Nitpick: A Counterexample Generator for

Higher-Order Logic
based on a
Relational Model Finder

Jasmin C. Blanchette & Tobias Nipkow Technische Universität München

Quickcheck

Berghofer & Nipkow, SEFM 2004

inspired by Haskell tool based on random testing

- + sound (no spurious counterexs.)
- + fast
- requires executability

Quickcheck

Berghofer & Nipkow, SEFM 2004

inspired by Haskell tool based on random testing

- + sound (no spurious counterexs.)
- + fast
- requires executability

Refute

Weber, PDPAR 2004

SAT-based finite approx. of infinite types

- + general-purpose
- unsound infinite types
- doesn't scale very well

Nitpick

second iteration of Refute
based on Kodkod (Alloy's backend)
handles definitional principles specially
optimizes common idioms

- + sound
- + general-purpose
- + scales better than Refute
- slower than Quickcheck

Kodkod's Logic: First-Order Relational Logic (FORL)

universe: finite set of atoms

term: n-ary relation (set of atom n-tuples)

Kodkod's Logic: First-Order Relational Logic (FORL)

universe: finite set of atoms

term: n-ary relation (set of atom n-tuples)

```
var pigeons = \{a_1, ..., a_{30}\}
var holes = \{a_{31}, ..., a_{59}\}
var \varnothing \subseteq nest \subseteq \{a_1, ..., a_{30}\} \times \{a_{31}, ..., a_{59}\}
solve (\forall p \in pigeons: one p.nest)
\land (\forall h \in holes: lone nest.h)
```

Basic Translation

Basic Translation

★ finite first-order is easy:
scalars → singletons
functions → relations

Basic Translation

- ★ finite first-order is easy:
 scalars → singletons
 functions → relations
- * finite higher-order is also easy: λ -abstractions \rightarrow set comprehensions $\sigma \rightarrow \tau$ argument $\rightarrow |\sigma|$ arguments of type τ

★ considers finite subsets of typese.g. {0, 1, ..., K} for nat

- ★ considers finite subsets of types e.g. {0, 1, ..., K} for nat
- **★** {} = unknown value

- ★ considers finite subsets of types e.g. {0, 1, ..., K} for nat
- **★** {} = unknown value
- ★ functions may be partial e.g. Suc K gives {}

- ★ considers finite subsets of types e.g. {0, 1, ..., K} for nat
- **★** {} = unknown value
- * functions may be partial
 e.g. Suc K gives {}
- $\star f(\{\}) = \{\}$

- ★ considers finite subsets of types e.g. {0, 1, ..., K} for nat
- ★ {} = unknown value
- ★ functions may be partial e.g. Suc K gives {}
- $\star f(\{\}) = \{\}$
- ★ but: {} ∨ true = true

Inductive Predicates	Coinductive Predicates
Inductive Datatypes	Coinductive Datatypes
Recursive Functions	Corecursive Functions

Inductive Predicates	Coinductive Predicates
Inductive Datatypes	Coinductive Datatypes
Recursive Functions	Corecursive Functions

2 Inductive Predicates	Coinductive Predicates
Inductive Datatypes	Coinductive Datatypes
Recursive Functions	Corecursive Functions

2 Inductive Predicates	Coinductive Predicates
Inductive Datatypes	Coinductive Datatypes
Recursive Functions	Corecursive Functions

2 Inductive Predicates	Coinductive Predicates
Inductive Datatypes	Coinductive Datatypes
Recursive Functions	Corecursive Functions

FORL axioms:

Selector

Uniqueness

Acyclicity

FORL axioms:

Selector

Uniqueness

Acyclicity

```
S: \neg \text{ null } xs \Rightarrow \text{ one } hd(xs) \land \text{ one } tl(xs)
```

U:
$$(hd(xs), tl(xs)) = (hd(ys), tl(ys)) \Rightarrow xs = ys$$

A: $(xs, xs) \notin t|_{+}$

```
inductive even where
                  even 0
                  even n \Rightarrow \text{even} (Suc (Suc n))
 fixpoint eq.:
                 even x =
   (overapprox.)
                     (x = 0 \lor \exists n. \ x = Suc \ (Suc \ n) \land even \ n)
unrolled eq.:
                  even_0 x = False
  (underapprox.)
                  even_{k+1} x =
                     (x = 0 \lor \exists n. \ x = Suc (Suc n) \land even_k n)
```

```
inductive even where
                  even 0
                  even n \Rightarrow \text{even} (Suc (Suc n))
 fixpoint eq.:
                 even x =
   (overapprox.)
                    (x = 0 \lor \exists n. \ x = Suc \ (Suc \ n) \land even \ n)
unrolled eq.:
                 even_0 x = False
  (underapprox.)
                  even_{k+1} x =
                     (x = 0 \lor \exists n. x = Suc (Suc n) \land even_k n)
```

```
inductive even where
even 0
even n ⇒ even (Suc (Suc n))
```

```
fixpoint eq.: even x = (x = 0 \lor \exists n. \ x = Suc (Suc n) \land even n)
```

```
inductive even where
                  even 0
                  even n \Rightarrow \text{even} (Suc (Suc n))
 fixpoint eq.:
                 even x =
   (overapprox.)
                    (x = 0 \lor \exists n. \ x = Suc \ (Suc \ n) \land even \ n)
unrolled eq.:
                 even_0 x = False
  (underapprox.)
                  even_{k+1} x =
                     (x = 0 \lor \exists n. x = Suc (Suc n) \land even_k n)
```

	Pos.	Neg.
WF	fixp.	fixp.
NWF	unroll	fixp.

inductive

	Pos.	Neg.
WF	fixp.	fixp.
NWF	unroll	fixp.

	Pos.	Neg.
WF	fixp.	fixp.
NWF	fixp.	unroll

inductive

coinductive

3 Coinductive Predicates

	Pos.	Neg.		Pos.	Neg.
WF	fixp.	fixp.	WF	fixp.	fixp.
NWF	unroll	fixp.	NWF	fixp.	unroll

inductive

coinductive

3 Coinductive Predicates

inductive

coinductive

{[], [0], [3, 0], [2, 2, 2, ...]}

{[], [0], [3, 0], [2, 2, 2, ...]}

{[2, 2, 2, ...], [2, 2, 2, 2, ...]}

FORL axioms:

Selector

Uniqueness

Acyclicity

```
S: \neg \text{ null } xs \Rightarrow \text{ one hd}(xs) \land \text{ one tl}(xs)
U: (\text{hd}(xs), \text{tl}(xs)) = (\text{hd}(ys), \text{tl}(ys)) \Rightarrow xs = ys
A: (xs, xs) \notin \text{tl}^+
```

FORL axioms:

Selector

Uniqueness

Acyclicity

```
S: \neg \text{ null } xs \Rightarrow \text{ one hd}(xs) \land \text{ one tl}(xs)
U: (\text{hd}(xs), \text{tl}(xs)) = (\text{hd}(ys), \text{tl}(ys)) \Rightarrow xs = ys
A: (xs, xs) \not\subset \text{tl}^+
```

FORL axioms:

Selector

Uniqueness

Acyclicity

Bisimilarity

```
S: \neg \text{ null } xs \Rightarrow \text{ one } hd(xs) \land \text{ one } tl(xs)
```

U:
$$(hd(xs), tl(xs)) = (hd(ys), tl(ys)) \Rightarrow xs = ys$$

B:
$$xs \sim ys \Rightarrow xs = ys$$

MacLaurin

MiniML

Ordinal

POPLmark

Topology

SAT-based like Refute, but benefits from Kodkod's optimizations

SAT-based like Refute, but benefits from Kodkod's optimizations

Efficient and precise SAT coding of (co)inductive predicates & datatypes

SAT-based like Refute, but benefits from Kodkod's optimizations

Efficient and precise SAT coding of (co)inductive predicates & datatypes

Saves time and encourages playful exploration

"We are currently trying out the new Nitpick tool and it works very nicely with some of our theories."

"What a fast tool."

"Nitpick sparte mir letzte Woche einige Stunden ein."

"Nitpick rocks! Otherwise I would have actually written code just to enumerate stupid finite relations.

Now I just had to write down the properties."