Importing HOL Light into Coq

Chantal Keller Benjamin Werner keller@lix.polytechnique.fr benjamin.werner@inria.fr

INRIA - LIX - ÉNS de Lyon

July, 14th 2010

Presentation

Observation:

• many "languages" to write formal proofs

Dream?

- share theorems between formalisms
- prove theorems in different formalisms
- translate theorems from one formalism into another

Presentation

Observation:

• many "languages" to write formal proofs

Dream?

- share theorems between formalisms
- prove theorems in different formalisms
- translate theorems from one formalism into another automatically

Framework

Translation from HOL Light to Coq

Interests:

- use HOL Light's theorems in Coq (analysis)
- build a model of HOL Light in Coq
- compare the two logical frameworks

Objectives:

- re-check the theorems in Coq
- get intelligible theorems:
 - forall $x \times 0$: Prop, $(x \wedge x0) = (x0 \wedge x)$
 - forall x x0 : hollight_Prop, hollight_eq (hollight_and x x0) (hollight_and x0 x)
- "reasonable" computing time and memory consumption

Outline

- Tools
- 2 HOL Light
- Results
- 4 Conclusion

Computational reflection

Predicate P : nat -> Prop

- Open P n in a standard way (tactics...)
- Prove P n using computation

Computational reflection

Predicate P : nat -> Prop

- 1 Prove P n in a standard way (tactics...)
- Prove P n using computation
 - Certificate:

```
certif: nat -> Type
```

Checker:

```
f: forall n, certif n -> bool
such that
forall c n, f n (c n) = true -> P n
```

Results

Computational reflection

Predicate P : nat -> Prop

- 1 Prove P n in a standard way (tactics...)
- 2 Prove P n using computation
 - Certificate:

```
certif: nat -> Type
```

Checker:

```
f: forall n, certif n -> bool
such that
forall c n, f n (c n) = true -> P n
```

Certificate: HOL Light proof term...

Embedding

Tools

Embeddings

Different ways to embed a logical system A into another system B

•0

Deep embedding

Different ways to embed a logical system A into another system B

- How to proceed:
 Data-type in B to represent the objects of A
- Example of the simply typed λ -calculus in Coq:

```
Inductive type : Type :=
    | B : type
    | A : type -> type -> type.
Inductive term : Type :=
    | Var: string -> term
    | Lam: string -> type -> term -> term
    | App: term -> term -> term.
• Representation of λx : bool.x:
```

Lam "x" B (Var "x")

Shallow embedding

Different ways to embed a logical system A into another system B

- How to proceed:
 Objects of B to represent the objects of A
- Example of the simply typed λ -calculus in Coq:

Definition type := Type.

• Representation of λx : bool.x:

fun x: bool => x

Embeddings

Tools

Remarks

• Normalization by evaluation: deep \rightarrow shallow \rightarrow deep

Remarks

- Normalization by evaluation: deep \rightarrow shallow \rightarrow deep
- Ability to reason by induction over the structure of the objects of the embedded system
- Computational reflection
- Obtain Coq theorems

Remarks

- Normalization by evaluation: deep → shallow → deep
- Ability to reason by induction over the structure of the objects of the embedded system
- Computational reflection
- Obtain Coq theorems
- Here: deep \rightarrow shallow (translation function)

Procedure

- Type translation
- Term translation according to the type

Type translation

```
Inductive type : Type :=
    | B : type
    | A : type -> type -> type.

Fixpoint tr_type (t: type) : Type :=
    match t with
    | B => bool
    | A a b => (tr_type a) -> (tr_type b)
    end.
```

Term translation

```
Inductive term : Type :=
   | Var: string -> term
   | Lam: string -> type -> term -> term
   App: term -> term -> term.
                                   (t: term)
Fixpoint tr_term I
                                                    :=
   match t with
      | Var x => I x
      | Lam x ty t => fun y => tr_term (add I x y) t
      | App t u => (tr_term I t) (tr_term I u)
   end.
```

Term translation

```
Inductive term : Type :=
   | Var: string -> term
   | Lam: string -> type -> term -> term
   App: term -> term -> term.
                                   (t: term): ? :=
Fixpoint tr_term I
   match t with
     | Var x => I x
     | Lam x ty t => fun y => tr_term (add I x y) t
     | App t u => (tr_term I t) (tr_term I u)
   end.
```

Term translation

```
Inductive term : Type :=
   | Var: string -> term
   | Lam: string -> type -> term -> term
   App: term -> term -> term.
Fixpoint tr_term (I: string -> ?) (t: term) : ? :=
   match t with
     | Var x => I x
     | Lam x ty t => fun y => tr_term (add I x y) t
     | App t u => (tr_term I t) (tr_term I u)
   end.
```

Term translation

```
Inductive term : Type :=
   | Var: string -> term
   | Lam: string -> type -> term -> term
   App: term -> term -> term.
Fixpoint tr_term (I: string -> ?) (t: term) : ? :=
   match t with
     | Var x => I x
     | Lam x ty t => fun y => tr_term (add I x y) t
     | App t u => (tr_term I t) (tr_term I u)
   end.
```

 \hookrightarrow consider only well typed terms

Term translation: general idea

• If t has type T, then tr_term I t ∈ tr_type T

Term translation: general idea

- If t has type T, then tr_term I t ∈ tr_type T
- Type inference:

```
Fixpoint infer (c: string -> type) (t: term) : type
:=
   match t with
      | Var x => c x
      | Lam x ty t => A ty (infer (fun y =>
        if y == x then ty else c y) t)
      | App t u =>
     match infer c t, infer c u with
        | A T U, V => if T == V then U else fail
        | _, _ => fail
     end
   end.
```

Term translation: general idea

- If t has type T, then tr_term I t ∈ tr_type T
- Type inference:

```
Fixpoint infer (c: string -> type) (t: term) : type
:= ...
```

• Refinement of the type inference function:

```
Fixpoint tr_term (c: string -> type)
(I: forall x, tr_type (c x)) (t: term) :
{ty: type & tr_type ty} := ...
```

Idea

Outline

- 1 Tools
- 2 HOL Light
- Results
- 4 Conclusion

HOL Light

HOL Light:

- proof assistant written by John Harrison et al.
- in an OCaml top-level
- higher order classical logic
- automated tools and pre-proved theorems
- programmable without compromising soundness
- simpler logical kernel than HOL

Results

System's safety

System's safety:

- no proof terms
- similar to LCF (thanks, Robin Milner)
- abstract type thm (theorems are built using only HOL Light's primitives)

Results

Tools

Recording and exportation

Recording:

- the proof trees
- granularity

Exporting:

- the proof trees
- sharing
- \hookrightarrow tool by Steven Obua

Higher Order Logic Light

- Terms: simply-typed λ -calculus with equality
- Theorem:
 - a set of hypotheses and a conclusion (terms of type B)
 - built using derivation rules

Examples:

$$\frac{\Gamma \vdash p \Leftrightarrow q \quad \Delta \vdash p}{\Gamma \cup \Delta \vdash q}$$

where \Leftrightarrow stands for $=_{\text{bool}}$.

Certificate

Tools

$$\frac{\Gamma \vdash p \Leftrightarrow q \qquad \Delta \vdash p}{\Gamma \cup \Delta \vdash q}$$

```
Inductive deriv: set term -> term -> Prop :=
    | Dbeta: forall x t T U,
        deriv empty (App (App (Eq T) (App (Lam x U t)
x)) t)
    | Deqmp: forall h1 h2 a b,
        deriv h1 (App (App (Eq B) a) b) -> deriv h2 a ->
        deriv (h1 U h2) b
```

Soundness

Tools

- Given: t: B and c : deriv empty t
- Property we want to prove: tr_term ...t (Coq version of the theorem)
- Checker: sem_deriv such that sem_deriv t c = true -> tr_term ...t

A smaller certificate

```
Inductive deriv: set term -> term -> Prop :=
    | Dbeta: forall x t T U,
        deriv empty (App (App (Eq T) (App (Lam x U t)
x)) t)
    | Deqmp: forall h1 h2 a b,
        deriv h1 (App (App (Eq B) a) b) -> deriv h2 a ->
        deriv (h1 U h2) b
```

A smaller certificate

```
Inductive deriv: set term -> term -> Prop :=
   | Dbeta: forall x t T U,
     deriv empty (App (App (Eq T) (App (Lam x U t)
x)) t)
   | Deqmp: forall h1 h2 a b,
     deriv h1 (App (App (Eq B) a) b) -> deriv h2 a ->
     deriv (h1 \cup h2) b
Inductive proof: Type :=
   | Pbeta: string -> term -> type -> type -> proof
   | Pegmp: proof -> proof -> proof
```

Outline

- 1 Tools
- 2 HOL Light
- 3 Results
- 4 Conclusion

Qualitative

Intelligibility:

CONJ SYM : $\forall t_1 \ t_2. \ t_1 \land t_2 \Leftrightarrow t_2 \land t_1$ forall $x \times 0$: Prop, $(x \wedge x0) = (x0 \wedge x)$

arithmetic over binary naturals (N)

•0

Quantitative

Bench.	Number		Time		
	Theorems	Lemmas	Rec.	Exp.	Comp.
Stdlib	1,726	195,317	2 min 30	6 min 30	10h
Model	2,121	322,428	6 min 30	29 min	44h
Vectors	2,606	338,087	6 min 30	21 min	39h

Bench.	Memory				
Delicii.	H.D.D.	Virt. OCaml	Virt. Coq		
Stdlib	218 Mb	1.8 Gb	4.5 Gb		
Model	372 Mb	5.0 Gb	7.6 Gb		
Vectors	329 Mb	3.0 Gb	7.5 Gb		

Outline

- 1 Tools
- 2 HOL Light
- 3 Results
- 4 Conclusion

Conclusion

Tools

HOL Light:

- record and export proof terms
- reusable

Coq:

- a model of HOL Light
- sound
- → good understanding of the two formalisms required

Interface:

- standard library
- intelligibility of theorem's statements
- users facilities

Perspectives

Tools

Enhancements:

- smaller certificates
- certificates not kept in memory
- better analysis of dependences

Scaling:

• big developments (Flyspeck?)

Thanks

Tools

http://www.lix.polytechnique.fr/~keller/Recherche/hollightcoq.html

http://hol-light.googlecode.com/svn/trunk

Thank you for your attention!

Any questions?

Types

```
Inductive type : Type :=
    | B : type
    | A : type -> type -> type
```

Types

```
Inductive type : Type :=
    | B : type
    | A : type -> type -> type
    | TVar : string -> type
```

• Type schemes (polymorphism)

Types

```
Inductive type : Type :=
    | B : type
    | A : type -> type -> type
    | TVar : string -> type
    | TDef : string -> list type -> type.
```

- Type definitions: schema of specification
 - T existing type
 - P: A T B
 - $T' = \{x: T \mid P x\}$
- Easy to translate to concrete Coq types

Terms

```
Inductive term : Type :=
    | Var: string -> term
    | Lam: string -> type -> term -> term
    | App: term -> term -> term
```

Terms

```
Inductive term : Type :=
    | Var: string -> term
    | Lam: string -> type -> term -> term
    | App: term -> term -> term
    | Eq: type -> term
    | Eps: type -> term
```

• Equality and Hilbert's epsilon

Terms

```
Inductive term : Type :=
    | Var: string -> term
    | Lam: string -> type -> term -> term
    | App: term -> term -> term
    | Eq: type -> term
    | Eps: type -> term
    | Def: string -> type -> term.
```

- Term definitions: constants
- Easy to translate to concrete Coq terms