Fast LCF-Style Proof Reconstruction for Z3

Sascha BöhmeandTjark WeberTITECHNISCHE
UNIVERSITAT
MÜNCHENUNIVERSITY OF
CAMBRIDGE
Computer Laboratory

July 14, 2010

interactive theorem prover

SMT: Satisfiability Modulo Theories

Z3 Proofs

Natural deduction proofs:

Z3 Proofs

Natural deduction proofs:

34 axiom schemata and inference rules:

19 core rules

les

Core rules Asserted, MP, UNIT-RESOLUTION, ...

• mostly propositional reasoning

Core rules ASSERTED, MP, UNIT-RESOLUTION, ... • mostly propositional reasoning Equality rules REFL, SYMM, TRANS, MONO, ...

Core rules Asserted, MP, UNIT-RESOLUTION, ... • mostly propositional reasoning Equality rules REFL, SYMM, TRANS, MONO, ... Quantifier rules QUANT-INST, QUANT-INTRO, ...

Core rules Asserted, MP, UNIT-RESOLUTION, ... • mostly propositional reasoning Equality rules REFL, SYMM, TRANS, MONO, ... Quantifier rules QUANT-INST, QUANT-INTRO, ...

Structure of the proof, simple semantics

REWRITE: simplification rules

Example $\overline{(P \longrightarrow Q) \longleftrightarrow (Q \lor \neg P)}$ $\overline{0 + x = x}$
Z3 Inference Rules

$T\operatorname{H-LEMMA:}$ inconsistency of theory atoms

Example

$$0 < x - 3y \land x - 3y < 0$$

False

Proof Reconstruction

Overall approach:

- one proof method for every Z3 inference rule
- depth-first traversal of Z3 proof

First Prototype

Apply existing automated proof tools:

• simp, blast, auto, metis, ...

First Prototype

Apply existing automated proof tools:

- simp, blast, auto, metis, ...
- But: in typical Z3 proofs:
 - large terms
 - only shallow reasoning required
 - automated proof tools get lost (poor performance)

First Prototype

Apply existing automated proof tools:

• simp, blast, auto, metis, ...

But: in typical Z3 proofs:

- large terms
- only shallow reasoning required
- automated proof tools get lost (poor performance)

Avoiding automated proof tools:

Speed-up of up to 3 orders of magnitude!

Reconstruction techniques:

single primitive inference rule or theorem instantiation

- **(**) single primitive inference rule or theorem instantiation
- especific proof tools

- **(**) single primitive inference rule or theorem instantiation
- specific proof tools

- single primitive inference rule or theorem instantiation
- specific proof tools
- automated proof tools

- **1** single primitive inference rule or theorem instantiation
- specific proof tools
- automated proof tools
- ombinations of the above with performance optimizations

- **1** single primitive inference rule or theorem instantiation
- specific proof tools
- automated proof tools
- combinations of the above with performance optimizations

Reconstruction techniques:

- **1** single primitive inference rule or theorem instantiation
- specific proof tools
- automated proof tools
- combinations of the above with performance optimizations

REWRITE:

- schematic theorems
- conjunction/disjunction-reasoning
- oppositional reasoning
- Iinear arithmetic
- o quantifier elimination for integer/real arithmetic

Reconstruction techniques:

- **(**) single primitive inference rule or theorem instantiation
- Specific proof tools
- automated proof tools
- ombinations of the above with performance optimizations

REWRITE:

- schematic theorems
- conjunction/disjunction-reasoning
- oppositional reasoning
- Iinear arithmetic
- o quantifier elimination for integer/real arithmetic

Reconstruction techniques:

- **(**) single primitive inference rule or theorem instantiation
- specific proof tools
- automated proof tools
- combinations of the above with performance optimizations

REWRITE:

- schematic theorems
- conjunction/disjunction-reasoning
- oppositional reasoning
- Iinear arithmetic
- o quantifier elimination for integer/real arithmetic

Example: REWRITE – equivalence of conjunctions

 $P \land Q \land R \longleftrightarrow Q \land P \land R$

Example: REWRITE – equivalence of conjunctions

$$P \land Q \land R \longleftrightarrow Q \land P \land R$$

Example: REWRITE – equivalence of conjunctions

$$P \land Q \land R \longleftrightarrow Q \land P \land R$$

Example: REWRITE – equivalence of conjunctions

$$P \land Q \land R \longleftrightarrow Q \land P \land R$$

Example: REWRITE – equivalence of conjunctions

$P \land Q \land R \longleftrightarrow Q \land P \land R$

Example: REWRITE – equivalence of conjunctions

$P \land Q \land R \longleftrightarrow Q \land P \land R$

Example: REWRITE – contradiction

 $P \land Q \land \neg P \longleftrightarrow \mathsf{False}$

Example: REWRITE – equivalence of conjunctions

$$P \land Q \land R \longleftrightarrow Q \land P \land R$$

Example: REWRITE – contradiction

 $P \land Q \land \neg P \longleftrightarrow \mathsf{False}$

Example: NOT-OR-ELIM

$$\frac{\neg (P_1 \lor \ldots \lor P_i \lor \ldots \lor P_n)}{\neg P_i}$$

Example: REWRITE – equivalence of conjunctions

$$P \land Q \land R \longleftrightarrow Q \land P \land R$$

Example: REWRITE – contradiction

 $P \land Q \land \neg P \longleftrightarrow \mathsf{False}$

Example: NOT-OR-ELIM

$$\frac{\neg (P_1 \lor \ldots \lor P_i \lor \ldots \lor P_n)}{\neg P_i}$$

Example: UNIT-RESOLUTION

$$\frac{P \lor \neg Q \lor R}{P \lor R}$$

Schematic theorems:

- instantiation is much faster than proving
- collection of over 200 theorems
- prove 76% of all REWRITE steps

Schematic theorems:

- instantiation is much faster than proving
- collection of over 200 theorems
- \bullet prove 76% of all $\operatorname{RewRITE}$ steps

Theorem memoization:

- \bullet keep theorems deduced by $\operatorname{RewRITE}$ and $\operatorname{TH-LEMMA}$
- dynamically enhance set of schematic theorems

Schematic theorems:

- instantiation is much faster than proving
- collection of over 200 theorems
- \bullet prove 76% of all $\operatorname{RewRITE}$ steps

Theorem memoization:

- \bullet keep theorems deduced by $\operatorname{RewRITE}$ and $\operatorname{Th-LEMMA}$
- dynamically enhance set of schematic theorems

Generalization:

- replace complex expressions by fresh variables
- avoids expensive preprocessing in the decision procedures
- enables shallow reasoning, more potential for theorem re-use

Logic		Z3		Isabelle		Rates	
		Med.	Med.		Med.		Time-
	#	Time	Size	#	Time	Succ.	out
AUFLIA+p	187	0.03 s	5 KB	187	0.06 s	100%	0%
AUFLIA-p	192	0.04 s	4 KB	190	0.06 s	98%	0%
AUFLIRA	189	0.02 s	16 KB	144	0.04 s	76%	0%
QF_AUFLIA	92	0.02 s	132 KB	49	2.82 s	53%	42%
QF_IDL	40	0.27 s	2 MB	19	3.25 s	47%	52%
QF_LIA	100	3.74 s	10 MB	26	45.27 s	26%	65%
QF_LRA	88	0.15 s	1 M B	55	23.87 s	62%	36%
QF₋RDL	52	0.70 s	1 MB	26	19.44 s	50%	50%
QF_UF	87	0.87 s	4 MB	73	3.40 s	83%	16%
QF_UFIDL	55	0.30 s	2 MB	8	3.59 s	14%	85%
QF_UFLIA	91	0.02 s	107 KB	85	2.12 s	93%	6%
QF_UFLRA	100	0.06 s	699 KB	100	3.35 s	100%	0%
Total	1273	3.66 s	13 MB	962	11.31 s	75%	19%

Logic		Z3		Isabelle		Rates	
		Med.	Med.		Med.		Time-
	#	Time	Size	#	Time	Succ.	out
AUFLIA+p	187	0.03 s	5 KB	187	0.06 s	100%	0%
AUFLIA-p	192	0.04 s	4 KB	190	0.06 s	98%	0%
AUFLIRA	189	0.02 s	16 KB	144	0.04 s	76%	0%
QF_AUFLIA	92	0.02 s	132 KB	49	2.82 s	53%	42%
QF_IDL	40	0.27 s	2 MB	19	3.25 s	47%	52%
QF_LIA	100	3.74 s	10 MB	26	45.27 s	26%	65%
QF₋LRA	88	0.15 s	1 MB	55	23.87 s	62%	36%
QF₋RDL	52	0.70 s	1 MB	26	19.44 s	50%	50%
QF_UF	87	0.87 s	4 MB	73	3.40 s	83%	16%
QF_UFIDL	55	0.30 s	2 MB	8	3.59 s	14%	85%
QF_UFLIA	91	0.02 s	107 KB	85	2.12 s	93%	6%
QF_UFLRA	100	0.06 s	699 KB	100	3.35 s	100%	0%
Total	1273	3.66 s	13 MB	962	11.31 s	75%	19%

SMT-LIB benchmarks:

Z3			ls	abelle	Rates	
	Median	Median		Median		
#	Time	Size	#	Time	Succ.	T-out
1273	3.66 s	13 MB	962	11.31 s	75%	19%

SMT-LIB benchmarks:

Z3			ls	abelle	Rates	
	Median	Median		Median		
#	Time	Size	#	Time	Succ.	T-out
1273	3.66 s	13 MB	962	11.31 s	75%	19%

Profiling:

- highly optimized implementation
- bottleneck: theory reasoning requires expensive proof search
- $\bullet~50\%$ of the runtime is spent on 15% of all Z3 proof steps

Conclusion

LCF-style proof reconstruction for Z3:

- highly optimized
- feasible and efficient
- slower than proof search in Z3
- Z3's proofs could be easier to check (costly theory reasoning)

Benefits for Isabelle/HOL and HOL4:

powerful automation

Benefits for Z3:

- proof checker
- identification of several bugs
Proof bug

$$(\forall x y z. f x y = f x z \longrightarrow y = z) \longleftrightarrow (\forall a b. ?g (f b a) = a)$$

Proof bug

$$(\forall x y z. f x y = f x z \longrightarrow y = z) \longleftrightarrow (\forall a b. ?g (f b a) = a)$$

Documentation problem

$$\frac{s=t \quad u=t}{s=u} \text{ TRANS}$$

$$(\forall x y z. f x y = f x z \longrightarrow y = z) \longleftrightarrow (\forall a b. ?g (f b a) = a)$$

Documentation problem

$$\frac{s=t \quad u=t}{s=u} \text{ TRANS}$$

Soundness bug

$$(\forall x^T. x = c^T) \land a^T \neq b^T$$