
Learning from Human Demonstrations for Real-Time Case-Based Planning
Santiago Ontañón and Kane Bonnette and Prafulla Mahindrakar and Marco A. Gómez-Martı́n
and Katie Long and Jainarayan Radhakrishnan and Rushabh Shah and Ashwin Ram

CCL, Cognitive Computing Lab, Georgia Institute of Technology
Atlanta, GA 303322/0280

Facultad de Informática, Universidad Complutense de Madrid. 28040, Madrid, Spain
{santi, kane, ashwin}@cc.gatech.edu, {praful, jai.rad, rushabh}@gatech.edu

marcoa@fdi.ucm.es, gtg324x@mail.gatech.edu

Abstract
One of the main bottlenecks in deploying case-
based planning systems is authoring the case-base
of plans. In this paper we will present a collec-
tion of algorithms that can be used to automatically
learn plans from human demonstrations. Our al-
gorithms are based on the basic idea of a plan de-
pendency graph, which is a graph that captures the
dependencies among actions in a plan. Such algo-
rithms are implemented in a system called Darmok
2 (D2), a case-based planning system capable of
general game playing with a focus on real-time
strategy (RTS) games. We evaluate D2 with a col-
lection of three different games with promising re-
sults.

1 Introduction
Real-time strategy games are complex domains in which ar-
tificial intelligence (AI) contenders still lag behind human
players. RTS games are complex because they have huge de-
cision spaces and state spaces, and they are non-deterministic,
non fully-observable, and real time [Ontañón et al., to appear;
Aha et al., 2005]. Most previous approaches to develop AI for
RTS games have been based on incorporating domain knowl-
edge into a system to make the problem tractable. This do-
main knowledge can take several forms: some approaches
[Aha et al., 2005; Sharma et al., 2007] define abstracted
state or action spaces that reduce the complexity of learn-
ing or planning; while some other approaches [McCoy and
Mateas, 2008] encode domain knowledge as hand-coded pro-
cedures or rules that the system can execute. A few ap-
proaches [Ontañón et al., to appear; Könik and Laird, 2006]
have proposed using a different source of domain knowledge:
observing humans play. In this paper we will follow the latter
and present a domain-independent case-based planning sys-
tem capable of learning how to play RTS games by observing
human demonstrations. Human demonstrations have the ad-
vantage that anyone with knowledge about the domain can
provide them. We will show that learning from demonstra-
tion can solve one of the bottlenecks of case-based planning
systems, namely populating the case-base with plans.

In this paper we will present a system called Darmok 2
(D2), an evolution of Darmok [Ontañón et al., to appear].

D2 is a real-time case-based planning (CBP) [Spalazzi, 2001]
system capable of exploiting the information contained in hu-
man demonstrations of an arbitrary adversarial game to play
that game at a proficient level. However, due to the plan-
ning nature of the system, games with a focus on strategy
and planning, such as RTS games, are handled better than
games that focus on reactive actions. Specifically, we will
focus on the set of algorithms that enable D2 to learn hierar-
chical plans from human demonstrations. The main contribu-
tions of D2 are a novel way to learn plans from demonstra-
tions for case-based planning systems, efficient and domain-
independent plan adaptation techniques, and a novel adver-
sarial case-based planning algorithm.

The rest of this paper is organized as follows: Section 2
presents an small overview of previous work in this area. Sec-
tion 3 presents our D2 system, and Section 4 presents an ini-
tial empirical evaluation of D2 using three different games.
The paper closes with conclusions and future work.

2 Background
Case-based planning involves reusing previous plans and
adapting them to suit new situations instead of planning from
scratch like in STRIPS [Fikes and Nilsson, 1971] or HTN
planning [Nau et al., 2005]. Case-based planning is the appli-
cation of CBR [Aamodt and Plaza, 1994] principles to plan-
ning, and as such, decomposes the process of planning into
four stages: retrieval, reuse, revise and retain. Given a new
problem description, a case-based planner first retrieves one
or more relevant plans from a plan library and then it tries
to reuse them (by adapting them if needed) to solve the new
problem (during this process, more cases might be retrieved
if the plan is decomposed hierarchically). After that, the case-
based planner can already propose a solution to the problem.
Additionally, the resulting plan can be revised (by executing
it for example), and then the system will consider whether the
new plan (or parts of it) is interesting enough to be retained
into the plan base.

There are several motivations for case-based planning tech-
niques [Spalazzi, 2001] but the main one is that they have the
potential to increase the efficiency with respect to generative
planners. Although, under certain conditions [Muñoz-Avila
and Cox, 2007], reusing plans has the same or even higher
worst-case complexity than planning from scratch [Nebel and
Koehler, 1992], case-based planning can exploit regularities



in the problems being solved, and thus potentially greatly in-
crease the efficiency. The main issues that case-based plan-
ners have to deal with are plan retrieval, plan adaptation, and
how to learn from experience.

Learning from Demonstration, called sometimes “pro-
gramming by demonstration” or “imitation learning”, has
been widely studied in robotics [Bakker and Kuniyoshi,
1996], and offers an alternative to manual programming. Hu-
man demonstrations have also received some attention to
speed-up reinforcement learning [Schaal, 1996], and as a way
of automatically acquiring planning knowledge [Hogg et al.,
2008], among other uses.

Recently, Hogg et al. [Hogg et al., 2008] present the HTN-
Maker algorithm, that given a set of solved planning problems
and a set of tasks is able to generate HTN methods for them.
The HTN-Maker shows that learning from demonstration is
an effective way to obtain planning knowledge.

Könik and Laird present a Relational Learning from Ob-
servation technique [Könik and Laird, 2006] able to learn
how to decompose a goal into subgoals based on observing
annotated expert traces. Könik and Laird’s technique uses re-
lational machine learning techniques to learn how to decom-
pose goals, and the output is a collection of rules, thus show-
ing another approach to learning planning knowledge from
demonstrations.

Most of the work on case-based planning does not focus
on how to learn the cases in the case base. In this paper, we
will present a case-based planning system that learns cases by
observing human demonstrations.

3 Darmok 2
Darmok 2 (D2) is a real-time case-based planning system de-
signed to play RTS games. D2 implements the on-line case-
based planning cycle (OLCBP) as introduced in [Ontañón et
al., to appear]. The OLCBP cycle attempts to provide a high-
level framework to develop case-based planning systems that
operate on-line, i.e. that interleave planning and execution in
real-time domains. The OLCBP cycle extends the traditional
CBR cycle by adding two additional processes, namely plan
expansion and plan execution. The main focus of D2 is to ex-
plore learning from unannotated human demonstrations, and
the use of adversarial planning techniques. The most impor-
tant characteristics of D2 are:

• It acquires cases by analyzing human demonstrations.

• It interleaves planning and execution.

• It uses an efficient transformational plan adaptation al-
gorithm for allowing real-time plan adaptation.

• It makes use of a simulator in order to perform adversar-
ial case-based planning.

The following sections explain the different components of
D2 in more detail, emphasizing the learning from demonstra-
tion aspect of the system.

3.1 Representing Demonstrations, Plans and Cases
Demonstrations in D2 are represented as a list of triples
[〈t1, G1, A1〉, ..., 〈t1, Gn, An〉], where each triple contains a

time stamp ti game state Gi and a set of actions Ai (that can
be empty). The set of triples represent the evolution of the
game and the actions executed by each of the players at dif-
ferent time intervals. The set of actions Ai represent actions
that were issued at ti by any of the players in the game. The
game state is stored using an object oriented representation
that captures all the information in the state: map, players and
other entities (entities include all the units a player controls in
an RTS game: e.g. tanks).

Unlike in traditional STRIPS planning, actions in RTS
games may not always succeed, they may have non-
deterministic effects, and they might not have an immediate
effect, but be durative. Thus, a typical representation of pre-
conditions and postconditions is not enough. An action a is
defined in D2 as a tuple containing 7 elements:

• Action name.

• Parameters, a list of named parameters with associated
types. It is important to know the type of a parameter
for plan adaptation purposes. Valid types are: integer,
string, coordinates, entity identifier, or entity type (these
determine the range of valid values). Additional con-
straints on the range of values can be specified.

• Preconditions, which must be satisfied for an action to
start execution.

• Success conditions, which cause the action to succeed.
Note that success conditions are not the same as post-
conditions.

• Failure conditions, which cause the action to fail.

• Pre-failure conditions, which if satisfied before the pre-
conditions, indicate that the preconditions will never be-
come true, so it’s useless to keep waiting. Notice that
in RTS games, actions take time. It might be the case
that if preconditions are not satisfied, they may become
satisfied by merely waiting some time. Pre-failure con-
ditions are useful for D2 to know when to stop waiting
for the preconditions of an action.

• Postconditions, which are a superset of the success con-
ditions, and include conditions that might happen as a
result of an action, but that are not necessary for con-
sidering an action succeeded. For example, the attack
action will have a success condition that a particular en-
tity will be attacking another entity. Destruction of the
target entity would be specified in the postconditions as
a possible outcome.

Plans in D2 are represented as hierarchical petri nets. Petri
nets [Murata, 1989] offer an expressive formalism for repre-
senting plans that include conditionals, loops or parallel se-
quences of actions. In short, a petri net is a graph consist-
ing of two types of nodes: transitions and states. Transitions
contain conditions, and link states to each other. Each state
might contain tokens, which are required to fire transitions.
The flow of tokens in a petri net represents it’s status. In D2,
the plans that will be learned by observing demonstrations
consist of hierarchical petri nets, where some states will be
associated with sub plans, which can be primitive actions or
sub-goals. The left hand side of Figure 1 shows an example



GOAL:
Snippet 1: Episode 1:

S0: 1

Gold>400

Timeout(500)0

<gamestate>
<entity id=“E14“ type = “Player”>

< ld>1200</ ld>

Wood>300

STATE:

S1: 0

NewUnitBy(U4)

!Exists(E4)0 Train(E4,”peasant”)
<gold>1200</gold>
<wood>1000</wood>
<owner>player1</owner>

</entity>
<entity id=“E15“ type = “Player”>

<gold>1200</gold>

ExistsPath(E5,(17,18))

S2: 0Timeout(500)0
<wood>1000</wood>
<owner>player2</owner>

</entity>
<entity id=“E4“ type = “Townhall”>

<x>6</x>
<y>0</y>

S3: 0

Status(E5)==“harvest”

!Exists(E5)0 Harvest(E5,(17,18))

<y>0</y>
<owner>player1</owner>
<hitpoints>2400</hitpoints>

</entity>
…
</gamestate>

S4: 0 1.0
OUTCOME:

Figure 1: A case in D2 consisting of a snippet and an episode. The snippet contains two actions, and the episode says that this
snippet succeeded in achieving the goal Wood > 300 in the specified game state. The game state representation is not fully
included due to space limitations.

of a petri net representing a plan consisting of two actions
to be executed in sequence: Train(E4,“peasant”) and Har-
vest(E5,(17,18)). Notice that the handling of preconditions,
postconditions, etc. is handled by the petri net, making the
execution module of D2 is a simple petri net simulation com-
ponent.

When D2 learns plans from demonstrations, such plans are
stored as cases. Cases in D2 are represented like cases in
the Darmok system [Ontañón et al., to appear], consisting
of a collection of plan snippets with episodes associated to
them. As shown in Figure 1, a snippet is simply a plan, and
an episode is a structure storing the outcome obtained when
a particular snippet was executed in a particular game state
intending to achieve a particular goal. The outcome is sim-
ply a real number in the interval [0, 1] representing how well
the goal was achieved: 0 represents total failure, and 1 total
success. To measure success, all conditions in D2, instead of
being boolean, are defined as returning a number in the inter-
val [0, 1] so that the execution and planning modules of D2
have a better perception of condition satisfaction progress.

3.2 Learning Plans and Cases from Demonstration
D2’s case base is populated by learning both snippets and
episodes from human demonstrations. The input to the learn-
ing algorithm is one demonstration D (of length n), a player
p (D2 will learn only from the actions of player p in the
demonstration D), and a set of goals G for which to look
for plans. The output is a collection of snippets and episodes.
The set of goals G can be fixed beforehand for every partic-
ular domain, and is equivalent to the list of tasks in the HTN
planning framework (thus, the inputs are the same as for the
HTN-Maker algorithm). The learning process of D2 can be

Demonstration g1 g2 g3 g4 g5

〈t1, G1, A1〉
〈t2, G2, A2〉
〈t3, G3, A3〉
〈t4, G4, A4〉
〈t5, G5, A5〉
〈t6, G6, A6〉 X
〈t7, G7, A7〉 X X
〈t8, G8, A8〉 X X X
〈t9, G9, A9〉 X X X X
〈t10, G10, A10〉 X X X X
〈t11, G11, A11〉 X X X X
〈t12, G12, A12〉 X X X X X

Table 1: Goal matrix for a set of five goals {g1, g2, g3, g4, g5}
and for a small trace consisting of only 12 entries (corre-
sponding to the actions shown in Figure 2, A12 = ∅).

divided in four main stages: goal matrix generation, depen-
dency graph generation, and hierarchical composition. Let
us present each one of them in detail.

Goal Matrix Generation
The first step to learn plans from a demonstration is to gener-
ate the goal matrix. The goal matrix M is a boolean matrix,
where each row represents a triplet in the demonstration D,
and each column represents one of the goals in G. Mi,j is
true if the goal gj is satisfied at time ti in the demonstration.
An example goal matrix can be seen in Table 1.

Once the goal matrix is constructed, a set of raw plans P
are extracted from it in the following way:

1. For each goal gj ∈ G do



1.- Harvest(U2,(0,16))
2 Train(U4 ”peasant”)

Plan
2

2.- Train(U4, peasant )
3.- Harvest(U3,(17,23))
4.- Train(U4,”peasant”)
5.- Build(U5,”LumberMill”,(4,23))

1 3 4

6.- Build(U5,”Barracks”,(8,22))
7.- Train(U6,”archer”)
8.- Build(U5,”tower”)
9 - Train(U6 ”archer”)

5 6

7 9

8

9.- Train(U6, archer )
10.- Attack(U7,EU1)
11.- Attack(U8,EU2) 10 11

Figure 2: An example dependency graph constructed from a
plan consisting of 11 actions in an RTS game.

(a) For each 0 < i ≤ n such that Mi,j ∧ ¬Mi−1,j do
i. Find the largest 0 < l < i such that ¬Ml,j ∧(l =

1 ∨Ml−1,j)
ii. Generate a raw plan from the actions executed by

player p in the set Al∪Al+1∪ ...∪Ai−1 and add
it to P

For example, five plans could be generated from the goal
matrix in Table 1. One for g1 with actions Al ∪ ... ∪ A12,
one for g2 with actions Al ∪ ... ∪A8, one for g3 with actions
Al ∪ ... ∪ A7, one for g4 with actions Al ∪ ... ∪ A6, and one
for g5 with actions Al ∪ ... ∪ A9. Notice that the intuition
behind this process is just to look at sequences of actions that
happened before a particular goal was satisfied, since those
actions are a plan to reach that goal. Many more plans could
be generated by selecting subsets of those plans, but since
D2 works under tight real-time constraints, currently it learns
only a small subset of plans from each demonstration. Learn-
ing the maximum number of plans possible from a demon-
stration while maintaining D2’s real-time performance is part
of our future work.

Notice that this process is enough to learn a set of raw plans
for the goals in G. The snippets will be constructed from the
aforementioned sets of actions, and the episode will be gen-
erated by taking the game state in which the earliest action
in a particular plan was executed. Notice that all plans ex-
tracted using this method are plans that succeeded, thus all
episodes have outcome equal to 1. However, these raw plans
might contain unnecessary actions and would be monolithic,
i.e. they will not be decomposable hierarchically into sub-
goals. Dependency graph generation and hierarchical com-
position are used to solve both problems.

Dependency Graph Generation
Given a plan consisting of a partially ordered collection of ac-
tions, a dependency graph [Sugandh et al., 2008] is a directed
graph where each node represents one action in the plan, and
edges represent dependencies among actions. Such a graph
will be used by D2 to remove unnecessary actions from the
learned plans.

Such a graph is easily constructed by checking each pair of
actions ai and aj in the plan, and checking first of all, if there

2

1 3 4 g2

5 6

7 9

8 9 8

10 11

10 11

Figure 3: The nodes greyed out in the left dependency graph
correspond to the actions in the plan learned from a goal g2,
after substituting those actions by a single subgoal, the result-
ing plan graph looks like the one on the right.

is any order restriction between ai and aj . Only those pairs
for which ai can happen before aj will be considered. Next,
if one of the postconditions of ai matches any precondition of
aj , and there is no action ak that has to happen after ai that
also matches with that precondition, then an edge is drawn
from ai to aj in the dependency graph, annotating it with
which is the pair of postcondition/precondition that matched.
Figure 2 shows an example dependency graph (where the la-
bels in the edges have been omitted for clarity). The plan
shown in the figure shows how each action is dependent on
each other, and it is useful to determine which actions con-
tribute to the achievement of particular goals.

D2 constructs a dependency graph of the plan resulting
from using the complete set of actions that a player p ex-
ecuted in a demonstration D. This dependency graph will
be used to remove unnecessary actions from the smaller raw
plans learned from the goal matrix in the following way:

1. For each plan p ∈ P do
(a) Extract the subgraph of the dependency graph con-

taining only the actions in p.
(b) Detect which is the subset of actions A from the ac-

tions in p such that their postconditions match with
the goal of plan p.

(c) Remove from p all actions that, according to the
subgraph do not contribute directly or indirectly to
any of the actions in A.

Moreover, the plan graph provides additional internal
structure to the plan, indicating which actions can be executed
in parallel, and which ones have to be executed in a sequence.
All this information is exploited when generating the petri net
corresponding to the plan.

Hierarchical Composition
Finally, D2 analyzes the set of plans P resulting from the
previous step using the dependency graph to see if any of
those plans are a sub-plan of another plan. Given two plans
pi, pj ∈ P , if the set of actions in pi is a subset of the set
of actions in pj , D2 assumes that pi is a sub-plan of pj , and
all the actions in pi also contained in pj are substituted by a



single sub-goal in pj . Converting flat plans into hierarchical
ones is important in D2, since it allows D2 to combine plans
learned from one demonstration with plans learned from an-
other at run time, increasing its flexibility.

Figure 3 shows an example of this process taking the plan
graph of the plan learned for goal g1 in Table 1, and substi-
tuting some of its actions by a single subgoal g2. The actions
marked in grey in the left hand side of Figure 3 correspond to
the actions in the plan learned for g2.

Notice that the order in which we attempt to substitute ac-
tions by subgoals in plans will result in different final plans.
Currently, D2 uses the heuristic of attempting first to substi-
tute larger plans first. However, this issue is a subject of our
ongoing research effort.

3.3 Hierarchical-Adversarial-Case-Based
Planning

Since it is outside the scope of this paper to explain the
planning algorithm of D2, we will just briefly outline the
main ideas behind its design. ACBP (Adversarial Case-Based
Planner) is an algorithm that combines ideas from case-based
planning, HTN planning and game tree search in order to con-
struct an efficient adversarial planner that can be used in real-
time domains. Let us present some of the main ideas of the
algorithm:

• ACBP uses plans instead of actions: traditionally, game
tree search algorithms search in the space of possible se-
quences of primitive actions. That leads to a space that
is too large to make the problem tractable. In ACBP
we propose to search in the space of plans (from the set
of plans in the case-base) instead of in the space of ac-
tions. This allows goals to be completed with one plan
instead of a series of actions, shrinking the search space
and making the problem tractable.

• ACBP is not turn based: game tree search algorithms
assume turn based games, however, most modern games
are not turn based. Instead, ACBP uses the idea of “com-
mitment to plans”. A player using ACBP decides a com-
bination of plans to apply to achieve some goals and
commits to it. Unless the plans fail, or more plans are
needed (when a new goal arises), no more decisions have
to be taken. The search tree open by ACBP contains
only decision nodes when players have to take decisions,
which can happen any time in the game, not necessarily
following turns.

• ACBP is simulation-based: during the search process,
when each player is committed to a particular plan,
ACBP uses a simulator to simulate the execution of the
game to fast-forward till the next expected point when a
player has to take a new decision.

• ACBP does not open the full search tree: ACBP is a
case-based planning system, and as such, it uses a re-
trieval mechanism to select a small subset of plans that
are adequate for the current situation. Moreover, the
small set of retrieved plans are not used directly, but are
adapted to fit the current situation in order to ensure that
they are applicable.

3.4 Plan Adaptation
When a plan is retrieved from the case base by the planner, it
will have to be adapted to fit the situation at hand. Plan adap-
tation [Muñoz-Avila and Cox, 2007] is one of the most com-
plex processes in case-based planning. In order to maintain
real-time performance, D2 implements a series of simplifica-
tion assumptions to the general problem of plan adaptation.
D2 uses a slightly improved version of the plan adaptation
technique presented in [Sugandh et al., 2008]. Let us just
briefly mention the main characteristics of it:

• D2 uses a transformational adaptation process that di-
vides adaptation in two independent processes: parame-
ter adaptation, and structure adaptation. Assuming that
those two processes can be performed independently in-
creases the efficiency of D2’s plan adaptation.

• D2 uses a domain independent method for parameter
adaptation based on potential fields.

• D2 uses a structural adaptation algorithm based also in
plan dependency graphs [Sugandh et al., 2008], which
makes the assumption that different plans will not undo
what other plans do (i.e. it assumes no retraction) in or-
der to make adaptation tractable (in fact, polynomial).
This algorithm can handle full petri nets, and therefore
it can adapt plans consisting of loops, conditionals, se-
quences and parallel constructs.

4 Initial Experimental Evaluation
We have evaluated D2 with a collection of three games,
shown in Figure 4: S2, Towers, and BattleCity. S2 is an RTS
in the style of “Warcraft II”, with some simplifications (like
the lack of naval or aerial units). Towers is a multiplayer ver-
sion of the well known game “Tower Defense”, where play-
ers build towers in order to stop enemy forces attacking the
player’s base. Finally, BattleCity is an action game in which
the player controls a tank that has to destroy all the enemy
tanks or the enemy bases. D2 plays the complete games with-
out any abstraction or simplification.

The three games were implemented explicitly to evaluate
D2, and they were selected since each game requires differ-
ent skills: BattleCity requires fast reflexes and a low level
reactive behavior; Towers requires geometrical skills in or-
der to find optimal placement of towers; and S2 requires long
term planning and strategic reasoning in order to manage re-
sources and units. For each game, a set of subgoals was de-
fined, so that the learning component of D2 can learn hierar-
chical plans. For instance, in BattleCity, goals such as: “get
in line with the enemy base” are defined.

A thorough evaluation is part of our future work, but initial
evaluation shows that D2 can play at human level (and super-
human in some scenarios) in Towers, it can play slightly
under-human level in S2, and performs poorly in BattleCity,
where it lacks fast reactiveness (BattleCity is an action game
rather than an RTS game, which was the kind of game for
which D2 was designed). Moreover, early evaluation sug-
gests the performance of D2 depends on the quality of the
demonstrations, and also on the quality of the set of goals
available to D2 for decomposing plans. D2 was tested both



Figure 4: Screenshots of the three games used in our initial evaluation. From left to right: S2, Towers, and BattleCity.

against default AIs, created by members of our group for each
of the games, as well as against human players.

In early evaluations we have only provided D2 one or two
demonstrations in each experiment. Analyzing the behavior
of D2 with an increasing number of demonstrations is also
part of our future work.

5 Conclusions and Future Work
In this paper we have presented D2, a case-based planning
system that can play RTS games. We have introduced a set
of algorithms that can be used to learn plans, represented as
petri-nets, from one or more human demonstrations. Finally,
we have shown through an initial evaluation of our system
that plans learned through these algorithms allow D2 to play
a variety of RTS games.

As part of our future work, we plan to perform a thorough
evaluation of D2, connecting it to standard domains used by
other researchers for comparison purposes. We also plan to
explore different plan learning algorithms. In particular, we
want to explore the impact of adding loop and conditional
learning algorithms to the performance of D2.

References
[Aamodt and Plaza, 1994] Agnar Aamodt and Enric Plaza.

Case-based reasoning: Foundational issues, methodolog-
ical variations, and system approaches. Artificial Intelli-
gence Communications, 7(1):39–59, 1994.

[Aha et al., 2005] David Aha, Matthew Molineaux, and
Marc Ponsen. Learning to win: Case-based plan selec-
tion in a real-time strategy game. In ICCBR’2005, number
3620 in LNCS, pages 5–20. Springer-Verlag, 2005.

[Bakker and Kuniyoshi, 1996] P. Bakker and Y. Kuniyoshi.
Robot see, robot do: An overview of robot immitation.
In AISB96 Workhsop on Learning in Robots and Animals,
pages 3–11. 1996.

[Fikes and Nilsson, 1971] Richard Fikes and Nils J. Nilsson.
Strips: A new approach to the application of theorem prov-
ing to problem solving. Artificial Intellicence, 2(3/4):189–
208, 1971.

[Hogg et al., 2008] Char M. Hogg, Héctor Muñoz-Avila,
and Ugur Kuter. Htn-maker: Learning htns with mini-
mal additional knowledge engineering required. In AAAI-
2008, pages 950–956, 2008.

[Könik and Laird, 2006] Tolga Könik and John E. Laird.
Learning goal hierarchies from structured observations
and expert annotations. Mach. Learn., 64(1-3):263–287,
2006.

[McCoy and Mateas, 2008] Josh McCoy and Michael
Mateas. An integrated agent for playing real-time strategy
games. In AAAI 2008, pages 1313–1318, 2008.

[Muñoz-Avila and Cox, 2007] Héctor Muñoz-Avila and
Michael Cox. Case-based plan adaptation: An analysis
and review. IEEE Intelligent Systems, 2007.

[Murata, 1989] T. Murata. Petri nets: Properties, analysis
and applications. Proceedings of the IEEE, 77(4):541–
580, 1989.

[Nau et al., 2005] D. Nau, T.C. Au, O. Ilghami, U. Kuter,
D. Wu, F. Yaman, H. Muñoz-Avila, and J.W. Murdock.
Applications of shop and shop2. Intelligent Systems,
20(2):34–41, 2005.

[Nebel and Koehler, 1992] Bernhard Nebel and Jana
Koehler. Plan modifications versus plan generation:
A complexity-theoretic perspective. Technical Report
RR-92-48, 1992.

[Ontañón et al., to appear] Santiago Ontañón, Kinshuk
Mishra, Neha Sugandh, and Ashwin Ram. On-line
case-based planning. Computational Intelligence, to
appear.

[Schaal, 1996] S. Schaal. Learning from demonstration.
pages 1040–1046, 1996.

[Sharma et al., 2007] Manu Sharma, Michael Homes, Juan
Santamaria, Arya Irani, Charles Isbell, and Ashwin Ram.
Transfer learning in real time strategy games using hy-
brid CBR/RL. In IJCAI’2007, pages 1041–1046. Morgan
Kaufmann, 2007.

[Spalazzi, 2001] L. Spalazzi. A survey on case-based plan-
ning. Artificial Intelligence Review, 16(1):3–36, 2001.

[Sugandh et al., 2008] Neha Sugandh, Santi Ontañón, and
Ashwin Ram. On-line case-based plan adaptation for real-
time strategy games. In AAAI 2008), pages 702–707, 2008.


