
Introduction and Motivation Case Analysis for Rippling Evaluation Summary

Case-Analysis for Rippling and Inductive Proof

Moa Johansson1

Joint work with Lucas Dixon2 and Alan Bundy2

Dipartimento di Informatica, Università degli Studi di Verona, Italy.1

School of Informatics, University of Edinburgh, UK.2

Interactive Theorem Proving Conference
12 July 2010



Introduction and Motivation Case Analysis for Rippling Evaluation Summary

Introduction: Automating Inductive Proofs

• Induction: reasoning about recursion.
• Programs, data-structures...

• Automation difficult. Guidance needed:
• e.g. case-splitting for inductively defined datatypes.

Aim: Automation of theorems involving conditional definitions.

• Half of the functions in Isabelle’s list library involve
conditional statements.

• e.g. member, delete, subtraction.



Introduction and Motivation Case Analysis for Rippling Evaluation Summary

Proof Planning and Rippling

• Proof Planning: Families of proofs with similar structure.
• e.g. inductive proofs.

• Rippling: Heuristic for guiding rewriting in step cases.
• Annotate differences between induction hypothesis and

conclusion.
• Rewrites must reduce differences.

• Top of term tree: Get instance of IH.
• Position of ∀ quantified variable in IH.

• Fully automatic and guarantees termination.
• Does not require rewrite rules to be oriented.



Introduction and Motivation Case Analysis for Rippling Evaluation Summary

Case Analysis for Rippling

• IsaPlanner: Higher-order proof-planner for Isabelle.

• Extend rippling in IsaPlanner to cover case analysis for:
• If-statements.
• Case-statements over datatypes.

• Retain termination:
• Ripple-step becomes: rewriting + case-splitting.



Introduction and Motivation Case Analysis for Rippling Evaluation Summary

A Simple Example

Definition of max:

max 0 y = y (1)

max (Suc x) y = case y of 0⇒ Suc x (2)

| Suc z ⇒ Suc(max x z)

Commutativity of max :

Inductive hypothesis (IH): ∀b. max a b = max b a

Step-case goal: max Suc a bb′c = max bb′c Suc a

Apply (2):

case b′ of 0⇒ Suc a | Suc z ⇒ Suc(max a bzc) = max bb′c Suc a



Introduction and Motivation Case Analysis for Rippling Evaluation Summary

A Simple Example

Definition of max:

max 0 y = y (1)

max (Suc x) y = case y of 0⇒ Suc x (2)

| Suc z ⇒ Suc(max x z)

Commutativity of max :

Inductive hypothesis (IH): ∀b. max a b = max b a

Step-case goal: max Suc a bb′c = max bb′c Suc a

Apply (2):

case b′ of 0⇒ Suc a | Suc z ⇒ Suc(max a bzc) = max bb′c Suc a



Introduction and Motivation Case Analysis for Rippling Evaluation Summary

Applying the Split

Isabelle automatically derives splitting rules for case-statements for
each datatype:

J?n = 0 =⇒?P(?f1); ∀x . (?n = Suc x) =⇒?P(?f2 x)K =⇒
?P(case ?n of 0 ⇒?f1 | (Suc x) ⇒ (?f2 x))

?P matches context of case-statement.

• Case-split as resolution step.

• Interactive setting: User gives instantiation of ?P.

• Automatic proof: ?P in head position - match any term,
many trivial unifiers, large search space.



Introduction and Motivation Case Analysis for Rippling Evaluation Summary

Restricted Unification

?P(case ?n of 0 ⇒?f1 | (Suc x) ⇒ (?f2 x)︸ ︷︷ ︸
meta-variable argument

)

case b′ of 0⇒ Suc a | Suc z ⇒ Suc(max a z)︸ ︷︷ ︸
subterm of interest

= max b′ Suc a

• Only apply to terms containing argument of meta-variable ?P.

• Find instantiation for ?P, then safe to apply regular resolution.

• Algorithm using Zippers.

• Traverse term, find matching subterm. Zipper keeps track of
its context.

• Use context of subterm to provide instantiation of ?P:
λv . v = max b′ Suc a



Introduction and Motivation Case Analysis for Rippling Evaluation Summary

Example cont.

A ripple step with case-analysis:
max Suc a bb′c = max bb′c Suc ay Rewrite using: max def.

case b′ of 0⇒ Suc a | Suc z ⇒ Suc(max a z) = max b′ Suc ay Apply case-split.

b′ = 0 =⇒ Suc a = max 0 (Suc a) (3)

b′ = Suc z =⇒ Suc(max a bzc) = max bSuc zc Suc a (4)

Goal 3 is solved by simplification (no rippling embedding).

Rippling continues on goal 4.



Introduction and Motivation Case Analysis for Rippling Evaluation Summary

Evaluation

• Case-statements common, not previously covered by rippling.

• Implementation in IsaPlanner:
Rippling + Case Analysis + Lemma Calculation

• Corpus of 87 inductive theorems. If- and case statements.
• Lists, natural numbers, binary trees.
• Isabelle library, inductive TP literature, dependently typed

programming.

• Prover given only function definitions. No extra lemmas
supplied.



Introduction and Motivation Case Analysis for Rippling Evaluation Summary

Evaluation

• 47/87 new theorems proved automatically.

• Remaining theorems:
• More sophisticated reasoning about side-conditions.
• Conjecturing of conditional lemmas.

• Example failed proof: sorted(insertionSort(l))

• Need lemma with assumption:
sorted m =⇒ sorted(insert x m).



Introduction and Motivation Case Analysis for Rippling Evaluation Summary

Comparison to Simplification-Based Technique

• Isabelle’s simplifier allows splitting on if-statements.

• Case-statements not attempted: may cause non-termination.

Coverage:

• Proved by Induction+Simp technique: 37

• Proved by Rippling: 47

Termination:

• Rippling terminates on all examples.

• Induction+Simp often fails to terminate:
• Proofs it cannot solve.
• When asked for alternative proofs.
• Stuck trying to conjecture increasingly complex lemmas.



Introduction and Motivation Case Analysis for Rippling Evaluation Summary

Other Approaches

• Recursion Analysis: Choose induction scheme avoiding need
for case-splits.
• ACL2, VeriFun: No datatypes, destructor style, recursion on

several arguments instead of case statements.

• Isabelle: HO, datatypes, constructor style.
Want to work directly with these.

• Further Work: Automatic construction/selection of induction
schemes in IsaPlanner.

• May still need case-analysis even with more elaborate
induction schemes.
• Case-statement introduced by auxiliary lemma, rewrite from

other conditional function definition.



Introduction and Motivation Case Analysis for Rippling Evaluation Summary

Summary

• Case-analysis needed for inductive proofs about conditional
functions.

• Fully automatic technique implemented in IsaPlanner.

• Incorporated with rippling.

• Ensures termination also in presence of case-statements over
datatypes.

• Proves 47/87 theorems in evaluation corpus.

• Further work:
• More sophisticated reasoning with assumptions
• Conditional lemma discovery.


	Introduction and Motivation
	Case Analysis for Rippling
	Evaluation
	Summary

