Programming Language Techniques for
Cryptographic Proofs

Gilles Barthe!
Benjamin Grégoire’ Santiago Zanella-Béguelin!

LIMDEA Software, Madrid, Sp in
e
2INRIA Sophia Antipolis - Méditerranée, France

ITP 2010

Formal verification of cryptographic primitives

Security of cryptographic primitives is hard to achieve:
@ “Secure schemes” broken after more than 10 years

@ “Security proofs” remaining flawed over more than 15 years

First step: acknowledging the problem

@ Do we have a problem with cryptographic proofs? Yes, we do
[...] We generate more proofs than we carefully verify (and as
a consequence some of our published proofs are
incorrect)—Halevi, 2005

@ In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a crisis
of rigo—Bellare and Rogaway, 2006

/94

(In)Famous example: RSA-OAEP

2/9%4

Bellare and Rogaway

Shoup

Pointcheval

Bellare, Hofheinz, Kiltz

1994

2001

2004

Fujisaki, Okamoto, Pointcheval, Stern

2009

1994 Purported proof of chosen-ciphertext security
2001 Proof is flawed, but can be patched

© ...for a weaker security notion, or
Q@ ...for a modified scheme, or
© ...under stronger assumptions

2004 Filled gaps in Fujisaki et al. 2001 proof
2009 Security definition needs to be clarified

2010 Filled gaps and marginally improved bound in 2004 proof

Exact IND-CCA security of OAEP

Game IND-CCA : Game PD-OW :
(pk, sk) — KG(n); (pk, sk) — KGr(n);
(mo, my) — A1(pk); s & {0, 1}tk
b {0,1}; t & {0,1}k;
c* — E(mp); § — Z(f(pk,s || t))
b «— A2(C*)

VA, 3T,

1

2 |Pr[IND-CPA : b= b] — 5| <

3gpqc + 95 +4g9p + g 2gp

quPr[PD-OW : § = s] + o ok

The proof has been machine-checked in the Coq proof assistant.

A/2A

Exact IND-CCA security of OAEP

Game IND-CCA : Game PD-OW :
(pk, sk) — KG(n); (pk, sk) — KGr(n);
(mo, my) — A1(pk); s & {0, 1}tk
b {0,1}; t & {0,1}k;
c* — E(mp); § — Z(f(pk,s || t))
b «— A2(C*)

VA, 3T,

1

2 |Pr[IND-CPA : b= b] — 5| <

3gpqc + 95 +4g9p + g 2gp

quPr[PD-OW : § = s] + o ok

The proof has been machine-checked in the Coq proof assistant.

How?

A/2A

Exact IND-CCA security of OAEP

Game IND-CCA : Qracle G(r):

LG, Lu,Lp <« d; if r ¢ dom(Lg) ti;(en
(pk, sk) < KG(n); Lg[r] & {0, 1}"*%;
(IT707 ml) — Al(pk), return LG[r]

b & {0,1}; Oracle H(r) : ...

C: — E(my); Oracle D(c) :

Caer — LIUE: Lo — (€, ¢) = Lp;

b «— AQ(C*)

Security statement

VA, 3T, WF(A) A

< < <
Pr |IND-CCA - |LG‘_qG*‘i‘CI’D/\“-H|_CIH/\“-’D|_q’D —1
A (true, c*) ¢ Lp

~ 1
— 2 |Pr[IND-CCA: b= b] — 5‘ <

39p9c + 95 + 49p + g6 L 2

qguPr[PD-OW : § = s] + o =

K /24

The game-playing methodology

@ How do we formalize the statement?

A/

The game-playing methodology

@ Games = (Families of) Probabilistic programs

Game G| :

<—A()

PI’GS [Ao]

A/

The game-playing methodology

@ Games = (Families of) Probabilistic programs

@ How do we perform the proof?

Game G| :

<—A()

PI’GB? [Ao]

A/

The game-playing methodology

@ Games = (Families of) Probabilistic programs

@ Game transformation = Program transformation

Game G| : Game G : Game G} :

e AC || | e,

Preaf[Ad]l < m(Pra[Al]) < ... < ho(PrgnfA])

A/

CertiCrypt: machine-checking provable security

Certified framework for checking exact provable security proofs in
the Coq proof assistant

@ A combination of general methods from programming
languages and of cryptographic-specific tools

@ Game-based methodology, natural to cryptographers

@ Focus on exact security bounds

@ Several case studies:

@ Encryption schemes: ElGamal, Hashed ElGamal, OAEP, IBE
@ Signature schemes: FDH, BLS
@ Zero-knowledge proofs: see talk at CSF!

7 /94

Inside CertiCrypt

Q/9°A

@ Semantics and cost model of probabilistic programs

@ Model for adversaries
@ Standard tools to reason about probabilistic programs
@ Semantics-preserving program transformations

@ Observational equivalence
@ Relational Hoare Logic

@ In this talk: automation of 2 reasoning patterns in crypto:

© Bounding failure events
@ Moving sampling of random values accross procedures

pWhile: a probabilistic programming language

a/24

T = V<& assignment
| V&DE random sampling
| if £ then C else C conditional
| while £doC while loop
| V<—PE,....E) procedure call
C = skip nop
| Z,C sequence

x & d: sample x according to distribution d, typically the uniform
distribution on a set (e.g. {0,1}, {0,1}%)

Deep Embedding

The syntax of programs is formalized as an inductive type

Dependently-typed Syntax

Inductive 7 :=

| Assign : Vt, Vi = & — T

| Rand :Vt, Vi = DE — T

| Cond : & —-C—-C—T

| While : &g —C —Z

| Call VI, Py — Ve—dlist | E—T
where C :=list 7

@ Programs are well-typed by construction
@ Semantics as a total function

@ Allows richer specification (e.g. enforce size constraints on
bitstrings)

10 /24

Semantics

Measure Monad —courtesy of Christine Paulin

Distributions represented as functions of type

D(A) & (A= [0,1]) — [0,1] s.t.

Q f<g = u(f) < u(g);

Q (1 —f) <1—pu(f);

Q@ F<l-g = uf+g)=plf)+p(e)

Q plk x f) =k x p(f);

Q@ f:N— (A—[0,1]) is monotonic and for all n € N f(n) is
monotonic, then p(sup f) < sup (An. u(f(n))

All arithmetic is in the unit interval [0, 1]

unit : A — D(A) LA ML f x
bind : D(A) — (A — D(B)) — D(B) ¥ Au. A\F. M. u(Ax. F x f)

11 /24

Semantics

19 /94

[cel]: M — D(M)

[skip] =
[i; c] m

[x —e] m
[x & d] m =

[if e then ¢ else o] m =

[while e do c] m =
where
[while e do c]o
[while e do c],,,

[x — p(&)] m =

skip
if e then ¢; [while e do ¢,

unit

= bind ([i] m) []
= unit m{([e]e m)/x}

bind ([d]pe m) (Av. unit m{v/x})
{ [ci] m if [e]e m = true

[c2] m if [e]le m = false
Af.sup (An. [[while e do c],] m f)

bind ([p.body] ...

Semantics

19 /94

[cel]: M — D(M)

[skip]

[i; c] m
[x —e] m
[x & d] m

[if e then c; else cp] m

[while e do c] m
where
[while e do c]o =
[while edo c],., =

[x = p(E)] m

skip

unit
bind ([/] m) [c]
unit m{([e]s m)/x}
bind ([d]pe m) (Av. unit m{v/x})
{ [ci] m if [e]e m = true

[co] m if [e]e m = false
Af.sup (An. [[while e do c],] m f)

if e then ¢; [while e do ¢,

bind ([p.body] ...

Not axioms: actual function built from small-step semantics

)

Observational Equivalence

Games G and Gy are observationally equivalent w.r.t. input
variables / and output variables O iff:

@ IF m; and my coincide on /

@ THEN [G1] m; and [Gz]] my coincide on O (i.e. their
projections on O are equal)

m=xm = VYxeX, m x=mx
f=xg = Vmimy, m=xm = fm=gm

':GlﬁlOG2 def lemzfg,m1:/m2/\f:og:>
[[Gl]] ma f:[[G2]] my g

o Generalized to arbitrary relations
@ Probabilistic Relational Hoare Logic

...but this is not what this talk is about

12/24

Reasoning about Failure Events

Lemma (Fundamental Lemma of Game-Playing)
Let A, B, F be events and Gy, Gy be two games such that

Pr[Gy : AN =F] =Pr[Gy : BA—F]

Then,

Pr[G;y : A] — Pr[G2 : B]| < max(Pr[G; : F],Pr[G2 : F])

14 /24

Automation

Syntectic Criterion

When A = B and F = bad. If Gg, G; are syntactically identical
except after program points setting bad e.g.

Game Gq : Game Gy :

bad < true; ¢y bad « true; ¢

15 /94

Automation

Syntectic Criterion

When A = B and F = bad. If Gg, Gy are syntactically identical
except after program points setting bad e.g.

Game Gq : Game Gy :

bad < true; ¢y bad « true; ¢

...and bad is never reset, then
@ Pr[Gp : AA —bad] = Pr[G; : AA —bad]

o If game G; (¢;) terminates with probability 1:
Pr[Gi_; : bad] < Pr[G; : bad]

o If both ¢p, 1 terminate absolutely:
Pr[Gp : bad] = Pr[G; : bad]

15 /94

Failure Event lemma
Motivation: the Fundamental Lemma is typically applied in games
where only oracles trigger bad.
@ |F the probability of triggering bad in an oracle call can be
bound as a function of the number of oracle calls so far

@ THEN the probability of the whole game triggering bad can
be bound if the number of oracle calls is bounded

Failure Event Lemma (constant case)

Assume that m(bad) = false

o |F Pr[O, m: bad] < p for every memory m such that
m(bad) = false

@ THEN Pr[G, m : bad] < p qo

Hypothesis holds for oracle
O(x):y & T;if y = yp then bad « true else ...

with p = 1/|T|

16 /24

Logic of Failure Events
A variant of Probabilistic Hoare Logic

Flclg = f = m[e] mg < f(m)

Selected Rules

F [skip]f = f + [x < e]g < Am. g(m{[e] m/x})
Flx & Tlg 2 Aam|[T]7 Xy &(m{t/x})

Flalg 2 f [e)lh=g

Flalg 2 f [elg=f

= [[Cl; C2]]h = f
f=

IFZCf:'OC’

F [if e then ¢; else co]g < f
g= OF][]lg=f

Fclg = f

17 /24

Logic of Failure Events
A variant of Probabilistic Hoare Logic

Flclg=f < VYm.[c] mg < f(m)
Flclg=f % Vm.[c] mg > f(m)

Selected Rules

F [skip]f = f + [x < e]g < Am. g(m{[e] m/x})
Flx & Tlg 2 Aam|[T]7 Xy &(m{t/x})
Flalg 2 f [e]h=2g Flalg 2 f [elg=f
Flease]h =< f F [if e then ¢ else]lg < f
f= IFc~hd g= OF[d]g=f
Flclg = f

Relation to Hoare Logic (for Boolean-valued P, Q):

Partial correctness: {P}c{Q} <= [c]l-@q <1-p
Total correctness: {P}c{Q} < [c]lq = 1p

17 /24

Application: PRP/PRF Switching Lemma

Game Ggp : Game Ggf :

L —nil; b+ A() L — nil; b+ A()

Oracle O(x) : Oracle O(x) :

if x ¢ dom(L) then if x ¢ dom(L) then
y < {0,1}\ ran(L); y & {0,1}%
L—(x,y):L L—(x,y):L

return L(x) return L(x)

Suppose A makes at most g queries to O. Then

-1
|P1“[GRP . b] — Pr[GRF . b]| < %

@ First introduced by Impagliazzo and Rudich in 1989
@ Proof fixed by Bellare and Rogaway (2006) and Shoup (2004)

12 /924

Proof

' Game Ggrp :

L —nil; b+ A()

Oracle O(x) :
if x ¢ dom(L) then
y & {0,1}%;
if y € ran(L) then ;
bad « true;
y & {0,1}*\ ran(L)
L—(x,y):L
return L(x)

10/24

' Game Ggrf :

L —nil; b+ A()
Oracle O(x) :
if x ¢ dom(L) then
y & {0,1}%
if y € ran(L) then ;
bad « true

L—(x,y):L

return L(x)

|Pr[Grp : b] — Pr[GgE : b]| < Pr[Ggr : bad]

Proof

Failure Event Lemma (less simplified)
Let k be a counter for O and m(bad) = false:

o IF Pr[O, m: bad] < f(m(k)) for all memories m such that
m(bad) = false

qo—1
o THEN Pr[G, m:bad] <) (k)
k=0

Oracle O(x) :

if x ¢ dom(L) then
y & {0,1}%; if y € ran(L) then bad « true;
L—(x,y):L

return L(x)

@ Prove that
|m(L)|

Pr[G, m : bad] < o

2°¢M /24

Eager/Lazy Sampling

@ Interprocedural code motion
@ Eager sampling: from an oracle to main game

@ Lazy sampling: from main game to an oracle

Motivation

In crypto proofs
@ Often need to know that some values are independent and
uniformly distributed at some program point

@ This holds when values can be resampled preserving
semantics!)

To prove correctness of eager and lazy sampling, we developed a
logic for swapping statements

FE, (¢;S)~FE, (S;c)

71 /24

Selected Rules

Assume modifies(E, S) U modifies(E’,S) C X and F E, S ~X E/, S

xgX fu(e)N X =10
EE (x—eS)=FE (S;x—e)

x & X
FE(x& T,S)=E,(S;x&T)

EE (c;S)=FE'(S;¢c]) FE, (c;S)=E,(S;¢)
EE,(c1;¢;S)=E',(S;cf;)

FE (c;S)=E,(S) EE (c;8)=E,(S;¢)
fu(e)uX =10
E E, (if e then ¢ else cp; S) = E',(S;if e then ¢] else ¢})

7 /94

Application: PRP/PRF Switching Lemma

Game G
L—nil; S; b~ A()
Oracle O(x) :
if x & dom(L) then
if 0 < |Y| then
y < hd(Y); Y —tl(Y)
else y & {0,1}*
L—(x,y):L
return L(x)
where S &Y « []; while |[Y| < gdoy < {0,1}; Y « Y +[y]
Prove using the logic:
= Ene, (b AQ):)= i, (Si b— A()
Prove by induction: a1 .
Pr[Ggr; S @ bad] = Pr[GRF®" : collision] = Z é
i=0

7 /94

Summary
CertiCrypt: crypto proofs using programming language techniques
@ Observational equivalence
@ Relational Hoare Logic
@ Certified program transformations
...including a few non-standard techniques
o Failure events
@ Eager and lazy sampling
Tools in this paper increase automation and abstraction.
Proof of the PRP/PRF Switching Lemma:
@ Original (POPL’09): 900 lines
@ Using logic of swapping statements: 400 lines
@ Using Failure Event Lemma: 100 lines

The road ahead

Increasing abstraction and automation will hopefully make
verifiable security a reasonable and profitable alternative for
cryptographers (see FCC'10 talk next week)

Y /24

