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Background

• Instruction set architectures 
play an important role in 
computing.

• They provide an interface 
between hardware and 
software.

• ISA models are needed for 
reasoning about:

- interpreters and compilers
- operating systems (device 

drivers and I/O)
- micro-architecture designs.
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ISA models

• Many instructions — even with RISC architectures. 

• Architecture manuals are big, verbose and open to misinterpretation.

• Precise implementation details are often proprietary and protected by IP 
rights.

• Industry makes heavy use of simulators/emulators (often C based) and large 
validation suites.  (Early processor designs become reference semantics.)

• Formal reasoning at the ISA level produces concrete results/artefacts with 
direct industrial relevance.

• Not many complete, high-fidelity, formal models for commercial ISAs in the 
public domain.



ARM6 formal verification (completed 2005)
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Moving forward…

• Version ARMv3 is now “obsolete”, i.e. no longer supported by ARM Ltd.

• ARMv3 model was extended to ARMv4T:

- Still widely used version — ARMv4 implemented by ARM7TDMI processor.

- The correctness proof has not been extended.

- The micro-architecture data is not available and we have already shown it 
can be done.

• Shifted efforts to machine code verification, e.g. Magnus’ Lisp interpreter.

• Now wish to look at I/O and further code verification…



Latest ISA model

• Adopts monadic style.

• Covers multiple ISA versions:

- all instructions, including 
Thumb-2 and ThumbEE.

• Validated against hardware.

• ARMv7 is version for latest 
Cortex processors.

• Extensive tool support:

- custom built assembler and 
evaluator.

• 25K lines of development.
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Monadic specification

• New monadic model prompted by Peter Sewell’s group, who are working on 
multi-processor memory models.

• Provides a useful abstraction layer — hides underlying computational 
semantics.

• Nicely suited to modelling systems with “state” — no need to explicitly pass 
state as a parameter (with heavy use of clunky let-statements).

• Provides clean mechanisms for handling:

- multiple ISA versions

- memory and I/O

- parallelism

- error states



Establishing trust
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Single step theorems (specializing the model)

• We wish to know the effect of running a particular op-code, say 0xE2921003.

• This can be expressed with a theorem of the form:

• NEXT is the next-state function for the ARM model.

• Predicate P characterises states in which the op-code is about to be run.

• fP is a state update function for the op-code.

• Originally used for production of Hoare triples, then used for validation.

∀s. P(s) ⇒ (NEXT(s) = fP(s))



Tool for single step theorems

• A tool has been developed in HOL to produce single step theorems on-the-fly 
using forward proof (symbolic evaluation).

• This has a number of advantages:

- Users don’t have to be intimate with the HOL model or all the intricacies of 
the ARM architecture.  This becomes essential for large, complex models.

- Users can simply ask “what does this instruction do?”.

- Hoare triples for instructions can be generated on demand — manual 
proof is not required, nor a big database of theorems. 



Demo…



Implementation

• Implemented in Standard ML using HOL4’s conversions, rules and other 
primitive functions.

• Simple interactive interface, for example:

> armLib.arm_step "v5t, thumb" "1889"

or

> armLib.arm_steps_from_string "v5t" "thumb\n adds r1,r2"



Basic approach

• Create predicate P

- P is used to direct the evaluation (e.g. assign T or F to conditional 
statements).

- It selects the correct architecture/configuration and instruction set.

- It ensures the instruction is in memory at the PC address.

- Extra side-conditions are added to avoid “unpredictable” cases, e.g. 
registers must be aligned when used as memory addresses.  The op-code 
must be examined (decoded) to achieve this.

• Term-rewrite NEXT(s) using condition P(s).



Rewriting with side-conditions

• The HOL4 simplifier can rewrite with side-conditions.  For example:

b ⇒ (if b then x else y)

will simplify to

b ⇒ x

• But the simplifier is pretty slow and we want a fast tool.

• HOL’s call-by-value rewriter EVAL is fast but doesn’t allow side-conditions.

• Technique has been developed for doing bulk of work with EVAL.

• Details are in the paper.



Validation (some observations)

• Able to test most instructions and fix some bugs.

• Data processing (arithmetic/logic) instructions easiest to test.

• Loads/Stores and Branches a bit more complicated — need to be a little 
cleverer in writing the test harness code.

• System instructions problematic — user code can’t access privileged state 
and system calls exit to OS’s exception handler code.  (BeagleBoard runs 
Ångström Linux.)

• Maybe need to use JTAG interface.

• Further testing was done through EmitML.  Compiled MD5 to ARM.

• Result available at: http://www.cl.cam.ac.uk/~acjf3/arm

http://www.cl.cam.ac.uk/~mom22/arm-tests/
http://www.cl.cam.ac.uk/~mom22/arm-tests/


Summary

• ISA models are very useful.

• Not easy to accurately formalize — large, with lots of intricacies.

• It is important to provide high-fidelity, wide coverage and good tool support:

- An abstract “assembly code” model leaves a fairly big gap to the ISA.

- Accurately represent the programmer’s model state space (use machine 
words).

- Define instruction decoder functions (work with machine code) — better 
than working with ASTs alone.

- This all facilitates direct comparison with hardware.

• Structured and extensive validation becomes essential.

• Questions?


