Proof Pearl: A New Foundation for Nominal Isabelle

Brian Huffman and Christian Urban

Edinburgh, 11. July 2010 - p. 1/14

Nominal Isabelle

- ... is a definitional extension of Isabelle/HOL (let-polymorphism and type classes)
- ... provides a convenient reasoning infrastructure for terms involving binders (e.g. lambda calculus, variable convention)

Nominal Isabelle

- ... is a definitional extension of Isabelle/HOL (let-polymorphism and type classes)
- ... provides a convenient reasoning infrastructure for terms involving binders (e.g. lambda calculus, variable convention)
- ... mainly used to find errors in my own (published) paper proofs and in those of others ;o)

Nominal Theory

- ... by Pitts; at its core are:
- sorted atoms and
- sort-respecting permutations

Nominal Theory

- ... by Pitts; at its core are:
- sorted atoms and
- sort-respecting permutations

 $\pi \cdot x$

Edinburgh, 11. July 2010 - p. 3/14

Nominal Theory

- ... by Pitts; at its core are:
- sorted atoms and
- sort-respecting permutations

$$\mathsf{inv_of}_\pi \boldsymbol{\cdot} (\pi \boldsymbol{\cdot} x) \, = \, x$$

sorted atoms

 \mapsto separate types ("copies" of nat)

sort-respecting permutations
 → lists of pairs of atoms (list swappings)

sorted atoms
 → separate types ("copies" of nat)

• sort-respecting permutations \mapsto lists of pairs of atoms (list swappings) [] $\cdot c = c$ $(a b) :: \pi \cdot c = \begin{cases} b & \text{if } \pi \cdot c = a \\ a & \text{if } \pi \cdot c = b \\ \pi \cdot c & \text{otherwise} \end{cases}$

sorted atoms
 → separate types ("copies" of nat)

• sort-respecting permutations \mapsto lists of pairs of atoms (list swappings) [] $\cdot c = c$ $(a b) :: \pi \cdot c = \begin{cases} b & \text{if } \pi \cdot c = a \\ a & \text{if } \pi \cdot c = b \\ \pi \cdot c & \text{otherwise} \end{cases}$

The big benefit: the type system takes care of the sort-respecting requirement.

sorted atoms
 → separate types ("copies" of nat)

• sort-respecting permutations \mapsto lists of pairs of atoms (list swappings) [] $\cdot c = c$ $(a b) :: \pi \cdot c = \begin{cases} b & \text{if } \pi \cdot c = a \\ a & \text{if } \pi \cdot c = b \\ \pi \cdot c & \text{otherwise} \end{cases}$

A small benefit: permutation composition is list append and permutation inversion is list reversal.

•
$$_ \cdot _ :: \alpha$$
 perm $\Rightarrow \beta \Rightarrow \beta$

•
$$ext{supp}_ st eta \Rightarrow lpha$$
 set $ext{finite(supp} \ x)_{lpha_1 \, ext{set}} \dots ext{finite(supp} \ x)_{lpha_n \, ext{set}}$

•
$$orall \pi_{lpha_1} \dots \pi_{lpha_n}$$
 . P

type-classes

• _ • _ ::
$$lpha$$
 perm \Rightarrow eta \Rightarrow eta

• supp _ ::
$$eta \Rightarrow lpha$$
 set finite(supp $x)_{lpha_1 \, {
m set}} \dots$ finite(supp $x)_{lpha_n \, {
m set}}$

•
$$orall \pi_{lpha_1} \dots \pi_{lpha_n}$$
 . P

•
$$_ \cdot _ :: \alpha \text{ perm} \Rightarrow \beta \Rightarrow \beta$$

•
$$\operatorname{supp}_{-} :: \beta \Rightarrow \alpha$$
 set
finite(supp x) $_{\alpha_1 \, \text{set}} \dots$ finite(supp x) $_{\alpha_n \, \text{set}}$

•
$$orall \pi_{lpha_1} \dots \pi_{lpha_n}$$
 . P

• _ • _ ::
$$lpha$$
 perm $\Rightarrow eta \Rightarrow eta$

• supp _::
$$\beta \Rightarrow \alpha$$
 set
finite(supp x) $_{\alpha_1 \text{ set}}$... finite(supp x) $_{\alpha_n \text{ set}}$
• $\forall \pi_{\alpha_1}$
• lots of ML-code
• not pretty
• not a proof pearl :o(
• []•
• ($\pi_1 \oplus \pi_2$)• $x = \pi_1 \cdot (\pi_2 \cdot x)$
• if $\pi_1 \sim \pi_2$ then $\pi_1 \cdot x = \pi_2 \cdot x$
• if π_1, π_2 have diff. type, then $\pi_1 \cdot (\pi_2 \cdot x) = \pi_2 \cdot (\pi_1 \cdot x)$

)

datatype atom = Atom string nat

datatype atom = Atom string nat

- permutations are (restricted) bijective functions from atom \Rightarrow atom
 - sort-respecting $(\forall a. \ \mathsf{sort}(\pi a) = \mathsf{sort}(a))$
 - finite domain (finite $\{a. \ \pi a \neq a\}$)

$$_ \bullet _ :: \mathsf{perm} \Rightarrow \beta \Rightarrow \beta$$

datatype atom = Atom string nat

- permutations are (restricted) bijective functions from atom \Rightarrow atom
 - sort-respecting $(\forall a. \text{ sort}(\pi a) = \text{sort}(a))$
 - finite domain (finite $\{a. \ \pi a \neq a\}$)

• What about swappings?

$$(a \ b) \stackrel{\text{def}}{=}$$
 if sort $(a) =$ sort (b)
then λc .if $a = c$ then b else if $b = c$ then a else c
else

datatype atom = Atom string nat

- permutations are (restricted) bijective functions from atom \Rightarrow atom
 - sort-respecting $(\forall a. \text{ sort}(\pi a) = \text{sort}(a))$
 - finite domain (finite $\{a. \ \pi a \neq a\}$)

• What about swappings?

$$(a \ b) \stackrel{\mathsf{def}}{=} \mathsf{if sort}(a) = \mathsf{sort}(b)$$

then $\lambda c.\mathsf{if} \ a = c$ then b else if $b = c$ then a else c
else id

From there it is essentially plain sailing:

From there it is essentially plain sailing:

• $(a \ b) = (b \ a)$

From there it is essentially plain sailing:

•
$$(a \ b) = (b \ a)$$

• permutations are an instance of Isabelle's group_add (0, $\pi_1 + \pi_2, -\pi$)

From there it is essentially plain sailing:

•
$$(a \ b) = (b \ a) = (a \ c) + (b \ c) + (a \ c)$$

• permutations are an instance of Isabelle's group_add (0, $\pi_1 + \pi_2, -\pi$)

From there it is essentially plain sailing:

•
$$(a \ b) = (b \ a) = (a \ c) + (b \ c) + (a \ c)$$

• permutations are an instance of Isabelle's group_add (0, $\pi_1 + \pi_2, -\pi$)

This is slightly odd, since in general: $\pi_1 + \pi_2
eq \pi_2 + \pi_1$

From there it is essentially plain sailing:

•
$$(a \ b) = (b \ a) = (a \ c) + (b \ c) + (a \ c)$$

• permutations are an instance of Isabelle's group_add (0, $\pi_1 + \pi_2, -\pi$)

• _ • _ :: perm
$$\Rightarrow lpha \Rightarrow lpha$$

From there it is essentially plain sailing:

•
$$(a \ b) = (b \ a) = (a \ c) + (b \ c) + (a \ c)$$

• permutations are an instance of Isabelle's group_add (0, $\pi_1 + \pi_2, -\pi$)

• _ • _ :: perm
$$\Rightarrow lpha \Rightarrow lpha$$

 \mapsto only one type class needed, finite(supp x), $\forall \pi.P$

One Snatch

datatype atom = Atom string nat

• You like to get the advantages of the old way back: you cannot mix atoms of different sort:

e.g. LF-objects: $M ::= c \mid x \mid \lambda x : A.M \mid M_1 \; M_2$

Our Solution

concrete atoms:

typedef name = "{a :: atom. sort a = "name"}"
typedef ident = "{a :: atom. sort a = "ident"}"

- they are a "subtype" of the generic atom type
- there is an overloaded function atom, which injects concrete atoms into generic ones

Our Solution

concrete atoms:

typedef name = "{a :: atom. sort a = "name"}"
typedef ident = "{a :: atom. sort a = "ident"}"

- they are a "subtype" of the generic atom type
- there is an overloaded function atom, which injects concrete atoms into generic ones

atom
$$(a) \ \# \ x$$
 $(a \leftrightarrow b) \stackrel{ ext{def}}{=} (ext{atom}(a) \ ext{atom}(b))$ ne would like to have $a \ \# \ x$, $(a \ b), \ldots$

datatype atom = Atom string nat

datatype atom = Atom string nat

Problem: HOL-binders or Church-style lambda-terms

 $\lambda x_{lpha}.\,x_{lpha}\,\,x_{eta}$

datatype atom = Atom string nat

Problem: HOL-binders or Church-style lambda-terms

 $\lambda x_{lpha}.\,x_{lpha}\,\,x_{eta}$

datatype ty = TVar string | ty
$$\rightarrow$$
 ty
datatype var = Var name ty

datatype atom = Atom string nat

Problem: HOL-binders or Church-style lambda-terms

 $\lambda x_{lpha}.\,x_{lpha}\,\,x_{eta}$

Non-Working Solution

Instead of

datatype atom = Atom string nat

have

datatype 'a atom = Atom 'a nat

Edinburgh, 11. July 2010 - p. 11/14

Non-Working Solution

Instead of

datatype atom = Atom string nat

have

datatype 'a atom = Atom 'a nat

But then

$$_ \bullet _ :: \alpha \text{ perm} \Rightarrow \beta \Rightarrow \beta$$

datatype sort = Sort string "sort list"
datatype atom = Atom sort nat

datatype sort = Sort string "sort list"
datatype atom = Atom sort nat

sort_ty (TVar x)
$$\stackrel{\text{def}}{=}$$
 Sort "TVar" [Sort x []]
sort_ty ($au_1
ightarrow au_2$) $\stackrel{\text{def}}{=}$ Sort "Fun" [sort_ty au_1 , sort_ty au_2]

datatype sort = Sort string "sort list"
datatype atom = Atom sort nat

sort_ty (TVar x)
$$\stackrel{\text{def}}{=}$$
 Sort "TVar" [Sort x []]
sort_ty ($au_1
ightarrow au_2$) $\stackrel{\text{def}}{=}$ Sort "Fun" [sort_ty au_1 , sort_ty au_2]

typedef var = {a :: atom. sort a \in range sort_ty}

datatype sort = Sort string "sort list"
datatype atom = Atom sort nat

sort_ty (TVar x)
$$\stackrel{
m def}{=}$$
 Sort "TVar" [Sort x []]
sort_ty ($au_1 o au_2$) $\stackrel{
m def}{=}$ Sort "Fun" [sort_ty au_1 , sort_ty au_2]

typedef var = $\{a :: atom. sort a \in range sort_ty\}$

Var x
$$au \stackrel{\text{def}}{=} \left[\text{ Atom (sort_ty } au) \times \right]$$

$$\begin{array}{l} (\operatorname{Var} \mathsf{x} \, \tau \leftrightarrow \operatorname{Var} \mathsf{y} \, \tau) \bullet \operatorname{Var} \mathsf{x} \, \tau = \operatorname{Var} \mathsf{y} \, \tau \\ (\operatorname{Var} \mathsf{x} \, \tau \leftrightarrow \operatorname{Var} \mathsf{y} \, \tau) \bullet \operatorname{Var} \mathsf{x} \, \tau' = \operatorname{Var} \mathsf{x} \, \tau' \end{array}$$

- the formalised version of the nominal theory is now much nicer to work with (sorts are occasionally explicit, $\forall \pi. P$)
- permutations: "be as abstract as you can" (group_add is a slight oddity)
- the crucial insight: allow sort-disrespecting swappings

- the formalised version of the nominal theory is now much nicer to work with (sorts are occasionally explicit, $\forall \pi. P$)
- permutations: "be as abstract as you can" (group_add is a slight oddity)
- the crucial insight: allow sort-disrespecting swappings ... just define them as the identity

- the formalised version of the nominal theory is now much nicer to work with (sorts are occasionally explicit, $\forall \pi. P$)
- permutations: "be as abstract as you can" (group_add is a slight oddity)
- the crucial insight: allow sort-disrespecting swappings ... just define them as the identity (a referee called this a "hack")

- the formalised version of the nominal theory is now much nicer to work with (sorts are occasionally explicit, $\forall \pi. P$)
- permutations: "be as abstract as you can" (group_add is a slight oddity)
- the crucial insight: allow sort-disrespecting swappings ... just define them as the identity (a referee called this a "hack")
- there will be a hands-on tutorial about Nominal Isabelle at POPL'11 in Austin Texas

Thank you very much Questions?