
A Tactic Language for Declarative Proofs

Serge Autexier Dominik Dietrich

German Research Center for Artificial Intelligence (DFKI), Bremen, Germany
autexier@dfki.de dominik.dietrich@dfki.de

ITP 2010 - International Conference on Interactive Theorem Proving
Edinburgh, UK, July 11-14, 2010

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Procedural vs. Declarative ProofProcedural vs. Declarative Proof

◮ recent trend towards declarative proof languages, inspired by Mizar

procedural style declarative style
theorem natcomp:

"(a::nat) + b = b+a"

apply (induct a)

apply (subst add_0)

apply (subst add_0_right)

apply (rule refl)

apply (subst add_Suc_right)

apply (subst add_Suc)

apply (simp)

done

theorem natcomplus:

"(a::nat) + b = b+a"

proof (induct a)

show "0 + b = b + 0"

proof (-)

have "0+b=b" by (simp)

also have "...=b+0" by (simp)

finally show ?thesis .

qed

next ...

+ more efficient processing

+ faster proof development

+ usually shorter

+ easier to read (explicit context)

+ easier to maintain, error recovery

◮ portable (at least to some degree)

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Procedural vs. Declarative ProofProcedural vs. Declarative Proof

◮ recent trend towards declarative proof languages, inspired by Mizar

procedural style declarative style
theorem natcomp:

"(a::nat) + b = b+a"

apply (induct a)

apply (subst add_0)

apply (subst add_0_right)

apply (rule refl)

apply (subst add_Suc_right)

apply (subst add_Suc)

apply (simp)

done

theorem natcomplus:

"(a::nat) + b = b+a"

proof (induct a)

show "0 + b = b + 0"

proof (-)

have "0+b=b" by (simp)

also have "...=b+0" by (simp)

finally show ?thesis .

qed

next ...

+ more efficient processing

+ faster proof development

+ usually shorter

+ easier to read (explicit context)

+ easier to maintain, error recovery

◮ portable (at least to some degree)

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Constructing Declarative ProofsConstructing Declarative Proofs

◮ common practice:
◮ do not use declarative style
◮ explore and find proof using procedural style, rewrite it in declarative style

theorem natcomp: "a + b =

b+a"

apply (induct a)

apply (subst add_0)

apply (subst add_0_right)

apply (rule refl)

goal (1 subgoal):

1. a + b = b + a

proof (induct a)

show "0 + b = b + 0"

proof (-)

have "0+b=b" by (subst add_0)

also have "...=b+0" by (subst

finally show ?thesis .

qed

next

fix a

assume IH: "a+b=b+a"

show "Suc a + b = b + Suc a"

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Constructing Declarative ProofsConstructing Declarative Proofs

◮ common practice:
◮ do not use declarative style
◮ explore and find proof using procedural style, rewrite it in declarative style

theorem natcomp: "a + b =

b+a"

apply (induct a)

apply (subst add_0)

apply (subst add_0_right)

apply (rule refl)

goal (2 subgoals):

1. 0 + b = b + 0

2. !!a. a + b = b + a

==> Suc a + b = b + Suc a

proof (induct a)

show "0 + b = b + 0"

proof (-)

have "0+b=b" by (subst add_0)

also have "...=b+0" by (subst

finally show ?thesis .

qed

next

fix a

assume IH: "a+b=b+a"

show "Suc a + b = b + Suc a"

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Constructing Declarative ProofsConstructing Declarative Proofs

◮ common practice:
◮ do not use declarative style
◮ explore and find proof using procedural style, rewrite it in declarative style

theorem natcomp: "a + b =

b+a"

apply (induct a)

apply (subst add_0)

apply (subst add_0_right)

apply (rule refl)

goal (2 subgoals):

1. b = b + 0

2. !!a. a + b = b + a

==> Suc a + b = b + Suc a

proof (induct a)

show "0 + b = b + 0"

proof (-)

have "0+b=b" by (subst add_0)

also have "...=b+0" by (subst

finally show ?thesis .

qed

next

fix a

assume IH: "a+b=b+a"

show "Suc a + b = b + Suc a"

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Constructing Declarative ProofsConstructing Declarative Proofs

◮ common practice:
◮ do not use declarative style
◮ explore and find proof using procedural style, rewrite it in declarative style

theorem natcomp: "a + b =

b+a"

apply (induct a)

apply (subst add_0)

apply (subst add_0_right)

apply (rule refl)

goal (2 subgoals):

1. b = b

2. !!a. a + b = b + a ==>

Suc a + b = b + Suc a

proof (induct a)

show "0 + b = b + 0"

proof (-)

have "0+b=b" by (subst add_0)

also have "...=b+0" by (subst

finally show ?thesis .

qed

next

fix a

assume IH: "a+b=b+a"

show "Suc a + b = b + Suc a"

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Constructing Declarative ProofsConstructing Declarative Proofs

◮ common practice:
◮ do not use declarative style
◮ explore and find proof using procedural style, rewrite it in declarative style

theorem natcomp: "a + b =

b+a"

apply (induct a)

apply (subst add_0)

apply (subst add_0_right)

apply (rule refl)

goal (1 subgoal):

1. !!a. a + b = b + a

==> Suc a + b = b + Suc a

proof (induct a)

show "0 + b = b + 0"

proof (-)

have "0+b=b" by (subst add_0)

also have "...=b+0" by (subst

finally show ?thesis .

qed

next

fix a

assume IH: "a+b=b+a"

show "Suc a + b = b + Suc a"

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

GoalGoal

theorem natcomplus: "a + b = b+a"

Tactic execution

theorem natcomplus: "a + b = b+a"

proof (induct a)

show "0 + b = b + 0"

proof

. . .
qed next

fix a

assume IH: "a+b=b+a"

show "Suc a + b = b + Suc a"

proof

. . .

Goals/Contributions

◮ first class support of
declarative proofs at the
tactic level
◮ declarative proof scripts

without loosing advantages
of apply style

◮ capture high level structure

of the proof in the tradition
of proof planning [Bun88]
or proof sketches [Wie04]

◮ specification of tactics
within proof document

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Generation of Declarative ProofsGeneration of Declarative Proofs

1 generate declarative proof script from proof term [Coe10]
◮ procedural proof script → proof term → declarative proof script

2 generate declarative proof script from assertion level proof [DSW08]
◮ procedural proof script → proof tree → declarative proof script

Proof Script Generation

◮ Stylistic choices in expressing proofs, leading to granularity problem
◮ include intermediate results or express them as separate lemmas
◮ skip trivial steps completely

3 Observation: proof plans can be expressed as declarative proof scripts
(Isaplanner [Dix05])
◮ similarities and differences are discussed at the end of the talk

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

OverviewOverview

1 Development of Declarative Tactics

2 Dynamic Patterns and Iteration

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Basic Declarative Tactics (1)Basic Declarative Tactics (1)

◮ procedural tactics, simplest case: sequence of inference applications
◮ involve parameters (such as induction variable)

◮ declarative tactic: sequence of (declarative) proof commands

◮ abstract over common structure of proof scripts to obtain schematic

proof script

theorem natcomplus: a+b = b+a

proof

subgoals by (induct a)

subgoal 0+b = b+0

subgoal Suc a+b = b+Suc a

using IH: a+b=b+a

end

qed

theorem natcomplus: a+b = b+a

proof

subgoals by (induct b)

subgoal a+0 = 0+a

subgoal a+Suc b = Suc b+a

using IH: a+b=b+a

end

qed

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Basic Declarative Tactics (2)Basic Declarative Tactics (2)

pr
ec
on

d
it
io
n

ac
ti
on

strategy natinduct

cases * ⊢ P x

with x in (analyzeinductvars ”P”)

->

proof

subgoals by (induct x)

subgoal P 0

subgoal P (suc x) using IH: P x

end

◮ make context available
via precondition

◮ allow for internal
computations

◮ schematic proof script

as body

Realization
◮ define tactic language on top of proof language

◮ declarative specification of the tactic within proof document

◮ justification is a declarative proof script
◮ natural integration into existing frameworks

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Basic Declarative Tactics (2)Basic Declarative Tactics (2)

pr
ec
on

d
it
io
n

ac
ti
on

strategy natinduct

cases * ⊢ P x

with x in (analyzeinductvars ”P”)

->

proof

subgoals by (induct x)

subgoal P 0

subgoal P (suc x) using IH: P x

end

◮ make context available
via precondition

◮ allow for internal
computations

◮ schematic proof script

as body

Realization
◮ define tactic language on top of proof language

◮ declarative specification of the tactic within proof document

◮ justification is a declarative proof script
◮ natural integration into existing frameworks

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Basic Declarative Tactics (2)Basic Declarative Tactics (2)

pr
ec
on

d
it
io
n

ac
ti
on

strategy natinduct

cases * ⊢ P x

with x in (analyzeinductvars ”P”)

->

proof

L1: P 0

L2: assume P x thus P (suc x)

P x from L1,L2 by(induct x)

qed

◮ make context available
via precondition

◮ allow for internal
computations

◮ schematic proof script

as body

Realization
◮ define tactic language on top of proof language

◮ declarative specification of the tactic within proof document

◮ justification is a declarative proof script
◮ natural integration into existing frameworks

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Syntax and SemanticsSyntax and Semantics

◮ a declarative tactic expands to a lazy list of declarative proof scripts

(cf. justification function of LCF tactics)

◮ choice points are due to matching, internal computations

◮ access to underlying programming language only at specific points

◮ general form

strategy name

cases

matcher

where cond

with assignments

-> proofscript

with assignments
...

Expansion

1 match context

2 evaluate metalevel condition
◮ compute value of schematic variables in

where part

3 insert proof script
◮ compute value of remaining schematic

variables

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Integration of External SystemsIntegration of External Systems

◮ natural integration of external systems

◮ procedural decision procedure to close gap

strategy maximafactorabs

cases

* |- ((abs(GOALLHS)) < GOALRHS) ->

proof

L1: abs(Y) < GOALRHS

proof

L2:(Y = GOALLHS) by abeliandecide

L3:abs(Y) = abs(GOALLHS) by (f=abs in arg cong) from L2

qed

qed

with Y = (maxima-factor "GOALLHS")

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

A first exampleA first example

The following problem is taken from [JKK+05]. Given the goal

3 + f (x) + g(x , y) = x + g(x , y) + h(y , x)

write a tactic that cancels common summands to obtain

3 + f (x) = x + h(y , x)

strategy cancelsum

cases * |- A 1 + .. + A N = B 1 + .. + B M

proof

L1: C 1 + .. + C N = D 1 + .. + D M

A 1 + .. + A N = B 1 + .. + B M from L1

qed

with

foreach I = 1..N where (not (member ‘‘A I’’ ‘‘B’’)) C I = A I

foreach I = 1..M where (not (member ‘‘B I’’ ‘‘A’’)) D I = B I

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

A first exampleA first example

The following problem is taken from [JKK+05]. Given the goal

3 + f (x) + g(x , y) = x + g(x , y) + h(y , x)

write a tactic that cancels common summands to obtain

3 + f (x) = x + h(y , x)

strategy cancelsum

cases * |- A 1 + .. + A N = B 1 + .. + B M

proof

L1: C 1 + .. + C N = D 1 + .. + D M

A 1 + .. + A N = B 1 + .. + B M from L1

qed

with

foreach I = 1..N where (not (member ‘‘A I’’ ‘‘B’’)) C I = A I

foreach I = 1..M where (not (member ‘‘B I’’ ‘‘A’’)) D I = B I

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Challenge (1)Challenge (1)

◮ Heuristic: Factor bounding

”The following rule is stated for simplicity using only two factors, but
the rule is implemented for a product of any number of factors.”

(cf. [Bee98])

Γ, |α| < δ ⊢ |γ| < M Γ, |α| < δ ⊢ |β| < ǫ/(M + 1)

Γ, |α| < δ ⊢ |βγ| < ǫ

◮ combines
◮ integration of external systems
◮ dynamic continuation

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Challenge (2)Challenge (2)

strategy factorbound

cases
abs(LHS)<RHS,* |- abs(GOALLHS) < GOALRHS

where (and (variable-eigenvar.is "GOALRHS")

(metavar-is "RHS")

(some #’(lambda (x) (term= "LHS" "x")) "Y 1 .. Y N"))

with Y 1 * .. * Y N = (maxima-factor "GOALLHS")

j = (termposition "LHS" "Y 1 .. Y N")

->

proof
L1: GOALLHS=Y 1 * .. * Y N by abeliandecide
foreach i in 1..N where (not (= "j" "i"))

Y j <= MV j by linearbound

end

L2: abs(GOALLHS)=abs(Y 1 * .. * Y N) from L1
.<= abs(Y 1) * .. * abs(Y N)

.< MV 1 * .. * MV N

.<= GOALRHS

qed
with foreach i in 1..N

M i = (if (= "i" "j") "RHS" (make-metavar (term-type "RHS")))

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Challenge (3)Challenge (3)

theorem th1: limx→3
x
2
−5

x−2 = 4
proof

subgoals

subgoal | x
2
−5

x−2 − 4| < ǫ using A1:ǫ > 0 and A2:|x − 3| <?δ by

factorbound

subgoal ?δ > 0 using ǫ > 0
end by limdefbw

qed

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Challenge (3)Challenge (3)

theorem th1: limx→3
x
2
−5

x−2 = 4
proof

subgoals

subgoal | x
2
−5

x−2 − 4| < ǫ using A1:ǫ > 0 and A2:|x − 3| <?δ
proof

L1: x
2
−5

x−2 − 4 = (x − 3) ∗ (1
x−2) ∗ (x − 1) by abeliandecide

|x − 1| ≤?MV 1 by linearbound

| 1
x−2 | ≤?MV 2 by linearbound

L2: | x
2
−5

x−2 − 4| ≤ |(x − 3) ∗ (1
x−2) ∗ (x − 1)| from L1

. ≤ |x − 3| ∗ | 1
x−2 | ∗ |x − 1|

. <?δ∗?MV 1∗?MV 2

. ≤ ǫ
qed

subgoal ?δ > 0 using ǫ > 0
end by limdefbw

qed

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

Related WorkRelated Work

◮ Matita: translation of proof terms to declarative proofs
◮ granularity problem
◮ does not address specification of tactics

◮ Isaplanner

◮ generates declarative proof scripts
◮ reasoning techniques specified in ML, not within proof document
◮ provides gap command

◮ LTac (intermediate tactic language in procedural style, Coq)
◮ also provides pattern matching constructs

◮ ACL2:
◮ syntaxp metalevel statement to check for a particular structure, no proof

obligation
◮ meta-function, need to be proved by meta-rule
◮ bind-free binds free variables of a rule

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

SummarySummary

◮ declarative tactics in analogy to procedural tactics to automate

declarative proof

◮ defined on top of declarative proof language
◮ declarative specification within proof document
◮ declarative justification by expansion

◮ in the spirit of proof planning and proof sketches
◮ in particular: integration of external systems (oracle mechanism)

◮ expressive pattern language
◮ to provide context in form of preconditions
◮ to analyze the result of tactics/external systems and express continuation

accordingly

◮ restricted access to underlying programming language at specific points

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

References IReferences I

Michael Beeson.
Automatic generation of epsilon-delta proofs of continuity.
In Jacques Calmet and Jan A. Plaza, editors, Artificial Intelligence and
Symbolic Computation, International Conference AISC’98, Plattsburgh,
New York, USA, September 16-18, 1998, Proceedings, volume 1476 of
Lecture Notes in Computer Science, pages 67–83. Springer, 1998.

Alan Bundy.
The use of explicit plans to guide inductive proofs.
In R. Lusk and R. Overbeek, editors, Proceedings CADE-9, LNAI,
pages 111–120. Springer, 1988.

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

References IIReferences II

Claudio Sacerdoti Coen.
Declarative representation of proof terms.
J. Autom. Reasoning, 44(1-2):25–52, 2010.

L. Dixon.
A Proof Planning Framework for Isabelle.
PhD thesis, University of Edinburgh, 2005.

Dominik Dietrich, Ewaryst Schulz, and Marc Wagner.
Authoring verified documents by interactive proof construction and
verification in text-editors.
In Proceedings of the 9th AISC international conference, the 15th
Calculemas symposium, and the 7th international MKM conference on
Intelligent Computer Mathematics. July 31 - August 1, Birmingham,

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

References IIIReferences III

United Kingdom, volume 5144 of Lecture Notes in Artificial
Intelligence, LNAI, pages 398–414. Springer, Berlin, Heidelberg, 2008.

Warren A. Hunt Jr., Matt Kaufmann, Robert Bellarmine Krug,
J. Strother Moore, and Eric Whitman Smith.
Meta reasoning in acl2.
In Joe Hurd and Thomas F. Melham, editors, TPHOLs, volume 3603 of
Lecture Notes in Computer Science, pages 163–178. Springer, 2005.

Freek Wiedijk.
Formal proof sketches.
In Stefano Berardi, Mario Coppo, and Ferruccio Damiani, editors,
Types for Proofs and Programs, International Workshop, TYPES 2003,
Torino, Italy, April 30 - May 4, 2003, Revised Selected Papers, volume

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

References IVReferences IV

3085 of Lecture Notes in Computer Science, pages 378–393. Springer,
2004.

A Tactic Language for Declarative Proofs
Serge Autexier, Dominik Dietrich

German Research Center
for Artificial Intelligence

	Development of Declarative Tactics
	Dynamic Patterns and Iteration

