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Nominal Isabelle

. . . is a de�nitional extension of Isabelle/HOL
(let-polymorphism and type classes)

. . . provides a convenient reasoning infrastructure
for terms involving binders (e.g. lambda calculus,
variable convention)

. . . mainly used to �nd errors in my own (published)
paper proofs and in those of others ;o)
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Nominal Theory

. . . by Pitts; at its core are:

sorted atoms and

sort-respecting permutations
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The “Old Way”
sorted atoms
7→ separate types (�copies� of nat)

sort-respecting permutations
7→ lists of pairs of atoms (list swappings)

[] · c = c (a b) ::π · c =


b ifπ·c = a

a ifπ·c = b

π·c otherwise
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The big bene�t: the type system takes care of the
sort-respecting requirement.
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A small bene�t: permutation composition is list
append and permutation inversion is list reversal.



Problems
_ · _ :: α perm⇒ β⇒ β

supp _ :: β⇒ α set

�nite(supp x)α1 set
. . . �nite(supp x)αn set

∀πα1
. . . παn

. P

type-classes

can only have one type parameter

[] ·x = x
(π1@π2) ·x = π1 · (π2 ·x)
if π1 ∼ π2 then π1 ·x = π2 ·x
if π1, π2 have diff. type, then π1·(π2·x) = π2·(π1·x)
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lots of ML-code
not pretty
not a proof pearl :o(



A Better Way
datatype atom = Atom string nat

permutations are (restricted) bijective functions
from atom⇒ atom

sort-respecting ( ∀a. sort(πa) = sort(a))
�nite domain (�nite{a. πa 6= a})

What about swappings?

(a b)
def
= if sort(a) = sort(b)

then λc.if a = c then b else if b = c then a else c
else
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A Smoother Nominal Theory
From there it is essentially plain sailing:

(a b) = (b a)

= (a c) + (b c) + (a c)

permutations are an instance of Isabelle's
group_add (0, π1 + π2,−π)

_ · _ :: perm⇒ α⇒ α

0 · x = x
(π1 + π2) · x = π1 · (π2 · x)

7→ only one type class needed, �nite(supp x),
∀π.P

Edinburgh, 11. July 2010 � p. 7/14



A Smoother Nominal Theory
From there it is essentially plain sailing:

(a b) = (b a)

= (a c) + (b c) + (a c)

permutations are an instance of Isabelle's
group_add (0, π1 + π2,−π)

_ · _ :: perm⇒ α⇒ α

0 · x = x
(π1 + π2) · x = π1 · (π2 · x)

7→ only one type class needed, �nite(supp x),
∀π.P

Edinburgh, 11. July 2010 � p. 7/14



A Smoother Nominal Theory
From there it is essentially plain sailing:

(a b) = (b a)

= (a c) + (b c) + (a c)

permutations are an instance of Isabelle's
group_add (0, π1 + π2,−π)

_ · _ :: perm⇒ α⇒ α

0 · x = x
(π1 + π2) · x = π1 · (π2 · x)

7→ only one type class needed, �nite(supp x),
∀π.P

Edinburgh, 11. July 2010 � p. 7/14



A Smoother Nominal Theory
From there it is essentially plain sailing:

(a b) = (b a) = (a c) + (b c) + (a c)

permutations are an instance of Isabelle's
group_add (0, π1 + π2,−π)

_ · _ :: perm⇒ α⇒ α

0 · x = x
(π1 + π2) · x = π1 · (π2 · x)

7→ only one type class needed, �nite(supp x),
∀π.P

Edinburgh, 11. July 2010 � p. 7/14



A Smoother Nominal Theory
From there it is essentially plain sailing:

(a b) = (b a) = (a c) + (b c) + (a c)

permutations are an instance of Isabelle's
group_add (0, π1 + π2,−π)

_ · _ :: perm⇒ α⇒ α

0 · x = x
(π1 + π2) · x = π1 · (π2 · x)

7→ only one type class needed, �nite(supp x),
∀π.P

Edinburgh, 11. July 2010 � p. 7/14

This is slightly odd, since in general:

π1 + π2 6= π2 + π1
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One Snatch

datatype atom = Atom string nat

You like to get the advantages of the old way
back: you cannot mix atoms of different sort:

e.g. LF-objects:

M ::= c | x | λx :A.M |M1 M2
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Our Solution
concrete atoms:

typedef name = "{a :: atom. sort a = ''name''}"
typedef ident = "{a :: atom. sort a = ''ident''}"

they are a �subtype� of the generic atom type

there is an overloaded function atom, which
injects concrete atoms into generic ones

atom(a) # x

(a↔ b)
def

= (atom(a) atom(b))

One would like to have a # x, (a b), . . .
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Sorts Reloaded
datatype atom = Atom string nat

Problem: HOL-binders or Church-style
lambda-terms

λxα. xα xβ

datatype ty = TVar string | ty→ ty
datatype var = Var name ty
(x↔ y) · (xα, xβ) = (yα, yβ)
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Non-Working Solution
Instead of

datatype atom = Atom string nat

have

datatype 'a atom = Atom 'a nat

But then

_ · _ :: α perm⇒ β⇒ β
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A Working Solution
datatype sort = Sort string "sort list"
datatype atom = Atom sort nat

sort_ty (TVar x)
def
= Sort ''TVar'' [Sort x []]

sort_ty (τ 1→ τ 2)
def
= Sort ''Fun'' [sort_ty τ 1, sort_ty τ 2]

typedef var = {a :: atom. sort a ∈ range sort_ty}

Var x τ
def
= d Atom (sort_ty τ ) x e

(Var x τ ↔ Var y τ ) · Var x τ = Var y τ
(Var x τ ↔ Var y τ ) · Var x τ ' = Var x τ '
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Conclusion

the formalised version of the nominal theory is
now much nicer to work with (sorts are
occasionally explicit, ∀π.P )

permutations: �be as abstract as you can�
(group_add is a slight oddity)

the crucial insight: allow sort-disrespecting
swappings

. . . just de�ne them as the identity
(a referee called this a �hack�)

there will be a hands-on tutorial about Nominal
Isabelle at POPL'11 in Austin Texas
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Thank you very much
Questions?
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