
Nitpick:
A Counterexample Generator

for

Higher-Order Logic
based on a

Relational Model Finder
x

Jasmin C. Blanchette & Tobias Nipkow
Technische Universität München

Quickcheck
Berghofer & Nipkow, SEFM 2004

 inspired by Haskell tool

 based on random testing

 + sound (no spurious counterexs.)

 + fast
 − requires executability

ML
interpreter

Quickc. ML code
generator

Refute
Weber, PDPAR 2004

 SAT-based

 finite approx. of infinite types

 + general-purpose
 − unsound infinite types
 − doesn't scale very well

Refute
SAT

solver

Quickcheck
Berghofer & Nipkow, SEFM 2004

 inspired by Haskell tool

 based on random testing

 + sound (no spurious counterexs.)

 + fast
 − requires executability

ML
interpreter

Quickc. ML code
generator

Nitpick

 second iteration of Refute

 based on Kodkod (Alloy's backend)

 handles definitional principles specially

 optimizes common idioms

 + sound
 + general-purpose
 + scales better than Refute
 − slower than Quickcheck

Nitpick Kodkod
SAT

solver

Kodkod's Logic:

First-Order Relational Logic (FORL)

universe: finite set of atoms

term: n-ary relation (set of atom n-tuples)

Kodkod's Logic:

First-Order Relational Logic (FORL)

universe: finite set of atoms

term: n-ary relation (set of atom n-tuples)

∈var pigeons = {a1, …, a30} ∈
∈var holes = {a31, …, a59} ∈
∈var ∅ ⊆ nest ⊆ {a1, …, a30} × {a31, …, a59}∈

∈solve (∀p ∈ pigeons: one p. nest)
∈ ∧ (∀h ∈ holes: lone nest. h)

Basic Translation

Basic Translation

★ finite first-order is easy:
 scalars ➔ singletons
 functions ➔ relations

Basic Translation

★ finite first-order is easy:
 scalars ➔ singletons
 functions ➔ relations

★ finite higher-order is also easy:
 λ-abstractions ➔ set comprehensions
 σ → τ argument ➔ | σ | arguments of type τ

Infinite Types and Partiality

Infinite Types and Partiality

★ considers finite subsets of types
 e.g. {0, 1, …, K} for nat

Infinite Types and Partiality

★ considers finite subsets of types
 e.g. {0, 1, …, K} for nat

★ {} = unknown value

Infinite Types and Partiality

★ considers finite subsets of types
 e.g. {0, 1, …, K} for nat

★ {} = unknown value
★ functions may be partial

 e.g. Suc K gives {}

Infinite Types and Partiality

★ considers finite subsets of types
 e.g. {0, 1, …, K} for nat

★ {} = unknown value
★ functions may be partial

 e.g. Suc K gives {}
★ f({}) = {}

Infinite Types and Partiality

★ considers finite subsets of types
 e.g. {0, 1, …, K} for nat

★ {} = unknown value
★ functions may be partial

 e.g. Suc K gives {}
★ f({}) = {}
★ but: {} ∨ true = true

Inductive Predicates Coinductive Predicates

Inductive Datatypes Coinductive Datatypes

Recursive Functions Corecursive Functions

Definitional Principles

Inductive Predicates Coinductive Predicates

Inductive Datatypes Coinductive Datatypes

Recursive Functions Corecursive Functions

➊

Definitional Principles

Inductive Predicates Coinductive Predicates

Inductive Datatypes Coinductive Datatypes

Recursive Functions Corecursive Functions

➊

➋

Definitional Principles

Inductive Predicates Coinductive Predicates

Inductive Datatypes Coinductive Datatypes

Recursive Functions Corecursive Functions

➊

➋ ➌

Definitional Principles

Inductive Predicates Coinductive Predicates

Inductive Datatypes Coinductive Datatypes

Recursive Functions Corecursive Functions

➊

➋ ➌

➍

Definitional Principles

Inductive Datatypes

Inductive Datatypes➊
Based on Kuncak & Jackson, ESEC/FSE 2005

Inductive Datatypes➊

Nil

Based on Kuncak & Jackson, ESEC/FSE 2005

Inductive Datatypes➊

Nil

Cons

0

Based on Kuncak & Jackson, ESEC/FSE 2005

Inductive Datatypes➊

Cons

3

Nil

Cons

0

Based on Kuncak & Jackson, ESEC/FSE 2005

Inductive Datatypes➊

Cons

3

Nil

Cons

0

Cons

2

{[], [0], [3, 0], [2]}

Based on Kuncak & Jackson, ESEC/FSE 2005

FORL axioms:
Selector
Uniqueness
Acyclicity

Inductive Datatypes➊

FORL axioms:
Selector
Uniqueness
Acyclicity

Inductive Datatypes➊

S: ¬ null xs ⇒ one hd(xs) ∧ one tl(xs)
U: (hd(xs), tl(xs)) = (hd(ys), tl(ys)) ⇒ xs = ys
A: (xs, xs) ∉ tl+

Inductive Predicates

 inductive even where
 even 0
 even n ⇒ even (Suc (Suc n))

fixpoint eq.:
(overapprox.)

 even x =
 (x = 0 ∨ ∃n. x = Suc (Suc n) ∧ even n)

unrolled eq.:
(underapprox.)

 even0 x = False
 evenk+1 x =
 (x = 0 ∨ ∃n. x = Suc (Suc n) ∧ evenk n)

Inductive Predicates➋

 inductive even where
 even 0
 even n ⇒ even (Suc (Suc n))

fixpoint eq.:
(overapprox.)

 even x =
 (x = 0 ∨ ∃n. x = Suc (Suc n) ∧ even n)

unrolled eq.:
(underapprox.)

 even0 x = False
 evenk+1 x =
 (x = 0 ∨ ∃n. x = Suc (Suc n) ∧ evenk n)

Inductive Predicates➋

 inductive even where
 even 0
 even n ⇒ even (Suc (Suc n))

fixpoint eq.:
(overapprox.)

 even x =
 (x = 0 ∨ ∃n. x = Suc (Suc n) ∧ even n)

unrolled eq.:
(underapprox.)

 even0 x = False
 evenk+1 x =
 (x = 0 ∨ ∃n. x = Suc (Suc n) ∧ evenk n)

Inductive Predicates➋

 inductive even where
 even 0
 even n ⇒ even (Suc (Suc n))

fixpoint eq.:
(overapprox.)

 even x =
 (x = 0 ∨ ∃n. x = Suc (Suc n) ∧ even n)

unrolled eq.:
(underapprox.)

 even0 x = False
 evenk+1 x =
 (x = 0 ∨ ∃n. x = Suc (Suc n) ∧ evenk n)

Pos. Neg.

WF

NWF

fixp. fixp.

unroll fixp.

inductive

Pos. Neg.

WF

NWF

fixp. fixp.

fixp. unroll

coinductive

Pos. Neg.

WF

NWF

fixp. fixp.

unroll fixp.

inductive

Pos. Neg.

WF

NWF

fixp. fixp.

fixp. unroll

coinductive

Pos. Neg.

WF

NWF

fixp. fixp.

unroll fixp.

inductive

Coinductive Predicates➌

Pos. Neg.

WF

NWF

fixp. fixp.

fixp. unroll

coinductive

Pos. Neg.

WF

NWF

fixp. fixp.

unroll fixp.

inductive

Termination
provers!

Coinductive Predicates➌

Coinductive Datatypes

Coinductive Datatypes➍

LCons

3

LNil

LCons

0

{[], [0], [3, 0], [2, 2, 2, ...]}

Coinductive Datatypes➍

LCons

3

LNil

LCons

0

{[], [0], [3, 0], [2, 2, 2, ...]}

LCons

2

Coinductive Datatypes➍

Coinductive Datatypes➍

2

LCons

Coinductive Datatypes➍

LCons

2

LCons

{[2, 2, 2, ...], [2, 2, 2, 2, ...]}

Coinductive Datatypes➍

LCons

2

LCons

{[2, 2, 2, ...], [2, 2, 2, 2, ...]}x

FORL axioms:
Selector
Uniqueness
Acyclicity

Coinductive Datatypes➍

S: ¬ null xs ⇒ one hd(xs) ∧ one tl(xs)
U: (hd(xs), tl(xs)) = (hd(ys), tl(ys)) ⇒ xs = ys
A: (xs, xs) ∉ tl+

FORL axioms:
Selector
Uniqueness
Acyclicity

Coinductive Datatypes➍

S: ¬ null xs ⇒ one hd(xs) ∧ one tl(xs)
U: (hd(xs), tl(xs)) = (hd(ys), tl(ys)) ⇒ xs = ys
A: (xs, xs) ∉ tl+

FORL axioms:
Selector
Uniqueness
Acyclicity
Bisimilarity

Coinductive Datatypes➍

S: ¬ null xs ⇒ one hd(xs) ∧ one tl(xs)
U: (hd(xs), tl(xs)) = (hd(ys), tl(ys)) ⇒ xs = ys
A: (xs, xs) ∉ tl+
B: xs ~ ys ⇒ xs = ys

ArrowGS Coinductive CoreC++ FFT

MiniML Ordinal POPLmark Topology MacLaurin

List

ArrowGS Coinductive CoreC++ FFT

MiniML Ordinal POPLmark Topology

Nitpick

RefuteQuickcheck

 MacLaurin

List

4,

ArrowGS Coinductive CoreC++ FFT

MiniML Ordinal POPLmark Topology

Nitpick

RefuteQuickcheck

 MacLaurin

List

Conclusion

SAT-based like Refute,
but benefits from Kodkod's optimizations

Conclusion

SAT-based like Refute,
but benefits from Kodkod's optimizations

Efficient and precise SAT coding of
(co)inductive predicates & datatypes

Conclusion

SAT-based like Refute,
but benefits from Kodkod's optimizations

Efficient and precise SAT coding of
(co)inductive predicates & datatypes

Saves time
and encourages playful exploration

Conclusion

"What a fast tool."

"We are currently trying out the new Nitpick tool
and it works very nicely with some of our theories."

"Nitpick rocks! Otherwise I would have actually
written code just to enumerate stupid finite relations.

Now I just had to write down the properties."

"Nitpick sparte mir letzte Woche einige Stunden ein."

