Interactive Theorem Proving 2010

Formal Proof of a Wave Equation Resolution Scheme: the Method Error

Sylvie Boldo,

François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guillaume Melquiond and Pierre Weis

INRIA, LRI, CNRS, Université Paris 13

July 11th, 2010

INSTITUT NATIONAL

DE RECHERCHE
EN INFORMATIQUE

Motivations

```
PDE (Partial Differential Equation) \Rightarrow weather forecast \Rightarrow nuclear simulation \Rightarrow optimal control \Rightarrow ...
```

Motivations

```
PDE (Partial Differential Equation) \Rightarrow weather forecast \Rightarrow nuclear simulation \Rightarrow optimal control \Rightarrow ...
```

Usually too complex to solve by an exact mathematical formula ⇒ approximated by numerical scheme over discrete grids

 \Rightarrow mathematical proofs of the convergence of the numerical scheme (we compute something close to the PDE solution if the grids size decreases)

Motivations

```
PDE (Partial Differential Equation) \Rightarrow weather forecast \Rightarrow nuclear simulation \Rightarrow optimal control \Rightarrow ...
```

Usually too complex to solve by an exact mathematical formula ⇒ approximated by numerical scheme over discrete grids

 \Rightarrow mathematical proofs of the convergence of the numerical scheme (we compute something close to the PDE solution if the grids size decreases)

Let us machine-check this kind of proof! (in Coq)

Outline

- Wave equation resolution scheme?
- Pormal proof: basic blocks
 - Dot product
 - Big O
- 3 Formal proof: convergence
- 4 Conclusion & perspectives

Outline

- Wave equation resolution scheme?
- Pormal proof: basic blocks
 - Dot product
 - Big O
- 3 Formal proof: convergence
- 4 Conclusion & perspectives

Wave Equation?

Looking for $u: \mathbb{R}^2 \to \mathbb{R}$ regular enough such that:

$$\frac{\partial^2 u(x,t)}{\partial t^2} - c^2 \frac{\partial^2 u(x,t)}{\partial x^2} = s(x,t)$$

with given values for the initial position $u_0(x)$ and the initial velocity $u_1(x)$.

⇒ rope oscillation, sound, radar, oil prospection...

Scheme?

We want $u_j^k \approx u(j\Delta x, k\Delta t)$.

$$\frac{u_j^k - 2u_j^{k-1} + u_j^{k-2}}{\Delta t^2} - c^2 \frac{u_{j+1}^{k-1} - 2u_j^{k-1} + u_{j-1}^{k-1}}{\Delta x^2} = s_j^{k-1}$$

And other horrible formulas to initialize u_j^0 and u_j^1 .

Scheme?

We want $u_j^k \approx u(j\Delta x, k\Delta t)$.

$$\frac{u_j^k - 2u_j^{k-1} + u_j^{k-2}}{\Delta t^2} - c^2 \frac{u_{j+1}^{k-1} - 2u_j^{k-1} + u_{j-1}^{k-1}}{\Delta x^2} = s_j^{k-1}$$

And other horrible formulas to initialize u_j^0 and u_j^1 .

Three-point scheme: u_j^k depends on u_{j-1}^{k-1} , u_j^{k-1} , u_{j+1}^{k-1} and u_j^{k-2} .

So what?

We measure that u and u_j^k are close when $(\Delta x, \Delta t) \to 0$.

We define $e_j^k \stackrel{\text{def}}{=} \bar{u}_j^k - u_j^k$: convergence error where \bar{u}_j^k is the value of u at the (j,k) point of the grid.

So what?

We measure that u and u_j^k are close when $(\Delta x, \Delta t) \to 0$.

We define $e_j^k \stackrel{\text{def}}{=} \bar{u}_j^k - u_j^k$: convergence error where \bar{u}_j^k is the value of u at the (j,k) point of the grid.

We want to bound $\left\|e_h^{k_{\Delta t}(t)}\right\|_{\Delta x}$: the average of the convergence error on all points of the grid at a given time $k_{\Delta t}(t) = \left\lfloor \frac{t}{\Delta t} \right\rfloor \Delta t$.

So what?

We measure that u and u_j^k are close when $(\Delta x, \Delta t) \to 0$.

We define $e_j^k \stackrel{\text{def}}{=} \bar{u}_j^k - u_j^k$: convergence error where \bar{u}_j^k is the value of u at the (j,k) point of the grid.

We want to bound $\left\|e_h^{k_{\Delta t}(t)}\right\|_{\Delta x}$: the average of the convergence error on all points of the grid at a given time $k_{\Delta t}(t) = \left\lfloor \frac{t}{\Delta t} \right\rfloor \Delta t$.

We want to prove:

$$\left\|e_h^{k_{\Delta t}(t)}\right\|_{\Delta x} = O_{[0,t_{\max}]}(\Delta x^2 + \Delta t^2)$$

Outline

- Wave equation resolution scheme?
- Formal proof: basic blocks
 - Dot product
 - Big O
- 3 Formal proof: convergence
- 4 Conclusion & perspectives

We only consider functions having a finite support:

$$\{f: \mathbb{Z} \to \mathbb{R} \mid \exists a, b \in \mathbb{Z}, \forall i \in \mathbb{Z}, f(i) \neq 0 \Rightarrow a \leq i \leq b\}.$$

We only consider functions having a finite support:

$$\{f: \mathbb{Z} \to \mathbb{R} \mid \exists a, b \in \mathbb{Z}, \forall i \in \mathbb{Z}, f(i) \neq 0 \Rightarrow a \leq i \leq b\}.$$

We have an uninterpreted $\langle .,. \rangle$ such that

$$\forall f \ g \ a \ b, (\forall i, (f(i) \neq 0 \lor g(i) \neq 0) \Rightarrow a \leq i \leq b) \Rightarrow \langle f, g \rangle = \sum_{i=a}^{b} f(i)g(i)$$

We only consider functions having a finite support:

$$\{f: \mathbb{Z} \to \mathbb{R} \mid \exists a, b \in \mathbb{Z}, \forall i \in \mathbb{Z}, f(i) \neq 0 \Rightarrow a \leq i \leq b\}.$$

We have an uninterpreted $\langle .,. \rangle$ such that

$$\forall f \ g \ a \ b, (\forall i, (f(i) \neq 0 \lor g(i) \neq 0) \Rightarrow a \leq i \leq b) \Rightarrow \langle f, g \rangle = \sum_{i=a}^{b} f(i)g(i)$$

(or an Hilbert ε)

We only consider functions having a finite support:

$$\{f: \mathbb{Z} \to \mathbb{R} \mid \exists a, b \in \mathbb{Z}, \forall i \in \mathbb{Z}, f(i) \neq 0 \Rightarrow a \leq i \leq b\}.$$

We have an uninterpreted $\langle .,. \rangle$ such that

$$\forall f \ g \ a \ b, (\forall i, (f(i) \neq 0 \lor g(i) \neq 0) \Rightarrow a \leq i \leq b) \Rightarrow \langle f, g \rangle = \sum_{i=a}^{b} f(i)g(i)$$

(or an Hilbert ε)

Hence $||f|| \stackrel{\text{def}}{=} \sqrt{\langle f, f \rangle}$.

Hence a predicate FS (finite support) with lemmas and a dedicated tactic.

Outline

- Wave equation resolution scheme?
- Pormal proof: basic blocks
 - Dot product
 - Big O
- 3 Formal proof: convergence
- 4 Conclusion & perspectives

Big O = big pain

Usually, the big O uses one variable and $f(\mathbf{x}) = O_{\|\mathbf{x}\| \to 0}(g(\mathbf{x}))$ means

$$\exists \alpha, C > 0, \quad \forall \mathbf{x} \in \mathbb{R}^n, \quad \|\mathbf{x}\| \le \alpha \Rightarrow |f(\mathbf{x})| \le C \cdot |g(\mathbf{x})|.$$

Big O = big pain

Usually, the big O uses one variable and $f(\mathbf{x}) = O_{\|\mathbf{x}\| \to 0}(g(\mathbf{x}))$ means

$$\exists \alpha, C > 0, \quad \forall \mathbf{x} \in \mathbb{R}^n, \quad \|\mathbf{x}\| \le \alpha \Rightarrow |f(\mathbf{x})| \le C \cdot |g(\mathbf{x})|.$$

Here 2 variables: Δx (grid sizes, tends to 0), and x (time and space). (Think about Taylor expansions)

Big O = big pain

Usually, the big O uses one variable and $f(\mathbf{x}) = O_{\|\mathbf{x}\| \to 0}(g(\mathbf{x}))$ means

$$\exists \alpha, C > 0, \quad \forall \mathbf{x} \in \mathbb{R}^n, \quad \|\mathbf{x}\| \le \alpha \Rightarrow |f(\mathbf{x})| \le C \cdot |g(\mathbf{x})|.$$

Here 2 variables: Δx (grid sizes, tends to 0), and x (time and space). (Think about Taylor expansions)

$$\forall \mathbf{x}, \exists \alpha, C > 0, \quad \forall \Delta \mathbf{x} \in \mathbb{R}^2, \quad \|\Delta \mathbf{x}\| \le \alpha \Rightarrow |f(\mathbf{x}, \Delta \mathbf{x})| \le C \cdot |g(\Delta \mathbf{x})|$$

does not work.

Uniform big O

We used a uniform big O:

$$\exists \alpha, C > 0, \quad \forall \mathbf{x}, \Delta \mathbf{x}, \quad \|\Delta \mathbf{x}\| \leq \alpha \Rightarrow |f(\mathbf{x}, \Delta \mathbf{x})| \leq C \cdot |g(\Delta \mathbf{x})|.$$

where variables ${\bf x}$ and ${\bf \Delta x}$ are restricted to subsets of \mathbb{R}^2 . (for example such that $\Delta t>0$)

 \Rightarrow Taylor expansions

Outline

- Wave equation resolution scheme?
- Pormal proof: basic blocks
 - Dot product
 - Big O
- 3 Formal proof: convergence
- 4 Conclusion & perspectives

One axiom about the exact solution of the PDE:

$$x \notin [A - c \cdot t, B + c \cdot t] \quad \Rightarrow \quad u(x, t) = 0$$

(mathematically proved using d'Alembert's formula)

One axiom about the exact solution of the PDE:

$$x \notin [A - c \cdot t, B + c \cdot t] \Rightarrow u(x, t) = 0$$

(mathematically proved using d'Alembert's formula)

Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the numerical scheme:

$$\varepsilon_j^{k-1} = \frac{\bar{u}_j^k - 2\bar{u}_j^{k-1} + \bar{u}_j^{k-2}}{\Delta t^2} - c^2 \frac{\bar{u}_{j+1}^{k-1} - 2\bar{u}_j^{k-1} + \bar{u}_{j-1}^{k-1}}{\Delta x^2} - s_j^{k-1}$$

Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the numerical scheme:

$$\varepsilon_j^{k-1} = \frac{\bar{u}_j^k - 2\bar{u}_j^{k-1} + \bar{u}_j^{k-2}}{\Delta t^2} - c^2 \frac{\bar{u}_{j+1}^{k-1} - 2\bar{u}_j^{k-1} + \bar{u}_{j-1}^{k-1}}{\Delta x^2} - s_j^{k-1}$$

The consistency is the boundedness of the truncation error:

$$\left\| \varepsilon_h^{k_{\Delta t}(t)} \right\|_{\Delta x} = O_{[0,t_{\max}]}(\Delta x^2 + \Delta t^2)$$

By Taylor series and many computations.

Proof idea 2/3: stability

We define a discrete energy by

$$E_h(c)(u_h)^{k+\frac{1}{2}} \stackrel{\text{def}}{=} \frac{1}{2} \left\| \frac{u_h^{k+1} - u_h^k}{\Delta t} \right\|_{\Delta x}^2 + \frac{1}{2} \left\langle u_h^k, u_h^{k+1} \right\rangle_{A_h(c)}$$

kinetic energy

potential energy

$$\langle v_h, w_h \rangle_{A_h(c)} \stackrel{\mathsf{def}}{=} \langle A_h(c) \, v_h, w_h \rangle_{\Delta x} \; \mathsf{and} \; (A_h(c) \, v_h)_j \stackrel{\mathsf{def}}{=} - c^2 \tfrac{v_{j+1} - 2v_j + v_{j-1}}{\Delta x^2}.$$

Proof idea 2/3: stability

We define a discrete energy by

$$E_h(c)(u_h)^{k+\frac{1}{2}} \stackrel{\text{def}}{=} \frac{1}{2} \left\| \frac{u_h^{k+1} - u_h^k}{\Delta t} \right\|_{\Delta x}^2 + \frac{1}{2} \left\langle u_h^k, u_h^{k+1} \right\rangle_{A_h(c)}$$

kinetic energy

potential energy

$$\langle v_h, w_h \rangle_{A_h(c)} \stackrel{\mathsf{def}}{=} \langle A_h(c) \, v_h, w_h \rangle_{\Delta_X} \; \mathsf{and} \; (A_h(c) \, v_h)_j \stackrel{\mathsf{def}}{=} - c^2 \tfrac{v_{j+1} - 2v_j + v_{j-1}}{\Delta_X^2}.$$

Note that this energy is constant if f = 0.

We prove an overestimation and an underestimation of this energy.

 $\Rightarrow u_h$ does not diverge.

Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

$$u_{0,j} = 0,$$
 $u_{1,j} = \frac{e_j^1}{\Delta t},$ and $s_j^k = \varepsilon_j^{k+1}.$

+ proofs about the initializations.

Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

$$u_{0,j}=0, \hspace{1cm} u_{1,j}=rac{e_j^1}{\Delta t}, \hspace{1cm} ext{and} \hspace{1cm} s_j^k=arepsilon_j^{k+1}.$$

+ proofs about the initializations.

All these proofs require the existence of ζ and ξ in]0,1[with $\zeta \leq 1-\xi$ and we require that $\zeta \leq \frac{c\Delta t}{\Delta x} \leq 1-\xi$ (CFL conditions).

Convergence

We proved that:

$$\left\|e_h^{k_{\Delta t}(t)}\right\|_{\Delta x} = O_{\begin{subarray}{l} t \in [0, t_{\max}] \\ (\Delta x, \Delta t) \to 0 \\ 0 < \Delta x \land 0 < \Delta t \land \\ \zeta \le c \frac{\Delta t}{\Delta x} \le 1 - \xi \end{subarray}} (\Delta x^2 + \Delta t^2).$$

Outline

- Wave equation resolution scheme?
- 2 Formal proof: basic blocks
 - Dot product
 - Big O
- 3 Formal proof: convergence
- 4 Conclusion & perspectives

4500 lines of Coq (half dedicated, half re-usable) \approx as long as a detailed paper proof

• synergy applied mathematicians / logicians

- synergy applied mathematicians / logicians
- filling the gaps of pen&paper proofs

- synergy applied mathematicians / logicians
- filling the gaps of pen&paper proofs
- 1 axiom: finite support of the exact solution $(+1 \ \varepsilon \ \text{operator})$

• re-use the proofs with reflections (the rope has two ends).

• re-use the proofs with reflections (the rope has two ends).

- link this to the C program
 - ⇒ full proof of the program (with already done floating-point proof)

re-use the proofs with reflections (the rope has two ends).

- Iink this to the C program
 ⇒ full proof of the program (with already done floating-point proof)
- extract the C and α of the big O (done)

re-use the proofs with reflections (the rope has two ends).

- link this to the C program
 ⇒ full proof of the program (with already done floating-point proof)
- extract the C and α of the big O (done)
- prove Lax equivalence for as many schemes as possible: consistency ⇒ (stability ⇔ convergence)

re-use the proofs with reflections (the rope has two ends).

- link this to the C program
 ⇒ full proof of the program (with already done floating-point proof)
- extract the C and α of the big O (done)
- prove Lax equivalence for as many schemes as possible: consistency ⇒ (stability ⇔ convergence)
- other schemes for the same PDE
- other PDEs
- ODEs

Thank you for your attention

http://fost.saclay.inria.fr