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Procedural vs. Declarative ProofProcedural vs. Declarative Proof

◮ recent trend towards declarative proof languages, inspired by Mizar

procedural style declarative style
theorem natcomp:

"(a::nat) + b = b+a"

apply (induct a)

apply (subst add_0)

apply (subst add_0_right)

apply (rule refl)

apply (subst add_Suc_right)

apply (subst add_Suc)

apply (simp)

done

theorem natcomplus:

"(a::nat) + b = b+a"

proof (induct a)

show "0 + b = b + 0"

proof (-)

have "0+b=b" by (simp)

also have "...=b+0" by (simp)

finally show ?thesis .

qed

next ...

+ more efficient processing

+ faster proof development

+ usually shorter

+ easier to read (explicit context)

+ easier to maintain, error recovery

◮ portable (at least to some degree)
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Constructing Declarative ProofsConstructing Declarative Proofs

◮ common practice:
◮ do not use declarative style
◮ explore and find proof using procedural style, rewrite it in declarative style

theorem natcomp: "a + b =

b+a"

apply (induct a)

apply (subst add_0)

apply (subst add_0_right)

apply (rule refl)

goal (1 subgoal):

1. a + b = b + a

proof (induct a)

show "0 + b = b + 0"

proof (-)

have "0+b=b" by (subst add_0)

also have "...=b+0" by (subst

finally show ?thesis .

qed

next

fix a

assume IH: "a+b=b+a"

show "Suc a + b = b + Suc a"
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GoalGoal

theorem natcomplus: "a + b = b+a"

Tactic execution

theorem natcomplus: "a + b = b+a"

proof (induct a)

show "0 + b = b + 0"

proof

. . .
qed next

fix a

assume IH: "a+b=b+a"

show "Suc a + b = b + Suc a"

proof

. . .

Goals/Contributions

◮ first class support of
declarative proofs at the
tactic level
◮ declarative proof scripts

without loosing advantages
of apply style

◮ capture high level structure

of the proof in the tradition
of proof planning [Bun88]
or proof sketches [Wie04]

◮ specification of tactics
within proof document
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Generation of Declarative ProofsGeneration of Declarative Proofs

1 generate declarative proof script from proof term [Coe10]
◮ procedural proof script → proof term → declarative proof script

2 generate declarative proof script from assertion level proof [DSW08]
◮ procedural proof script → proof tree → declarative proof script

Proof Script Generation

◮ Stylistic choices in expressing proofs, leading to granularity problem
◮ include intermediate results or express them as separate lemmas
◮ skip trivial steps completely

3 Observation: proof plans can be expressed as declarative proof scripts
(Isaplanner [Dix05])
◮ similarities and differences are discussed at the end of the talk
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OverviewOverview

1 Development of Declarative Tactics

2 Dynamic Patterns and Iteration
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Basic Declarative Tactics (1)Basic Declarative Tactics (1)

◮ procedural tactics, simplest case: sequence of inference applications
◮ involve parameters (such as induction variable)

◮ declarative tactic: sequence of (declarative) proof commands

◮ abstract over common structure of proof scripts to obtain schematic

proof script

theorem natcomplus: a+b = b+a

proof

subgoals by (induct a )

subgoal 0+b = b+0

subgoal Suc a+b = b+Suc a

using IH: a+b=b+a

end

qed

theorem natcomplus: a+b = b+a

proof

subgoals by (induct b )

subgoal a+0 = 0+a

subgoal a+Suc b = Suc b+a

using IH: a+b=b+a

end

qed
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Basic Declarative Tactics (2)Basic Declarative Tactics (2)

pr
ec
on

d
it
io
n

ac
ti
on

strategy natinduct

cases * ⊢ P x

with x in (analyzeinductvars ”P”)

->

proof

subgoals by (induct x)

subgoal P 0

subgoal P (suc x) using IH: P x

end

◮ make context available
via precondition

◮ allow for internal
computations

◮ schematic proof script

as body

Realization
◮ define tactic language on top of proof language

◮ declarative specification of the tactic within proof document

◮ justification is a declarative proof script
◮ natural integration into existing frameworks
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Syntax and SemanticsSyntax and Semantics

◮ a declarative tactic expands to a lazy list of declarative proof scripts

(cf. justification function of LCF tactics)

◮ choice points are due to matching, internal computations

◮ access to underlying programming language only at specific points

◮ general form

strategy name

cases

matcher

where cond

with assignments

-> proofscript

with assignments
...

Expansion

1 match context

2 evaluate metalevel condition
◮ compute value of schematic variables in

where part

3 insert proof script
◮ compute value of remaining schematic

variables
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Integration of External SystemsIntegration of External Systems

◮ natural integration of external systems

◮ procedural decision procedure to close gap

strategy maximafactorabs

cases

* |- ((abs(GOALLHS)) < GOALRHS) ->

proof

L1: abs(Y) < GOALRHS

proof

L2:(Y = GOALLHS) by abeliandecide

L3:abs(Y) = abs(GOALLHS) by (f=abs in arg cong) from L2

qed

qed

with Y = (maxima-factor "GOALLHS")
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A first exampleA first example

The following problem is taken from [JKK+05]. Given the goal

3 + f (x) + g(x , y) = x + g(x , y) + h(y , x)

write a tactic that cancels common summands to obtain

3 + f (x) = x + h(y , x)

strategy cancelsum

cases * |- A 1 + .. + A N = B 1 + .. + B M

proof

L1: C 1 + .. + C N = D 1 + .. + D M

A 1 + .. + A N = B 1 + .. + B M from L1

qed

with

foreach I = 1..N where (not (member ‘‘A I’’ ‘‘B’’)) C I = A I

foreach I = 1..M where (not (member ‘‘B I’’ ‘‘A’’)) D I = B I
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Challenge (1)Challenge (1)

◮ Heuristic: Factor bounding

”The following rule is stated for simplicity using only two factors, but
the rule is implemented for a product of any number of factors.”

(cf. [Bee98])

Γ, |α| < δ ⊢ |γ| < M Γ, |α| < δ ⊢ |β| < ǫ/(M + 1)

Γ, |α| < δ ⊢ |βγ| < ǫ

◮ combines
◮ integration of external systems
◮ dynamic continuation
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Challenge (2)Challenge (2)

strategy factorbound

cases
abs(LHS)<RHS,* |- abs(GOALLHS) < GOALRHS

where (and (variable-eigenvar.is "GOALRHS")

(metavar-is "RHS")

(some #’(lambda (x) (term= "LHS" "x")) "Y 1 .. Y N"))

with Y 1 * .. * Y N = (maxima-factor "GOALLHS")

j = (termposition "LHS" "Y 1 .. Y N")

->

proof
L1: GOALLHS=Y 1 * .. * Y N by abeliandecide
foreach i in 1..N where (not (= "j" "i"))

Y j <= MV j by linearbound

end

L2: abs(GOALLHS)=abs(Y 1 * .. * Y N) from L1
.<= abs(Y 1) * .. * abs(Y N)

.< MV 1 * .. * MV N

.<= GOALRHS

qed
with foreach i in 1..N

M i = (if (= "i" "j") "RHS" (make-metavar (term-type "RHS")))
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Challenge (3)Challenge (3)

theorem th1: limx→3
x
2
−5

x−2 = 4
proof

subgoals

subgoal | x
2
−5

x−2 − 4| < ǫ using A1:ǫ > 0 and A2:|x − 3| <?δ by

factorbound

subgoal ?δ > 0 using ǫ > 0
end by limdefbw

qed
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Challenge (3)Challenge (3)

theorem th1: limx→3
x
2
−5

x−2 = 4
proof

subgoals

subgoal | x
2
−5

x−2 − 4| < ǫ using A1:ǫ > 0 and A2:|x − 3| <?δ
proof

L1: x
2
−5

x−2 − 4 = (x − 3) ∗ ( 1
x−2 ) ∗ (x − 1) by abeliandecide

|x − 1| ≤?MV 1 by linearbound

| 1
x−2 | ≤?MV 2 by linearbound

L2: | x
2
−5

x−2 − 4| ≤ |(x − 3) ∗ ( 1
x−2 ) ∗ (x − 1)| from L1

. ≤ |x − 3| ∗ | 1
x−2 | ∗ |x − 1|

. <?δ∗?MV 1∗?MV 2

. ≤ ǫ
qed

subgoal ?δ > 0 using ǫ > 0
end by limdefbw

qed
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Related WorkRelated Work

◮ Matita: translation of proof terms to declarative proofs
◮ granularity problem
◮ does not address specification of tactics

◮ Isaplanner

◮ generates declarative proof scripts
◮ reasoning techniques specified in ML, not within proof document
◮ provides gap command

◮ LTac (intermediate tactic language in procedural style, Coq)
◮ also provides pattern matching constructs

◮ ACL2:
◮ syntaxp metalevel statement to check for a particular structure, no proof

obligation
◮ meta-function, need to be proved by meta-rule
◮ bind-free binds free variables of a rule
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SummarySummary

◮ declarative tactics in analogy to procedural tactics to automate

declarative proof

◮ defined on top of declarative proof language
◮ declarative specification within proof document
◮ declarative justification by expansion

◮ in the spirit of proof planning and proof sketches
◮ in particular: integration of external systems (oracle mechanism)

◮ expressive pattern language
◮ to provide context in form of preconditions
◮ to analyze the result of tactics/external systems and express continuation

accordingly

◮ restricted access to underlying programming language at specific points
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