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 based on random testing

  +  sound  (no spurious counterexs.)

  +  fast
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Refute
Weber, PDPAR 2004

 SAT-based

 finite approx. of infinite types

  +  general-purpose
 − unsound infinite types
 − doesn't scale very well
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Nitpick

 second iteration of Refute

 based on Kodkod (Alloy's backend)

 handles definitional principles specially

 optimizes common idioms

  +  sound
  +  general-purpose
  +  scales better than Refute
 − slower than Quickcheck

Nitpick Kodkod
SAT 

solver
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First-Order Relational Logic (FORL)
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Kodkod's Logic:

First-Order Relational Logic (FORL)

universe:   finite set of atoms

term:   n-ary relation (set of atom n-tuples)
     

∈var pigeons = {a1, …, a30} ∈
∈var holes = {a31, …, a59} ∈
∈var ∅ ⊆ nest ⊆ {a1, …, a30} × {a31, …, a59}∈

∈solve (∀p ∈ pigeons:  one p. nest)
∈      ∧ (∀h ∈ holes:  lone nest. h)
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Basic Translation

★ finite first-order is easy:
     scalars  ➔  singletons
     functions  ➔  relations

★ finite higher-order is also easy:
     λ-abstractions  ➔  set comprehensions
     σ → τ argument  ➔  | σ  | arguments of type τ
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Infinite Types and Partiality

★ considers finite subsets of types
      e.g. {0, 1, …, K} for nat

★ {} = unknown value
★ functions may be partial

      e.g. Suc K gives {}
★ f({}) = {}
★ but: {} ∨ true = true
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Inductive Datatypes➊

Cons

3

Nil

Cons

0

Cons

2

{[], [0], [3, 0], [2]}

Based on Kuncak & Jackson, ESEC/FSE 2005
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FORL axioms:
Selector
Uniqueness
Acyclicity

Inductive Datatypes➊

S:   ¬ null xs  ⇒  one hd(xs) ∧ one tl(xs)
U:   (hd(xs), tl(xs)) = (hd(ys), tl(ys))  ⇒  xs = ys
A:   (xs, xs) ∉ tl+



Inductive Predicates

  inductive even where
  even 0
  even n ⇒ even (Suc (Suc n))

fixpoint eq.:
(overapprox.)

  even x =
      (x = 0 ∨ ∃n. x = Suc (Suc n) ∧ even n)

unrolled eq.:
(underapprox.)

  even0 x = False
  evenk+1 x =
      (x = 0 ∨ ∃n. x = Suc (Suc n) ∧ evenk n)
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Pos. Neg.

WF

NWF

fixp. fixp.

unroll fixp.

inductive

Termination 
provers!

Coinductive Predicates➌
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LCons

2

LCons

{[2, 2, 2, ...], [2, 2, 2, 2, ...]}x



FORL axioms:
Selector
Uniqueness
Acyclicity

Coinductive Datatypes➍

S:   ¬ null xs  ⇒  one hd(xs) ∧ one tl(xs)
U:   (hd(xs), tl(xs)) = (hd(ys), tl(ys))  ⇒  xs = ys
A:   (xs, xs) ∉ tl+



FORL axioms:
Selector
Uniqueness
Acyclicity

Coinductive Datatypes➍

____

S:   ¬ null xs  ⇒  one hd(xs) ∧ one tl(xs)
U:   (hd(xs), tl(xs)) = (hd(ys), tl(ys))  ⇒  xs = ys
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FORL axioms:
Selector
Uniqueness
Acyclicity
Bisimilarity

Coinductive Datatypes➍

____

S:   ¬ null xs  ⇒  one hd(xs) ∧ one tl(xs)
U:   (hd(xs), tl(xs)) = (hd(ys), tl(ys))  ⇒  xs = ys
A:   (xs, xs) ∉ tl+
B:   xs ~ ys  ⇒  xs = ys

_____
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SAT-based like Refute,
but benefits from Kodkod's optimizations

Efficient and precise SAT coding of
(co)inductive predicates & datatypes

Saves time
and encourages playful exploration

Conclusion



"What a fast tool."

"We are currently trying out the new Nitpick tool 
and it works very nicely with some of our theories."

"Nitpick rocks! Otherwise I would have actually 
written code just to enumerate stupid finite relations. 

Now I just had to write down the properties."

"Nitpick sparte mir letzte Woche einige Stunden ein." 


