
Reasoning with Higher-Order Abstract Syntax

and Contexts: A Comparison

Amy Felty

University of Ottawa

July 13, 2010

Joint work with Brigitte Pientka, McGill University

1

Comparing Systems

We focus on logical frameworks that support the use of
higher-order abstract syntax.

I Commonalities:
F encode object-level binders with meta-level binders
F support for alpha-renaming and substitution
F encode axioms and inference rules using hypothetical and

parametric judgments
I Differences:

F how a system supports reasoning about hypothetical and
parametric derivations, which requires support for contexts to
keep track of hypotheses

F other features. . .

Systems studied here include Twelf, Beluga, and Hybrid.

2

Case Studies

In the domain of meta-theory of programming languages

Designed to highlight the differences and help practitioners in
choosing a system

Purposely simple, so they can be easily understood, and one can
quickly appreciate the capabilities and trade-offs of different
systems

3

Criteria for Comparison

How do we represent contexts in proofs?

How do we reason with contexts?

How do we retrieve elements from a context?

How easy is it to state a given theorem?

How do we apply a substitution lemma?

How do we know we have implemented a proof?

How easy is it to interface the system with, for example, support
for natural numbers?

4

Outline

Example: Equivalence of Algorithmic and Declarative Equality
I Representing Syntax of the Untyped Lambda Calculus
I Encoding Inference Rules (in Twelf and Beluga)
I Beluga Proof
I Hybrid Proof

Comparison

Other Benchmarks and Conclusion

5

Representing Syntax

Object Logic

Term M ::= y | lam x .M | app M1 M2

Example: lam x . lam y . app x y

Twelf and Beluga
exp: type

lam: (exp -> exp) -> exp

app: exp -> exp -> exp

Example: lam (λx.lam (λy.app x y))

6

Representing Syntax in Hybrid

Hybrid is implemented in Coq and Isabelle/HOL.

Provides an inductively defined type expr and some operators so
that object-level terms can be encoded in the same style as
Twelf (except that they are “untyped”).

The user works with the higher-order syntax:
lam x . lam y . app x y .

Unfolding definitions reveals an underlying de Bruijn
representation.

This representation is built definitionally on the foundation of
the meta-language of the underlying theorem prover; no axioms
are introduced.

7

Algorithmic and Declarative Equality

Context Ψ ::= · | Ψ, eq x x

eq x x ∈ Ψ
Ψ ` eq x x

Ψ, eq x x ` eq M N

Ψ ` eq (lam x .M) (lam x .N)

Ψ ` eq M1 N1 Ψ ` eq M2 N2

Ψ ` eq (app M1 M2) (app N1 N2)

Context Φ ::= · | Φ, equal x x

equal x x ∈ Φ
Φ ` equal x x

Φ, equal x x ` equal M N

Φ ` equal (lam x .M) (lam x .N)

Φ ` equal M1 N1 Φ ` equal M2 N2

Φ ` equal (app M1 M2) (app N1 N2)

Φ ` equal M M
Φ ` equal M L Φ ` equal L N

Φ ` equal M N

8

Algorithmic and Declarative Equality

Context Ψ ::= · | Ψ, eq x x

eq x x ∈ Ψ
Ψ ` eq x x

Ψ, eq x x ` eq M N

Ψ ` eq (lam x .M) (lam x .N)

Ψ ` eq M1 N1 Ψ ` eq M2 N2

Ψ ` eq (app M1 M2) (app N1 N2)

Context Φ ::= · | Φ, equal x x

equal x x ∈ Φ
Φ ` equal x x

Φ, equal x x ` equal M N

Φ ` equal (lam x .M) (lam x .N)

Φ ` equal M1 N1 Φ ` equal M2 N2

Φ ` equal (app M1 M2) (app N1 N2)

Φ ` equal M M
Φ ` equal M L Φ ` equal L N

Φ ` equal M N

8

Theorem 2 (Completeness)

Attempt 1: If Φ ` equal M N then Ψ ` eq M N .

Problem: this statement does not contain enough information
about how the two contexts Φ and Ψ are related.

Solution 1: Add more info (later)

Solution 2: Generalized context Γ ::= · | Γ, eq x x , equal x x

Attempt 2: If Γ ` equal M N then Γ ` eq M N .

Proof of lambda case:
Γ ` equal (lam x .M) (lam x .N) by assumption
Γ, equal x x ` equal M N by decl. equality rule for lam
Γ, eq x x , equal x x ` equal M N by weakening
Γ, eq x x , equal x x ` eq M N by i.h.
Γ, eq x x ` eq M N by strengthening
Γ ` eq (lam x .M) (lam x .N) by alg. equality rule for lam

9

Theorem 2 (Completeness)

Attempt 1: If Φ ` equal M N then Ψ ` eq M N .

Problem: this statement does not contain enough information
about how the two contexts Φ and Ψ are related.

Solution 1: Add more info (later)

Solution 2: Generalized context Γ ::= · | Γ, eq x x , equal x x

Attempt 2: If Γ ` equal M N then Γ ` eq M N .

Proof of lambda case:
Γ ` equal (lam x .M) (lam x .N) by assumption
Γ, equal x x ` equal M N by decl. equality rule for lam
Γ, eq x x , equal x x ` equal M N by weakening
Γ, eq x x , equal x x ` eq M N by i.h.
Γ, eq x x ` eq M N by strengthening
Γ ` eq (lam x .M) (lam x .N) by alg. equality rule for lam

9

Theorem 2 (Completeness)

Attempt 1: If Φ ` equal M N then Ψ ` eq M N .

Problem: this statement does not contain enough information
about how the two contexts Φ and Ψ are related.

Solution 1: Add more info (later)

Solution 2: Generalized context Γ ::= · | Γ, eq x x , equal x x

Attempt 2: If Γ ` equal M N then Γ ` eq M N .

Proof of lambda case:
Γ ` equal (lam x .M) (lam x .N) by assumption
Γ, equal x x ` equal M N by decl. equality rule for lam
Γ, eq x x , equal x x ` equal M N by weakening
Γ, eq x x , equal x x ` eq M N by i.h.
Γ, eq x x ` eq M N by strengthening
Γ ` eq (lam x .M) (lam x .N) by alg. equality rule for lam

9

Inference Rules of the Object Logic (Again)

Ψ, eq x x ` eq M N

Ψ ` eq (lam x .M) (lam x .N)

Ψ ` eq M1 N1 Ψ ` eq M2 N2

Ψ ` eq (app M1 M2) (app N1 N2)

Twelf and Beluga Encoding

eq : exp→ exp→ type.
eq lam : (Πx : exp. eq x x→ eq (E x) (F x))

→ eq (lam (λx . E x)) (lam (λx . F x)).
eq app : eq E1 F1→ eq E2 F2→ eq (app E1 E2) (app F1 F2).

equal : exp→ exp→ type.
e l : (Πx : exp. equal x x→ equal (E x) (F x))

→ equal (lam (λx. E x)) (lam (λx. F x)).
e a : equal E1 F1→ equal E2 F2

→ equal (app E1 E2) (app F1 F2).
e r : equal E E.
e t : equal E E′ → equal E′ F→ equal E F.

10

Inference Rules of the Object Logic (Again)

Ψ, eq x x ` eq M N

Ψ ` eq (lam x .M) (lam x .N)

Ψ ` eq M1 N1 Ψ ` eq M2 N2

Ψ ` eq (app M1 M2) (app N1 N2)

Twelf and Beluga Encoding

eq : exp→ exp→ type.
eq lam : (Πx : exp. eq x x→ eq (E x) (F x))

→ eq (lam (λx . E x)) (lam (λx . F x)).
eq app : eq E1 F1→ eq E2 F2→ eq (app E1 E2) (app F1 F2).

equal : exp→ exp→ type.
e l : (Πx : exp. equal x x→ equal (E x) (F x))

→ equal (lam (λx. E x)) (lam (λx. F x)).
e a : equal E1 F1→ equal E2 F2

→ equal (app E1 E2) (app F1 F2).
e r : equal E E.
e t : equal E E′ → equal E′ F→ equal E F.

10

Beluga Proof of Theorem 2
Context schemas classify contexts:
schema eCtx = block x : exp, u : eq x x. equal x x

Inductive proofs about derivations are written as recursive
functions using pattern matching.

rec ceq : {γ : eCtx}(equal (T ..) (S ..))[γ]→ (eq (T ..) (S ..))[γ] =

fn e⇒ case e of
...

11

Beluga Proof: lam Case

eq lam : (Πx : exp. eq x x→ eq (E x) (F x))
→ eq (lam (λx . E x)) (lam (λx . F x)).

| [γ] e l (λx.λu.D .. x u)⇒
...

let [γ, b : block x : exp, u : eq x x. equal x x] F .. b.1 b.2 =
ceq ([γ, b : block x : exp, u : eq x x. equal x x] D .. b.1 b.3)

in
[γ] eq lam (λx.λv.F .. x v)

Applying the ind. hyp. corresponds to the recursive call.

The context is extended with new declarations about variables in
the form specified by the context schema.

Note that D only depends on γ, x : exp, u : equal x x.
Weakening is built-in.

F is the result of the recursive call and only depends on x : exp
and u : eq x x; strengthening is also built-in.

F is used to assemble the final result.

12

Beluga Proof: lam Case

eq lam : (Πx : exp. eq x x→ eq (E x) (F x))
→ eq (lam (λx . E x)) (lam (λx . F x)).

| [γ] e l (λx.λu.D .. x u)⇒
let [γ, b : block x : exp, u : eq x x. equal x x] F .. b.1 b.2 =
ceq ([γ, b : block x : exp, u : eq x x. equal x x] D .. b.1 b.3)
in
[γ] eq lam (λx.λv.F .. x v)

Applying the ind. hyp. corresponds to the recursive call.

The context is extended with new declarations about variables in
the form specified by the context schema.

Note that D only depends on γ, x : exp, u : equal x x.
Weakening is built-in.

F is the result of the recursive call and only depends on x : exp
and u : eq x x; strengthening is also built-in.

F is used to assemble the final result.

12

Beluga Proof: lam Case

eq lam : (Πx : exp. eq x x→ eq (E x) (F x))
→ eq (lam (λx . E x)) (lam (λx . F x)).

| [γ] e l (λx.λu.D .. x u)⇒
let [γ, b : block x : exp, u : eq x x. equal x x] F .. b.1 b.2 =
ceq ([γ, b : block x : exp, u : eq x x. equal x x] D .. b.1 b.3)
in
[γ] eq lam (λx.λv.F .. x v)

Applying the ind. hyp. corresponds to the recursive call.

The context is extended with new declarations about variables in
the form specified by the context schema.

Note that D only depends on γ, x : exp, u : equal x x.
Weakening is built-in.

F is the result of the recursive call and only depends on x : exp
and u : eq x x; strengthening is also built-in.

F is used to assemble the final result.

12

Beluga Proof: lam Case

eq lam : (Πx : exp. eq x x→ eq (E x) (F x))
→ eq (lam (λx . E x)) (lam (λx . F x)).

| [γ] e l (λx.λu.D .. x u)⇒
let [γ, b : block x : exp, u : eq x x. equal x x] F .. b.1 b.2 =
ceq ([γ, b : block x : exp, u : eq x x. equal x x] D .. b.1 b.3)
in
[γ] eq lam (λx.λv.F .. x v)

Applying the ind. hyp. corresponds to the recursive call.

The context is extended with new declarations about variables in
the form specified by the context schema.

Note that D only depends on γ, x : exp, u : equal x x.
Weakening is built-in.

F is the result of the recursive call and only depends on x : exp
and u : eq x x; strengthening is also built-in.

F is used to assemble the final result.
12

Hybrid Specification Logic (Intermediate Level)

Here, we use a sequent formulation of a second-order minimal
logic with backchaining as a specification logic (SL).

Sequents: Γ Bn G
I Contexts Γ are explicit at this level.
I Integer n indicates the height of a derivation.
I G is a formula of the SL.
I B is defined as an inductive predicate in Coq or

Isabelle/HOL.

13

Using the SL to encode OL Rules
The definition of B is parameterized by atoms A of a
particular object logic (OL).

The SL includes a backchain rule on clauses of the form
(A←− G).

←− is also defined as an inductive predicate.

Using these definitions, the rules of the OL are encoded in the
SL in exactly the same form as in Twelf and Beluga, including
hypothetical and parametric judgments.

E.g.,

eq lam : abstr E → abstr F →
eq (lam x .Ex) (lam x .Fx)←−

all x . (eq x x) imp 〈eq (Ex) (Fx)〉

where all and imp are connectives of the SL.

14

Using the SL to encode OL Rules
The definition of B is parameterized by atoms A of a
particular object logic (OL).

The SL includes a backchain rule on clauses of the form
(A←− G).

←− is also defined as an inductive predicate.

Using these definitions, the rules of the OL are encoded in the
SL in exactly the same form as in Twelf and Beluga, including
hypothetical and parametric judgments.

E.g.,

eq lam : abstr E → abstr F →
eq (lam x .Ex) (lam x .Fx)←−

all x . (eq x x) imp 〈eq (Ex) (Fx)〉

where all and imp are connectives of the SL.

14

Theorem 2 (Completeness)

Attempt 1: If Φ ` equal M N then Ψ ` eq M N .

Problem: this statement does not contain enough information
about how the two contexts Φ and Ψ are related.

Solution 1: Add more info (later)

· · ·

Context Invariants
ceq inv Φ Ψ == (∀x y . equal x y ∈ Φ→ eq x y ∈ Ψ) ∧ · · ·

Lemma (Context Extension):
ceq inv Φ Ψ→ ceq inv (equal x x , is tm x ,Φ) (eq x x ,Ψ)

Theorem 2 (Completeness):
ceq inv Φ Ψ→ Φ Bn 〈equal T S〉 → Ψ Bn 〈eq T S〉

15

Theorem 2 (Completeness)

Attempt 1: If Φ ` equal M N then Ψ ` eq M N .

Problem: this statement does not contain enough information
about how the two contexts Φ and Ψ are related.

Solution 1: Add more info (later)

· · ·

Context Invariants
ceq inv Φ Ψ == (∀x y . equal x y ∈ Φ→ eq x y ∈ Ψ) ∧ · · ·

Lemma (Context Extension):
ceq inv Φ Ψ→ ceq inv (equal x x , is tm x ,Φ) (eq x x ,Ψ)

Theorem 2 (Completeness):
ceq inv Φ Ψ→ Φ Bn 〈equal T S〉 → Ψ Bn 〈eq T S〉

15

Theorem 2 (Completeness)

Attempt 1: If Φ ` equal M N then Ψ ` eq M N .

Problem: this statement does not contain enough information
about how the two contexts Φ and Ψ are related.

Solution 1: Add more info (later)

· · ·

Context Invariants
ceq inv Φ Ψ == (∀x y . equal x y ∈ Φ→ eq x y ∈ Ψ) ∧ · · ·

Lemma (Context Extension):
ceq inv Φ Ψ→ ceq inv (equal x x , is tm x ,Φ) (eq x x ,Ψ)

Theorem 2 (Completeness):
ceq inv Φ Ψ→ Φ Bn 〈equal T S〉 → Ψ Bn 〈eq T S〉

15

Theorem 2 (Completeness)

Attempt 1: If Φ ` equal M N then Ψ ` eq M N .

Problem: this statement does not contain enough information
about how the two contexts Φ and Ψ are related.

Solution 1: Add more info (later)

· · ·

Context Invariants
ceq inv Φ Ψ == (∀x y . equal x y ∈ Φ→ eq x y ∈ Ψ) ∧ · · ·

Lemma (Context Extension):
ceq inv Φ Ψ→ ceq inv (equal x x , is tm x ,Φ) (eq x x ,Ψ)

Theorem 2 (Completeness):
ceq inv Φ Ψ→ Φ Bn 〈equal T S〉 → Ψ Bn 〈eq T S〉

15

Alternative Version: Generalized Contexts in Hybrid

Theorem 2 (Completeness): Γ Bn 〈equal T S〉 → Γ Bn 〈eq T S〉
We must explicitly define weakening and strengthening functions
on Γ.

We must explicitly state and prove weakening and strengthening
lemmas.

We must explicitly apply these lemmas.

Much of this reasoning should be easy to automate.

16

Another Look at the Criteria: Contexts

How do we represent contexts in proofs?
I Beluga: explicit contexts whose structure is defined by context

schemas
I Twelf: implicit contexts
I Hybrid: explicit lists or sets in the SL

17

How do we reason with contexts?

Beluga and Twelf
I built-in support for weakening and strengthening
I supported by underlying typing rules and context subsumption
I sensitive to ordering of elements in a block
I may require explicit weakening

Hybrid:
I weakening supported by a lemma at the SL level
I used to reason about weakening and strengthening for each

object logic
I requires explicit weakening/strengthening lemmas
I much of the reasoning is stereotyped and could be automated

18

How do we reason with contexts?

Beluga and Twelf
I built-in support for weakening and strengthening
I supported by underlying typing rules and context subsumption
I sensitive to ordering of elements in a block
I may require explicit weakening

Hybrid:
I weakening supported by a lemma at the SL level
I used to reason about weakening and strengthening for each

object logic
I requires explicit weakening/strengthening lemmas
I much of the reasoning is stereotyped and could be automated

18

How do we know we have implemented a proof?
Hybrid:

I all reasoning is explicit
I simply need to trust the underlying proof assistant and establish

adequacy
I extensive support for induction, etc.

Twelf:
I must establish separately that user implemented a total function
I provides a coverage checker which relies on the block (and

world) declarations to ensure the base cases are covered
I a termination checker verifies that all appeals to the induction

hypothesis are valid
Beluga:

I approach is similar to Twelf
I theoretical foundation for coverage is established;

implementation is planned
I should be able to adapt existing work on termination checking

to Beluga, though not done yet

19

How do we know we have implemented a proof?
Hybrid:

I all reasoning is explicit
I simply need to trust the underlying proof assistant and establish

adequacy
I extensive support for induction, etc.

Twelf:
I must establish separately that user implemented a total function
I provides a coverage checker which relies on the block (and

world) declarations to ensure the base cases are covered
I a termination checker verifies that all appeals to the induction

hypothesis are valid

Beluga:
I approach is similar to Twelf
I theoretical foundation for coverage is established;

implementation is planned
I should be able to adapt existing work on termination checking

to Beluga, though not done yet

19

How do we know we have implemented a proof?
Hybrid:

I all reasoning is explicit
I simply need to trust the underlying proof assistant and establish

adequacy
I extensive support for induction, etc.

Twelf:
I must establish separately that user implemented a total function
I provides a coverage checker which relies on the block (and

world) declarations to ensure the base cases are covered
I a termination checker verifies that all appeals to the induction

hypothesis are valid
Beluga:

I approach is similar to Twelf
I theoretical foundation for coverage is established;

implementation is planned
I should be able to adapt existing work on termination checking

to Beluga, though not done yet
19

Other Benchmarks
Equality Reasoning for Lambda-Terms

I Theorem 2 requires:
Theorem 1 (Admissibility of Reflexivity and Transitivity)

1 If Ψ contains premises for all the free variables in M, then
Ψ ` eq M M.

2 If Ψ ` eq M L and Ψ ` eq L N then Ψ ` eq M N.

Reasoning About Variable Occurrences
I Ψ ` shape M1 M2 describes when the term M1 and the term

M2 have the same shape or structure.
I Example theorem: If Ψ ` shape M1 M2

then there exists an I such that Ψ ` var−occ M1 I and
Ψ ` var−occ M2 I . Furthermore I is unique.

Reasoning About Subterms in Lambda-Terms
I Ψ ` le M N describes when a given lambda-term M is a

subterm of (structurally smaller than) another lambda-term N.
I Theorem: If for all N. Ψ ` le N K implies Ψ ` le N L then

Ψ ` le K L.

20

Other Benchmarks
Equality Reasoning for Lambda-Terms

I Theorem 2 requires:
Theorem 1 (Admissibility of Reflexivity and Transitivity)

1 If Ψ contains premises for all the free variables in M, then
Ψ ` eq M M.

2 If Ψ ` eq M L and Ψ ` eq L N then Ψ ` eq M N.

Reasoning About Variable Occurrences
I Ψ ` shape M1 M2 describes when the term M1 and the term

M2 have the same shape or structure.
I Example theorem: If Ψ ` shape M1 M2

then there exists an I such that Ψ ` var−occ M1 I and
Ψ ` var−occ M2 I . Furthermore I is unique.

Reasoning About Subterms in Lambda-Terms
I Ψ ` le M N describes when a given lambda-term M is a

subterm of (structurally smaller than) another lambda-term N.
I Theorem: If for all N. Ψ ` le N K implies Ψ ` le N L then

Ψ ` le K L.

20

Other Benchmarks
Equality Reasoning for Lambda-Terms

I Theorem 2 requires:
Theorem 1 (Admissibility of Reflexivity and Transitivity)

1 If Ψ contains premises for all the free variables in M, then
Ψ ` eq M M.

2 If Ψ ` eq M L and Ψ ` eq L N then Ψ ` eq M N.

Reasoning About Variable Occurrences
I Ψ ` shape M1 M2 describes when the term M1 and the term

M2 have the same shape or structure.
I Example theorem: If Ψ ` shape M1 M2

then there exists an I such that Ψ ` var−occ M1 I and
Ψ ` var−occ M2 I . Furthermore I is unique.

Reasoning About Subterms in Lambda-Terms
I Ψ ` le M N describes when a given lambda-term M is a

subterm of (structurally smaller than) another lambda-term N.
I Theorem: If for all N. Ψ ` le N K implies Ψ ` le N L then

Ψ ` le K L.
20

Conclusion
We present benchmark problems, together with a general set of
criteria for comparing reasoning systems that support HOAS.

We compare proofs of one of these problems in three systems
(Beluga, Twelf, and Hybrid) using our criteria.

See complogic.cs.mcgill.ca/beluga/benchmarks/.
This work is a starting point that:

I will help users and developers evaluate proof assistants for
reasoning about meta-theory of programming languages;

I can facilitate a better understanding of the differences between
and limitations of these systems;

I can help with understanding the impact of these design
decisions in practice;

I can provide guidance for users and stimulate discussion among
developers.

Future work includes implementing these benchmarks in other
systems such as Abella and Delphin.

21

Beluga Proof of Theorem 2
Context schemas classify contexts:
schema eCtx = block x : exp, u : eq x x. equal x x

Inductive proofs about derivations are written as recursive
functions using pattern matching.

rec ceq : {γ : eCtx}(equal (T ..) (S ..))[γ]→ (eq (T ..) (S ..))[γ] =
fn e⇒ case e of

| [γ] #p.3 ..⇒ [γ] #p.2 ..

...

The case where the proof is by assumption from context is
modelled using a parameter variable #p, which represents a
block.

22

Beluga Proof of Theorem 2
Context schemas classify contexts:
schema eCtx = block x : exp, u : eq x x. equal x x

Inductive proofs about derivations are written as recursive
functions using pattern matching.

rec ceq : {γ : eCtx}(equal (T ..) (S ..))[γ]→ (eq (T ..) (S ..))[γ] =
fn e⇒ case e of
| [γ] #p.3 ..⇒ [γ] #p.2 ..

...

The case where the proof is by assumption from context is
modelled using a parameter variable #p, which represents a
block.

22

Hybrid Specification Logic (Intermediate Level)

Here, we use a sequent formulation of a second-order minimal
logic with backchaining as a specification logic (SL).

Sequents: Γ Bn G
I Contexts Γ are explicit at this level.
I Integer n indicates the height of a derivation.
I G is a formula of the SL.
I Parameterized by atoms A of a particular object logic (OL).
I Notation: 〈A〉. The brackets coerce OL atoms to SL formulas.

B is defined as an inductive predicate in Coq or
Isabelle/HOL. Example clauses include:

I And-intro: Γ Bn G1 → Γ Bn G2 → Γ Bn+1 (G1 and G2)
I Initial: (A ∈ Γ) → Γ Bn 〈A〉
I Backchain on OL clause: (A←− G) → ΓBn G → ΓBn+1 〈A〉

23

Hybrid Specification Logic (Intermediate Level)

Here, we use a sequent formulation of a second-order minimal
logic with backchaining as a specification logic (SL).

Sequents: Γ Bn G
I Contexts Γ are explicit at this level.
I Integer n indicates the height of a derivation.
I G is a formula of the SL.
I Parameterized by atoms A of a particular object logic (OL).
I Notation: 〈A〉. The brackets coerce OL atoms to SL formulas.

B is defined as an inductive predicate in Coq or
Isabelle/HOL. Example clauses include:

I And-intro: Γ Bn G1 → Γ Bn G2 → Γ Bn+1 (G1 and G2)
I Initial: (A ∈ Γ) → Γ Bn 〈A〉
I Backchain on OL clause: (A←− G) → ΓBn G → ΓBn+1 〈A〉

23

Inference Rules of the Object Logic (Again)

Ψ, eq x x ` eq M N

Ψ ` eq (lam x .M) (lam x .N)

Hybrid Encoding

←− is defined as an inductive predicate in Coq or Isabelle/HOL.
For example:

eq lam : abstr E → abstr F →
eq (lam x .Ex) (lam x .Fx)←−

all x . (eq x x) imp 〈eq (Ex) (Fx)〉

where all and imp are connectives of the SL.

24

Another Look at the Criteria: Contexts

How do we retrieve elements from a context?
I Beluga: supported by parameter variables and projections
I Twelf:

F no access since context is implicit
F base cases are handled when an assumption is introduced
F may lead to scattering of base cases and redundancy

I Hybrid: via simple list or set operations such as membership

25

