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 program correctness relies on compiler
 real compilers have bugs, and they're 

hard to find
 compiler optimizations are complicated 

and not usually verified
 goal: transformed program is 

semantically equivalent

Compiler verification
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 write optimization in TRANS
– rewrite language on CFGs
– side conditions in CTL on CFGs

 prove correctness using Isabelle, CTL, 
given lemmas for TRANS

 in compiler, model-check condition 
before rewriting

Framework Overview
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Control Flow Graphs (for L0)

Entry

x := 1

x := x + 1

goto
x := x - 1

y := x

seq

seq

seq

seq

seq

seq

branch

branch

0: x := 1

1: if x > 0 goto 4

2: x := x + 1

3: goto 5

4: x := x - 1

5: y := x

6: return y
return y

seq

Exit

if x > 0
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 replace x := e with skip (transformation)
if 
 ¬EX(E(¬def(x) U (use(x)  ¬node(n)))) ∧ (CTL)
 @ n (node)
i.e., if there is no path forward along which x is used 

before it is redefined

 first presented by Kalvala et al.
 we gave full formal semantics in Isabelle

The TRANS Language
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 add_edge(n,m,e) – add an edge from n to m 
labeled e

 remove_edge(n,m,e) – remove an edge from n 
to m labeled e

 replace n with p1,...,pk – replace the instr at n 
with instrs p1,...,pk

 split_edge(n,m,e,q) – insert q in the middle of 
the edge from n to m

 These actions may not preserve CFGs

TRANS actions (on CFGs)
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 analogous to LCF tacticals
 match φ in T, T1 □ T2, T1 then T2, apply_all T 
 amended recursive semantics for apply_all:

– inductively define apply_some(f, τ, G) to 
apply f some number of times

– [apply_all T](τ, G) =             
apply_some([T], τ, G) \

   {G' | G'' ∈ [T](τ, G')  G'' ≠ G'}∧

TRANS Strategies
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 A TRANS formula on a graph G defines a 
set S of transformed graphs

 We can define language semantics as 
transition system on CFGs

 A transformation is semantics-preserving 
if for all G'∈S, G →* v iff G' →* v

Correctness of a 
transformation
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 Kalvala et al. have already expressed 
simple optimizations

 Static Single Assignment (SSA) is a 
common transformation in optimizing 
compilers

 extends language of source programs
 no known verified algorithm

Case Study: SSA
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Static Single Assignment

x1 := 1

x3 := x1 + 3

x4 := φ(x2, x3)

x2 := 2

y := x4 + 4

x := 1

x := x + 3x := 2

y := x + 4

if x if x1
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 step 1: write SSA conversion in TRANS
– side conditions capture basic logic of 

SSA
– try to maximize modularity

 step 2: verify conversion
– first priority is semantic preservation
– also want to show result is SSA
– must first show preservation of CFGs

Using the Framework
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 step 0: define parameter language 
 L1 = L0 + φ-functions

 SSA in TRANS over L1 has four steps
 add_index – change each x := e to xi := e
 add_phi – add φ-functions at join points
 update – change each use of x to the xi 

that reaches it
 refactor – change the xi's to new variables

Correctness of SSA
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Sample proof step: add_phi

Theorem: If G is a CFG with no φ-functions, each 
application of add_phi preserves the semantics of G

Proof: by induction on program trace (stuttering 
bisimulation)

Precondition: each var instance has a unique 
definition (1) + graph has no φ-functions

Postcondition: (1) + φ-nodes are the only nodes 
reached by multiple definitions of the same var + 
graph has no non-empty φ-functions
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 the first verified TRANS optimization
 the first verified SSA conversion
 revised and formalized TRANS semantics
 proved various general lemmas about 

CFG preservation, reaching defs, etc.
 modular proof with lightweight pre- and 

post-conditions
 hope to extend to parallel optimizations

Results
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Related Work

 Kalvala et al. (2009): defined TRANS, 
expressed opts.

 Visser et al. (1999): rewrite-based opts., no 
conditions or verification

 Leroy (2006, 2009): opts. based on 
dataflow analysis, limited changes to 
structure

 Blech & Glesner (2004): verified code 
generation from SSA
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apply_some

 solution: inductively define 
apply_some(f, τ, G)

 G ∈ apply_some(f, τ, G)

G' ∈ f(τ, G)    G'' ∈ apply_some(f, τ, G') 
G'' ∈ apply_some(f, τ, G)
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apply_all (replace n with (xk := e)

if
   varlit(x) & stmt(x := e) @ n & 

freshNew(x, k))

Step 1: add_index
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apply_all (replace n with xk := φ(), i

if 
   stmt(i) @ n & multi_defs(x) @ n & 

freshNew(x, k) & ~(n1 is n2) & (EXR 
node(n1) & EXR node(n2)) @ n &       
A(stmt(y := φ(s)) & ~(x is y) U 
~stmt(y := φ(s)) @ n))

Step 2: add_phi



  19

apply_all (match reaches(xk) @ n in 
replace n with i[xk] if stmt(i[x]) @ n □ 
replace n with xk' := φ(xk, s) if                
stmt(xk' := φ(s)) @ n & ~(xk in s))

 reaches is defined in terms of until

Step 3: update
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apply_all (match fresh z in 
   (replace n with z := e if 
    stmt(xk := e) @ n □ 

    replace n with z := φ(s) if        
    stmt(xk := φ(s)) @ n) then 

   replace n with i[z] if stmt(i[xk]) @ n)

Step 4: refactor
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add_index

lemma add_index_ok: 
assumes more_nodes and "CFG G" 
shows "preserves_results add_index G"

Proof: by induction on program trace (step-by-step 
correspondence)

Precondition: graph contains no φ-functions

Postcondition: each var instance has a unique 
definition
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add_index

Theorem: If G is a CFG, each application of 
add_index preserves the semantics of G

Proof: by induction on program trace (step-by-step 
correspondence)

Precondition: graph contains no φ-functions

Postcondition: graph contains no φ-functions + each 
var instance has a unique definition (1)
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add_phi

Theorem: If G is a CFG with no φ-functions, each 
application of add_phi preserves the semantics of G

Proof: by induction on program trace (stuttering 
bisimulation)

Precondition: (1)

Postcondition: (1) + graph has no non-empty φ-
functions + φ-nodes are the only nodes reached by 
multiple definitions of the same var 
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update

Theorem: If G is a CFG in which (1) holds and φ-
nodes are the only nodes reached by multiple 
definitions of the same var, FULL application of 
update preserves the semantics of G

Proof: by induction on program trace (one-to-one 
correspondence)

Precondition: none

Postcondition: (1) + each var use is indexed with its 
reaching definition (2) + each φ-function holds all 
reaching instances of its base var (3)
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refactor

Theorem: If G is a CFG in which (1) and (2) hold 
and, in any execution trace of G, the reaching 
instance at each φ-function is in the body of the φ-
function, each application of refactor preserves the 
semantics of G

Proof: by induction on program trace (bisimulation 
based on refactored memories)

Precondition: (3)

Postcondition: (1) + all indexed vars replaced
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SSA conversion

theorem conversion_ok: "[| more_nodes; 
recoverable G; to_SSA_graph G0 = G |] 
==> preserves_results conversion G"
Proof: by combination of correctness properties for 
each step

Postcondition: (1) + all indexed vars have been 
replaced, implying that resulting graph is SSA
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