain property P
whenever all its proper constituents have that property,
then all the objects in the set have the property.

((∀a ∈ O)(∀b < a)(P (b)⇒ P (a))⇒
(∀c ∈ O)P (c)

Note that this is exactly the well-founded induction
axiom schema (also known as Noetherian induction or
the generalized principle of induction).2

Important: Induction is valid iff the partially ordered
set 〈O,<〉 is well-founded: the partially-ordered set

1 For a refresher on orderings, see the “Order (on a set)” EoM entry
[1].
2 For a introduction to induction see, for example, Genesereth and
Kao [3].

21 Feb 2015 Page 1 of 4



must meet the condition that every non-empty, but pos-
sibly infinite, subset contains one or more minimal el-
ements. Structures built in the manner described above
are well-founded under the proper constituent ordering.

3. Structural Induction: Conventional
(Weak) Form

We know that the strong and weak forms of mathemat-
ical induction are equivalent. Structural induction has
a weak form that is more commonly introduced, as in
McCarthy and Painter [5]. This form may seem more
similar to conventional mathematical induction, since
this form’s induction step corresponds to a single ap-
plication of the constructor function.

AXIOM 2 (Structural Induction, conventional). If, for
some set of objects O, all atoms have a certain prop-
erty P and all structures have the property P whenever
all their components have that property, then all the ob-
jects in the set have the property.

((∀a ∈ O)(∀b −< a)(P (b)⇒ P (a))⇒
(∀c ∈ O)P (c)

Note that (∀b −< a)P (b) is vacuously true when
a is an atom, since it has no components. Simplifying
for this case results in the conventional induction base
case: For all atoms, just demonstrate P (a).

4. Structural Induction on Languages
Given a grammar, one may wish to demonstrate the
validity of some property of terms of the language
generated by the grammar.

The structural induction axiom schema can be used
quite simply. An object, in this case, is a term of the
language. The constructor functions are given by the
grammar rules.3 The proof can proceed by cases, and
these cases are usually given directly by the grammar
rules.

Some cases will correspond to grammar rules con-
sisting of terminal symbols only, and these are the
induction base cases. Other cases will correspond to
grammar rules containing one or more nonterminal
symbols. In those cases, the inductive hypothesis can
be applied to the component nonterminal symbols.
3 This isn’t a direct correspondence for any arbitrary grammar rule.
For example, the (somewhat silly) BNF rule T ::= T doesn’t cor-
respond to a constructor function. However, abstract syntax gram-
mar in particular is written to have a simple relation to constructor
functions. This is assumed, and not further discussed here.

4.1 Example
For example, suppose we take the following language:

〈term〉 ::= 〈term〉 + 〈term〉
| 〈term〉 * 〈term〉
| 〈literal〉

〈literal〉 ::= 0 | 1

A proof of a property of this language by induction on
the structure of the terms would have four cases:

1. Proof of the property for the term “0”. (A base case)

2. Proof of the property for the term “1”. (Another base
case)

3. Proof of the property for the term “x + y”, under the
assumption that the property holds for “x” and for
“y”. (An inductive step)

4. Proof of the property for the term “x * y”, under the
assumption that the property holds for “x” and for
“y”. (Another inductive step)

5. Structural Induction on Derivations
Another common type of structure is a derivation of
a conclusion using a set of inference rules. Derivations
are used to justify, for example, reductions, evaluations,
and typing judgments.

5.1 Inference Rules and Derivations
An inference rule system is specified in the form of
rules, which are conventionally written:

premise premise premise...
conclusion

The premises and conclusions are judgements. (Here,
judgements are statements such as “t is well-typed” or
“t evaluates to v”.) If all of the premises of a rule are
derivable, then the rule conclusion is derivable.

In inference rule systems such as this, derivations are
trees, where the root of the tree is the final conclusion.
The interior nodes are judgements used in rules leading
to the final conclusion. Leaves are the assumptions or
axioms, which appear as rules with no premises. For
example, a derivation that uses these rule instances:

J1

J1
J2 J3

J2 J3
J4

can be drawn as the following tree (root at the bottom):

21 Feb 2015 Page 2 of 4



J4

J2

J1

J3

J4 is the root of the derivation tree. J1 and J3 are
leaves.

5.2 Induction using Derivations
The structural induction axiom schema can be used
quite simply with derivations. An object, in this case,
is a derivation tree. The constructor functions are the
inference rules, which take the premise derivations as
arguments. In other words, an inference rule constructs
a derivation tree from zero or more derivation trees.

The proof can proceed by cases, and these cases are
given directly by the inference rules. The axioms (rules
with no premises) are the induction base cases. The
rules with premises can use the induction hypothesis
to assume the induction property holds for each of the
premises.

5.3 Example
Suppose we are given the following inference system to
make yummy judgements over certain breakfast foods:

banana yummy (Banana axiom)

Nutella yummy (Nutella axiom)

x yummy y yummy

crêpe(x, y) yummy
(Crêpe rule)

x yummy y yummy

waffle(x, y) yummy
(Waffle rule)

x yummy x 6= Nutella
syrup(x) yummy

(Syrup rule)

Suppose that we wish to prove that if a breakfast
food is yummy, then it is edible. A proof by structural
induction on derivations would have five cases:

1. Proof of edible for banana yummy. (Banana base
case)

2. Proof of edible for Nutella yummy. (Nutella base
case)

3. Proof of edible for crêpe(x, y) yummy, under the as-
sumption edible for x yummy and y yummy. (Crêpe
inductive step)

4. Proof of edible for waffle(x, y) yummy, under the
assumption of edible for x yummy and y yummy.
(Waffle inductive step)

5. Proof of edible for the judgement syrup(x) yummy,
under the assumption of edible for x yummy and x
not being Nutella. (Syrup inductive step)

6. Warning about Case Splits
When a proof uses cases, it is crucial that the cases
in aggregate are comprehensive. Omitting a case is an
easy mistake to make and would invalidate the entire
structural induction. Automated theorem provers and
proof assistants are very helpful here because they will
point out where the cases don’t cover all possible con-
structions. If proving manually, you must be particu-
larly scrupulous about the correspondence between the
cases and the constructors.

7. Operational Semantics
Now that we have described structures and structural
induction, let’s apply it to programming language se-
mantics.

7.1 Structured Operational Semantics
In Structured Operational Semantics [7] (also called
small-step semantics), a set of configurations is given,
along with a reduces relation (−→) among the config-
urations. Conventionally, the reduces relation is speci-
fied via inference rules in the form

γ1 −→ γ′1 γ2 −→ γ′2 . . .

γ −→ γ′

The judgement γ −→ γ′ asserts that the configurations
γ and γ′ are in the reduces relation.

The reduces relation is sometimes read as “reduces
in one step” to be more explicit. Note that the reduces
relation is irreflexive—configurations do not reduce to
themselves in one step.

Configurations represent the state of the reduction.
This can be a program (language term), or perhaps a
program and the state of memory (the store).

Some configurations are designated as terminal con-
figurations T . Terminal configurations cannot be fur-
ther reduced:

(∀γ ∈ T ) (@γ′) γ −→ γ′

In the case where configurations are just language
terms, the values of the language are the terminal con-

21 Feb 2015 Page 3 of 4



figurations. These are configurations that correspond to
a program halting normally.

Not all irreducible configurations are terminal con-
figurations, though. A configuration where no reduc-
tion applies, yet it is not a terminal configuration is said
to be stuck.

The transitive-reflexive closure of reduces, i.e. re-
duces in zero or more steps, is written −→∗.

Configurations are evaluated by applying series of
reduction steps:

γ −→ γ′ −→ γ′′ −→ γ′′′ −→ γ′′′′

this is also
γ −→∗ γ′′′′

To justify each step, a derivation of that step can
be exhibited using the reduction rules of the language.
Justification of the reduction sequence γ −→ γ′ −→
γ′′ −→ γ′′′ would have three derivation trees, with
roots γ −→ γ′, γ′ −→ γ′′, and γ′′ −→ γ′′′

. . .
γ1 −→ γ′1

. . .
γ2 −→ γ′2

γ −→ γ′

. . .

. . .
. . .
. . .

γ′ −→ γ′′
. . .

7.2 Natural Semantics
Natural Semantics [4] (also called big-step semantics)
specify the evaluates relation, written as ⇒ (conven-
tionally) or as ⇓ (to avoid confusion with implication).
This relation is between terms and values t ⇓ v.

Unlike the sequence of steps that Structured Oper-
ational Semantics produces in an evaluation, Natural
Semantics evaluates directly to a value in one step. The
evaluation is justified with a single derivation.

7.3 Induction Schemes in Operational Semantics
There are many induction schemes that can be used
in various situations when working with operational
semantics.

Evaluations in Natural Semantics (big step) are very
amenable to structural induction on derivations. An-
other possibility for Natural Semantics is induction on
the depth of the derivation.

However, in Structured Operational Semantics (small
step), since an evaluation is a series of steps, structural
induction on a derivation only works for a single step.
An alternative scheme in small step evaluations is in-
duction on the number of steps in an evaluation.

For some properties to be proven, one may be able
to use induction on the structure of the language terms,
instead of induction on derivations.

It’s important to note that structural induction is not
the only type of induction used in programming lan-
guage proofs. For example, section 3.3 of the Pierce
[6] textbook demonstrates induction on depth of terms
and induction on size of terms.

References
[1] Encyclopedia of Mathematics. [Web site]. Available at:

http://www.encyclopediaofmath.org/.
[2] BURSTALL, R. M. 1969. Proving properties of pro-

grams by structural induction. The Computer Jour-
nal 12, 1, 41–48.

[3] GENESERETH, M. AND KAO, E. 2012. Introduction to
Logic. Chapter 9: Induction. Available at: http://logic.
stanford.edu/intrologic/chapters/chapter 09.html.

[4] KAHN, G. 1987. Natural semantics. In Proceedings of
4th Annual Symposium on Theoretical Aspects of Com-
puter Science, STACS 87 (Passau, Germany, 19–21 Feb
1987), F. J. Brandenburg, G. Vidal-Naquet, and M. Wirs-
ing, Eds. Lecture Notes in Computer Science Series, vol.
247. Springer, 22–39.

[5] MCCARTHY, J. AND PAINTER, J. 1967. Correctness
of a compiler for arithmetic expressions. In Mathematical
Aspects of Computer Science, J. T. Schwartz, Ed. Proceed-
ings of Symposia in Applied Mathematics Series, vol. 19.
AMS, 33–41.

[6] PIERCE, B. C. 2002. Types and Programming Lan-
guages. MIT Press.

[7] PLOTKIN, G. D. 2004. A structural approach to oper-
ational semantics. Journal of Logic and Algebraic Pro-
gramming 60–61, 17–139. Reprint of: Plotkin, G.D. 1981.
“A structural approach to operational semantics”. Tech.
report DAIMI FN-19. Aarhus University.

21 Feb 2015 Page 4 of 4

http://www.encyclopediaofmath.org/
http://logic.stanford.edu/intrologic/chapters/chapter_09.html
http://logic.stanford.edu/intrologic/chapters/chapter_09.html

	Definitions: Structures, Atoms, Components, and Constituents
	Structural Induction: Strong Form
	Structural Induction: Conventional (Weak) Form
	Structural Induction on Languages
	Example

	Structural Induction on Derivations
	Inference Rules and Derivations
	Induction using Derivations
	Example

	Warning about Case Splits
	Operational Semantics
	Structured Operational Semantics
	Natural Semantics
	Induction Schemes in Operational Semantics


