
 1

A Framework for Formal
Verification of Compiler
Optimizations

William Mansky, Elsa Gunter

 2

 program correctness relies on compiler
 real compilers have bugs, and they're

hard to find
 compiler optimizations are complicated

and not usually verified
 goal: transformed program is

semantically equivalent

Compiler verification

 3

 write optimization in TRANS
– rewrite language on CFGs
– side conditions in CTL on CFGs

 prove correctness using Isabelle, CTL,
given lemmas for TRANS

 in compiler, model-check condition
before rewriting

Framework Overview

 4

Control Flow Graphs (for L0)

Entry

x := 1

x := x + 1

goto
x := x - 1

y := x

seq

seq

seq

seq

seq

seq

branch

branch

0: x := 1

1: if x > 0 goto 4

2: x := x + 1

3: goto 5

4: x := x - 1

5: y := x

6: return y
return y

seq

Exit

if x > 0

 5

 replace x := e with skip (transformation)
if
 ¬EX(E(¬def(x) U (use(x) ¬node(n)))) ∧ (CTL)
 @ n (node)
i.e., if there is no path forward along which x is used

before it is redefined

 first presented by Kalvala et al.
 we gave full formal semantics in Isabelle

The TRANS Language

 6

 add_edge(n,m,e) – add an edge from n to m
labeled e

 remove_edge(n,m,e) – remove an edge from n
to m labeled e

 replace n with p1,...,pk – replace the instr at n
with instrs p1,...,pk

 split_edge(n,m,e,q) – insert q in the middle of
the edge from n to m

 These actions may not preserve CFGs

TRANS actions (on CFGs)

 7

 analogous to LCF tacticals
 match φ in T, T1 □ T2, T1 then T2, apply_all T
 amended recursive semantics for apply_all:

– inductively define apply_some(f, τ, G) to
apply f some number of times

– [apply_all T](τ, G) =
apply_some([T], τ, G) \

 {G' | G'' ∈ [T](τ, G') G'' ≠ G'}∧

TRANS Strategies

 8

 A TRANS formula on a graph G defines a
set S of transformed graphs

 We can define language semantics as
transition system on CFGs

 A transformation is semantics-preserving
if for all G'∈S, G →* v iff G' →* v

Correctness of a
transformation

 9

 Kalvala et al. have already expressed
simple optimizations

 Static Single Assignment (SSA) is a
common transformation in optimizing
compilers

 extends language of source programs
 no known verified algorithm

Case Study: SSA

 10

Static Single Assignment

x1 := 1

x3 := x1 + 3

x4 := φ(x2, x3)

x2 := 2

y := x4 + 4

x := 1

x := x + 3x := 2

y := x + 4

if x if x1

 11

 step 1: write SSA conversion in TRANS
– side conditions capture basic logic of

SSA
– try to maximize modularity

 step 2: verify conversion
– first priority is semantic preservation
– also want to show result is SSA
– must first show preservation of CFGs

Using the Framework

 12

 step 0: define parameter language
 L1 = L0 + φ-functions

 SSA in TRANS over L1 has four steps
 add_index – change each x := e to xi := e
 add_phi – add φ-functions at join points
 update – change each use of x to the xi

that reaches it
 refactor – change the xi's to new variables

Correctness of SSA

 13

Sample proof step: add_phi

Theorem: If G is a CFG with no φ-functions, each
application of add_phi preserves the semantics of G

Proof: by induction on program trace (stuttering
bisimulation)

Precondition: each var instance has a unique
definition (1) + graph has no φ-functions

Postcondition: (1) + φ-nodes are the only nodes
reached by multiple definitions of the same var +
graph has no non-empty φ-functions

 14

 the first verified TRANS optimization
 the first verified SSA conversion
 revised and formalized TRANS semantics
 proved various general lemmas about

CFG preservation, reaching defs, etc.
 modular proof with lightweight pre- and

post-conditions
 hope to extend to parallel optimizations

Results

 15

Related Work

 Kalvala et al. (2009): defined TRANS,
expressed opts.

 Visser et al. (1999): rewrite-based opts., no
conditions or verification

 Leroy (2006, 2009): opts. based on
dataflow analysis, limited changes to
structure

 Blech & Glesner (2004): verified code
generation from SSA

 16

apply_some

 solution: inductively define
apply_some(f, τ, G)

 G ∈ apply_some(f, τ, G)

G' ∈ f(τ, G) G'' ∈ apply_some(f, τ, G')
G'' ∈ apply_some(f, τ, G)

 17

apply_all (replace n with (xk := e)

if
 varlit(x) & stmt(x := e) @ n &

freshNew(x, k))

Step 1: add_index

 18

apply_all (replace n with xk := φ(), i

if
 stmt(i) @ n & multi_defs(x) @ n &

freshNew(x, k) & ~(n1 is n2) & (EXR
node(n1) & EXR node(n2)) @ n &
A(stmt(y := φ(s)) & ~(x is y) U
~stmt(y := φ(s)) @ n))

Step 2: add_phi

 19

apply_all (match reaches(xk) @ n in
replace n with i[xk] if stmt(i[x]) @ n □
replace n with xk' := φ(xk, s) if
stmt(xk' := φ(s)) @ n & ~(xk in s))

 reaches is defined in terms of until

Step 3: update

 20

apply_all (match fresh z in
 (replace n with z := e if
 stmt(xk := e) @ n □

 replace n with z := φ(s) if
 stmt(xk := φ(s)) @ n) then

 replace n with i[z] if stmt(i[xk]) @ n)

Step 4: refactor

 21

add_index

lemma add_index_ok:
assumes more_nodes and "CFG G"
shows "preserves_results add_index G"

Proof: by induction on program trace (step-by-step
correspondence)

Precondition: graph contains no φ-functions

Postcondition: each var instance has a unique
definition

 22

add_index

Theorem: If G is a CFG, each application of
add_index preserves the semantics of G

Proof: by induction on program trace (step-by-step
correspondence)

Precondition: graph contains no φ-functions

Postcondition: graph contains no φ-functions + each
var instance has a unique definition (1)

 23

add_phi

Theorem: If G is a CFG with no φ-functions, each
application of add_phi preserves the semantics of G

Proof: by induction on program trace (stuttering
bisimulation)

Precondition: (1)

Postcondition: (1) + graph has no non-empty φ-
functions + φ-nodes are the only nodes reached by
multiple definitions of the same var

 24

update

Theorem: If G is a CFG in which (1) holds and φ-
nodes are the only nodes reached by multiple
definitions of the same var, FULL application of
update preserves the semantics of G

Proof: by induction on program trace (one-to-one
correspondence)

Precondition: none

Postcondition: (1) + each var use is indexed with its
reaching definition (2) + each φ-function holds all
reaching instances of its base var (3)

 25

refactor

Theorem: If G is a CFG in which (1) and (2) hold
and, in any execution trace of G, the reaching
instance at each φ-function is in the body of the φ-
function, each application of refactor preserves the
semantics of G

Proof: by induction on program trace (bisimulation
based on refactored memories)

Precondition: (3)

Postcondition: (1) + all indexed vars replaced

 26

SSA conversion

theorem conversion_ok: "[| more_nodes;
recoverable G; to_SSA_graph G0 = G |]
==> preserves_results conversion G"
Proof: by combination of correctness properties for
each step

Postcondition: (1) + all indexed vars have been
replaced, implying that resulting graph is SSA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

