
A Trustworthy Monadic Formalization of the
ARMv7 Instruction Set Architecture

Anthony Fox and Magnus O. Myreen
University of Cambridge

Background

• Instruction set architectures
play an important role in
computing.

• They provide an interface
between hardware and
software.

• ISA models are needed for
reasoning about:

- interpreters and compilers
- operating systems (device

drivers and I/O)
- micro-architecture designs.

Software

(Assembler, C, C#,

Java, Lisp, OCaml, …)

Hardware

(Microprocessors,

Memory, Buses,

Devices)

Instruction Set

Architectures

(x86, PowerPC, ARM,

Sparc, Mips)

Interpreters and Compilers

Realization (Electronic Design)

ISA models

• Many instructions — even with RISC architectures.

• Architecture manuals are big, verbose and open to misinterpretation.

• Precise implementation details are often proprietary and protected by IP
rights.

• Industry makes heavy use of simulators/emulators (often C based) and large
validation suites. (Early processor designs become reference semantics.)

• Formal reasoning at the ISA level produces concrete results/artefacts with
direct industrial relevance.

• Not many complete, high-fidelity, formal models for commercial ISAs in the
public domain.

ARM6 formal verification (completed 2005)

HOL model of

ARMv3 ISA

HOL model of ARM6

micro-architecture

(3-stage pipeline)

Correctness proof

ARM Architectural

Reference Manual

Detailed semiformal

specifications of

ARM6

(Daniel Schostak)

Data sheets for

ARM6 micro-

architecture

(from ARM Ltd.)

ARM6

Microprocessor

Manual translation

Manual translationManual translationImplementation

Moving forward…

• Version ARMv3 is now “obsolete”, i.e. no longer supported by ARM Ltd.

• ARMv3 model was extended to ARMv4T:

- Still widely used version — ARMv4 implemented by ARM7TDMI processor.

- The correctness proof has not been extended.

- The micro-architecture data is not available and we have already shown it
can be done.

• Shifted efforts to machine code verification, e.g. Magnus’ Lisp interpreter.

• Now wish to look at I/O and further code verification…

Latest ISA model

• Adopts monadic style.

• Covers multiple ISA versions:

- all instructions, including
Thumb-2 and ThumbEE.

• Validated against hardware.

• ARMv7 is version for latest
Cortex processors.

• Extensive tool support:

- custom built assembler and
evaluator.

• 25K lines of development.

HOL model of

ISAs: ARMv4

through to ARMv7

ARM Architectural

Reference Manual

Manual translation

DVI

video

Cortex-A8

+ RAM Serial

Port

SD card slot

Power

Audio

JTAG

Validation of ARMv7-A

Monadic specification

• New monadic model prompted by Peter Sewell’s group, who are working on
multi-processor memory models.

• Provides a useful abstraction layer — hides underlying computational
semantics.

• Nicely suited to modelling systems with “state” — no need to explicitly pass
state as a parameter (with heavy use of clunky let-statements).

• Provides clean mechanisms for handling:

- multiple ISA versions

- memory and I/O

- parallelism

- error states

Establishing trust

Encode and

produce theorems

+ filter out

unpredictable etc.

Systematically

generate

batches of

abstract syntax

Run program on

BeagleBoard and

report results

AST for instructions

Incorporate

instructions into

test harness

program

Generate test

data (instruction

arguments)

Compare results

with evaluating

step theorems

theorems tested instructions with register values

(before and after)

machine code datacode

Log in databasetest report

Single step theorems (specializing the model)

• We wish to know the effect of running a particular op-code, say 0xE2921003.

• This can be expressed with a theorem of the form:

• NEXT is the next-state function for the ARM model.

• Predicate P characterises states in which the op-code is about to be run.

• fP is a state update function for the op-code.

• Originally used for production of Hoare triples, then used for validation.

∀s. P(s) ⇒ (NEXT(s) = fP(s))

Tool for single step theorems

• A tool has been developed in HOL to produce single step theorems on-the-fly
using forward proof (symbolic evaluation).

• This has a number of advantages:

- Users don’t have to be intimate with the HOL model or all the intricacies of
the ARM architecture. This becomes essential for large, complex models.

- Users can simply ask “what does this instruction do?”.

- Hoare triples for instructions can be generated on demand — manual
proof is not required, nor a big database of theorems.

Demo…

Implementation

• Implemented in Standard ML using HOL4’s conversions, rules and other
primitive functions.

• Simple interactive interface, for example:

> armLib.arm_step "v5t, thumb" "1889"

or

> armLib.arm_steps_from_string "v5t" "thumb\n adds r1,r2"

Basic approach

• Create predicate P

- P is used to direct the evaluation (e.g. assign T or F to conditional
statements).

- It selects the correct architecture/configuration and instruction set.

- It ensures the instruction is in memory at the PC address.

- Extra side-conditions are added to avoid “unpredictable” cases, e.g.
registers must be aligned when used as memory addresses. The op-code
must be examined (decoded) to achieve this.

• Term-rewrite NEXT(s) using condition P(s).

Rewriting with side-conditions

• The HOL4 simplifier can rewrite with side-conditions. For example:

b ⇒ (if b then x else y)

will simplify to

b ⇒ x

• But the simplifier is pretty slow and we want a fast tool.

• HOL’s call-by-value rewriter EVAL is fast but doesn’t allow side-conditions.

• Technique has been developed for doing bulk of work with EVAL.

• Details are in the paper.

Validation (some observations)

• Able to test most instructions and fix some bugs.

• Data processing (arithmetic/logic) instructions easiest to test.

• Loads/Stores and Branches a bit more complicated — need to be a little
cleverer in writing the test harness code.

• System instructions problematic — user code can’t access privileged state
and system calls exit to OS’s exception handler code. (BeagleBoard runs
Ångström Linux.)

• Maybe need to use JTAG interface.

• Further testing was done through EmitML. Compiled MD5 to ARM.

• Result available at: http://www.cl.cam.ac.uk/~acjf3/arm

http://www.cl.cam.ac.uk/~mom22/arm-tests/
http://www.cl.cam.ac.uk/~mom22/arm-tests/

Summary

• ISA models are very useful.

• Not easy to accurately formalize — large, with lots of intricacies.

• It is important to provide high-fidelity, wide coverage and good tool support:

- An abstract “assembly code” model leaves a fairly big gap to the ISA.

- Accurately represent the programmer’s model state space (use machine
words).

- Define instruction decoder functions (work with machine code) — better
than working with ASTs alone.

- This all facilitates direct comparison with hardware.

• Structured and extensive validation becomes essential.

• Questions?

