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@ ...is a definitional extension of Isabelle/HOL
(let-polymorphism and type classes)

@ ...provides a convenient reasoning infrastructure
for terms involving binders (e.g. lambda calculus,
variable convention)

@ ...mainly used to find errors in my own (published)
paper proofs and in those of others ;o)
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The big benefit: the type system takes care of the
sort-respecting requirement.



The “Old Way”

@ sorted atoms
> separate types (“copies” of nat)

@ sort-respecting permutations
> lists of pairs of atoms (list swappings)

b iftec=a
[Jec=c (ab)umsc=<a ifrec =0

mwec otherwise

A small benefit: permutation composition is list
append and permutation inversion is list reversal.
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Problems

@ _-_taperm=pF=70

@ supp_ i 3= aset
finite(supp ) a, set . .. finite(supp ) ,, set

@ Vg, ..., . P

@ type-classes  can only have one type parameter
@ [Jex==
o (m@Qm;y) e x =1 (mex)
@ ifmi~mthenmex=myex
o if T, T2 have diff. Type, then 7T1‘(ﬂ'2°33) = 7'('2'(71'1’33)



Problems

@ _-_taperm=pF=70

@ supp_ i 3= aset
finite(supp ) a, set . .. finite(supp ) ,, set

@ Vm,, | @ lots of ML-code
@ not pretty
@ not a proof pearl :o(

@ type-
° (]
° (71'1@71'2)'.1;:771'(71'2'.1:)
@ ifmi~mthenmex=myex
o if T, T2 have diff. Type, then 71'1‘(7'('2’13) = 7'('2’(71'1’33)
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A Better Way

datatype atom = Atom string nat

@ permutations are (restricted) bijective functions
from atom = atom

@ sort-respecting (Va. sort(mwa) = sort(a))
@ finite domain  (finite{a. wa # a})

@ What about swappings?
(a b) Z if sort(a) = sort(b)
then Ac.if a = ¢ then b else if b = ¢ then a else ¢
else id
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From there it is essentially plain sailing:
@ (ab)=(ba)=(ac)+(bc)+ (ac)

@ permutations are an instance of Isabelle’s
group_add (0, wy + 73, — )

This is slightly odd, since in general:

771+71'2_T/7T2+7T1
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A Smoother Nominal Theory

From there it is essentially plain sailing:

@ (ab)=(ba)=(ac)+(bc)+ (ac)

@ permutations are an instance of Isabelle’s
group_add (0, wy + 73, — )

@ _e_perm=—uoa=auw

@ 0ex==x
@ (m+m)ex=m°(m e x)

> only one type class needed, finite(supp x),
Vr.P



One Snatch

datatype atom = Atom string nat

@ You like to get the advantages of the old way
back: you cannot mix atoms of different sort:

e.g. LF-objects:
Mu=c|z|Ax:A.M | M, M,



Our Solution

@ concrete atoms:

typedef name = "{a :: atom. sort a = "name"}"
typedef ident = "{a :: atom. sort a = “ident"}"

@ they are a "subtype” of the generic atom type
@ there is an overloaded function atom, which
injects concrete atoms into generic ones
atom(a) # x
(a <> b) < (atom(a) atom(b))



Our Solution

@ concrete atoms:

typedef name = "{a :: atom. sort a = "name"}"
typedef ident = "{a :: atom. sort a = “ident"}"

@ they are a "subtype” of the generic atom type
@ there is an overloaded function atom, which
injects concrete atoms into generic ones
atom(a) # x
(a <> b) = (atom(a) atom(b))
One would like to have a # =, (a b), ...
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Sorts Reloaded

datatype atom = Atom string nat

Problem: HOL-binders or Church-style
lambda-terms

ATq. To T3

datatype ty = TVar string | ty — ty
datatype var = Var name ty

(z <> y) * (za, mﬂ) = (Yas yﬁ)
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Non-Working Solution

Instead of

datatype atom = Atom string nat
have

datatype ‘a atom = Atom ‘a nat
But then

« _ttaperm= 0= 0
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A Working Solution

datatype sort = Sort string "sort list"
datatype atom = Atom sort nat

sort_ty (TVar x) L Sort "TVar" [Sort x [1]
sort_ty (1 — 72) = Sort "Fun” [sort_ty T4, sort_ty 7.]

typedef var = {a :: atom. sort a € range sort_ty}

Var x 7 & [ Atom (sort_ty 7) x |

(Varx 7 <> Vary T) e VarxT=Vary T
(Varx 7 <> Vary 1) e Var x 7' = Var x '
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Conclusion

the formalised version of the nominal theory is
now much nicer to work with (sorts are
occasionally explicit, V. P)

permutations: "be as abstract as you can”
(group_add is a slight oddity)

the crucial insight: allow sort-disrespecting
swappings ... just define them as the identity
(a referee called this a "hack”)

there will be a hands-on tutorial about Nominal
Isabelle at POPL'11 in Austin Texas



Thank you very much

Questions?





