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Introduction: Automating Inductive Proofs

• Induction: reasoning about recursion.
• Programs, data-structures...

• Automation difficult. Guidance needed:
• e.g. case-splitting for inductively defined datatypes.

Aim: Automation of theorems involving conditional definitions.

• Half of the functions in Isabelle’s list library involve
conditional statements.

• e.g. member, delete, subtraction.
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Proof Planning and Rippling

• Proof Planning: Families of proofs with similar structure.
• e.g. inductive proofs.

• Rippling: Heuristic for guiding rewriting in step cases.
• Annotate differences between induction hypothesis and

conclusion.
• Rewrites must reduce differences.

• Top of term tree: Get instance of IH.
• Position of ∀ quantified variable in IH.

• Fully automatic and guarantees termination.
• Does not require rewrite rules to be oriented.
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Case Analysis for Rippling

• IsaPlanner: Higher-order proof-planner for Isabelle.

• Extend rippling in IsaPlanner to cover case analysis for:
• If-statements.
• Case-statements over datatypes.

• Retain termination:
• Ripple-step becomes: rewriting + case-splitting.
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A Simple Example

Definition of max:

max 0 y = y (1)

max (Suc x) y = case y of 0⇒ Suc x (2)

| Suc z ⇒ Suc(max x z)

Commutativity of max :

Inductive hypothesis (IH): ∀b. max a b = max b a

Step-case goal: max Suc a bb′c = max bb′c Suc a

Apply (2):

case b′ of 0⇒ Suc a | Suc z ⇒ Suc(max a bzc) = max bb′c Suc a
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Applying the Split

Isabelle automatically derives splitting rules for case-statements for
each datatype:

J?n = 0 =⇒?P(?f1); ∀x . (?n = Suc x) =⇒?P(?f2 x)K =⇒
?P(case ?n of 0 ⇒?f1 | (Suc x) ⇒ (?f2 x))

?P matches context of case-statement.

• Case-split as resolution step.

• Interactive setting: User gives instantiation of ?P.

• Automatic proof: ?P in head position - match any term,
many trivial unifiers, large search space.
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Restricted Unification

?P(case ?n of 0 ⇒?f1 | (Suc x) ⇒ (?f2 x)︸ ︷︷ ︸
meta-variable argument

)

case b′ of 0⇒ Suc a | Suc z ⇒ Suc(max a z)︸ ︷︷ ︸
subterm of interest

= max b′ Suc a

• Only apply to terms containing argument of meta-variable ?P.

• Find instantiation for ?P, then safe to apply regular resolution.

• Algorithm using Zippers.

• Traverse term, find matching subterm. Zipper keeps track of
its context.

• Use context of subterm to provide instantiation of ?P:
λv . v = max b′ Suc a
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Example cont.

A ripple step with case-analysis:
max Suc a bb′c = max bb′c Suc ay Rewrite using: max def.

case b′ of 0⇒ Suc a | Suc z ⇒ Suc(max a z) = max b′ Suc ay Apply case-split.

b′ = 0 =⇒ Suc a = max 0 (Suc a) (3)

b′ = Suc z =⇒ Suc(max a bzc) = max bSuc zc Suc a (4)

Goal 3 is solved by simplification (no rippling embedding).

Rippling continues on goal 4.
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Evaluation

• Case-statements common, not previously covered by rippling.

• Implementation in IsaPlanner:
Rippling + Case Analysis + Lemma Calculation

• Corpus of 87 inductive theorems. If- and case statements.
• Lists, natural numbers, binary trees.
• Isabelle library, inductive TP literature, dependently typed

programming.

• Prover given only function definitions. No extra lemmas
supplied.
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Evaluation

• 47/87 new theorems proved automatically.

• Remaining theorems:
• More sophisticated reasoning about side-conditions.
• Conjecturing of conditional lemmas.

• Example failed proof: sorted(insertionSort(l))

• Need lemma with assumption:
sorted m =⇒ sorted(insert x m).
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Comparison to Simplification-Based Technique

• Isabelle’s simplifier allows splitting on if-statements.

• Case-statements not attempted: may cause non-termination.

Coverage:

• Proved by Induction+Simp technique: 37

• Proved by Rippling: 47

Termination:

• Rippling terminates on all examples.

• Induction+Simp often fails to terminate:
• Proofs it cannot solve.
• When asked for alternative proofs.
• Stuck trying to conjecture increasingly complex lemmas.
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Other Approaches

• Recursion Analysis: Choose induction scheme avoiding need
for case-splits.
• ACL2, VeriFun: No datatypes, destructor style, recursion on

several arguments instead of case statements.

• Isabelle: HO, datatypes, constructor style.
Want to work directly with these.

• Further Work: Automatic construction/selection of induction
schemes in IsaPlanner.

• May still need case-analysis even with more elaborate
induction schemes.
• Case-statement introduced by auxiliary lemma, rewrite from

other conditional function definition.
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Summary

• Case-analysis needed for inductive proofs about conditional
functions.

• Fully automatic technique implemented in IsaPlanner.

• Incorporated with rippling.

• Ensures termination also in presence of case-statements over
datatypes.

• Proves 47/87 theorems in evaluation corpus.

• Further work:
• More sophisticated reasoning with assumptions
• Conditional lemma discovery.
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