
Introduction Articles of Proof Theories Compressing Articles Summary

Portable Higher Order Logic Proofs

Joe Hurd and Rob Arthan

Galois, Inc. and Lemma 1 Ltd.
joe@galois.com and rda@lemma-one.com

TEITP Workshop
Wednesday 11 August 2010

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 1 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Motivation

Interactive theorem proving is growing up.

The FlySpeck project is driving the HOL Light theorem prover
towards a formal proof of the Kepler sphere-packing conjecture.
The seL4 project recently completed a 20 man-year verification
of an operating system kernel in the Isabelle theorem prover.

There is a need for theory engineering techniques to support
these major verification efforts.

Theory engineering is to proving as software engineering is to
programming.
“Proving in the large.”
“Mixed language proving.”

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 3 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

OpenTheory Proof Archive

In theory, proofs are immortal.

In practice, proofs that depend on theorem prover
implementations bit-rot at an alarming rate.

Idea: Archive proofs as theory packages.

The goal of the OpenTheory project is to transfer the benefits
of package management to logical theories.

Slogan: Logic is an ABI for mathematics.

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 5 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Project Approach

The initial case study for the project is Church’s simple theory
of types, extended with Hindley-Milner style type variables.

The logic implemented by HOL4, HOL Light and ProofPower.

By focusing on a concrete case study we aim to investigate
the issues surrounding:

Designing theory languages portable across theorem prover
implementations.
Discovering design techniques for reusable theories.
Uploading, installing and upgrading theory packages from
online repositories.
Building a standard theory library.

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 7 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Tactic Proof Scripts

Porting theories between higher order logic theorem provers is
currently a painful process of transcribing scripts that call proof
tactics:

Code (Typical HOL Light tactic script proof)

let NEG_IS_ZERO = prove
(‘!x. neg x = Zero <=> x = Zero‘,
MATCH_MP_TAC N_INDUCT THEN
REWRITE_TAC [neg_def] THEN
MESON_TAC [N_DISTINCT]);;

Difficulty: Every theorem prover implements a subtly different set
of tactics, the behaviour of which evolves across versions.

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 9 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Theorem Provers in the LCF Design

A theorem Γ ` φ states “if all of
the hypotheses Γ are true, then so
is the conclusion φ”.

The novelty of Milner’s Edinburgh
LCF ITP was to make theorem an
abstract ML type.

Values of type theorem can only
be created by a small logical kernel
which implements the primitive
inference rules of the logic.

Soundness of the whole ML ITP
thus reduces to soundness of the
logical kernel.

THM ⊆ P{Blue, White, . . .}

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 11 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Compiling Theories

Idea: Instead of storing the source tactic script, store a
compiled version of the theory by fully expanding the tactics
to a primitive inference proof.

Benefit: The logic almost never changes, so the compiled
theories will never suffer from bit rot.

Whereas tactic scripts can break every time the tactics change.

Benefit: The compiled proof need only store the inferences
that contribute to the proof.

Whereas tactic scripts often explore many dead ends before
finding a valid proof.

Drawback: Once the theory has been compiled to a proof, it is
difficult to change it.

So theories should be compiled only when they are stable
enough to be archived and shared.

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 13 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

OpenTheory Articles

A theory of higher order logic consists of:
1 A set Γ of assumption sequents.
2 A set ∆ of theorem sequents.

For assurance, we want evidence that Γ ` ∆,
E.g., via ML type THM or a formal proof.

This talk will present the OpenTheory article file format for
higher order logic theories.

This is a standards-based approach to theories:

Enables simple import and export between theorem prover
implementations.
Evidence of correctness is a replayable low-level proof providing
a way to independently check proofs.

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 15 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Proofs are (Stack-Based) Programs

Proof articles are represented as programs for a stack-based
virtual machine.

There are commands for building types and terms, and
performing primitive inferences.
The stack avoids the need to store the whole proof in memory.

A dictionary is used to support structure sharing.

The article should preserve structure sharing as much as
possible to avoid a space blow-up.
Implementation Challenge: Structure-sharing substitution.

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 17 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Article Commands

Article files consist of a sequence of commands, one per line.

Commands such as var construct data to be used as
arguments in primitive inferences.

Definition (The “var” article command)
var

Pop a type ty; pop a name n; push a variable
with name n and type ty.

Stack: Before: Type ty
:: Name n
:: stack

After: Term (mk_var (n,ty))
:: stack

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 19 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Article Primitive Inferences

There are 8 primitive inference commands (such as refl).

There is also one command for defining new constants, and
one for defining new type operators.

Definition (The “refl” article command)

refl
Pop a term t; push a theorem with no
hypotheses and conclusion t = t.

Stack: Before: Term t
:: stack

After: Thm (|- t = t)
:: stack

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 21 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

The OpenTheory Logical Kernel

` t = t
refl t {φ} ` φ assume φ

Γ ` φ = ψ ∆ ` φ
Γ ∪∆ ` ψ eqMp

Γ ` t = u

Γ ` (λv . t) = (λv . u)
absThm v

Γ ` f = g ∆ ` x = y

Γ ∪∆ ` f x = g y
appThm

Γ ` φ ∆ ` ψ
(Γ− {ψ}) ∪ (∆− {φ}) ` φ = ψ

deductAntisym
Γ ` φ

Γ[σ] ` φ[σ]
subst σ

` (λv . t) u = t[u/v]
betaConv ((λv . t) u) ` c = t

defineConst c t

` φ t

` abs (rep a) = a ` φ r = (abs (rep r) = r)
defineTypeOp n abs rep vs

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 23 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Article Assumptions

The axiom command is used to import an assumption to the
theory.

Definition (The “axiom” article command)

axiom
Pop a term c; pop a list of terms h;
push the new axiom h |- c and add it
to the theory assumptions.

Stack: Before: Term c
:: List [Term h1, ..., Term hn]
:: stack

After: Thm ({h1, ..., hn} |- c)
:: stack

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 25 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Article Theorems

The thm command is used to export a theorem from the
theory.

Definition (The “thm” article command)

thm
Pop a term c; pop a list of terms h; pop a
theorem th; check the theorem {h1, ..., hn} |- c
is alpha-equivalent to th and (if so) add it to
the theory theorems.

Stack: Before: Term c
:: List [Term h1, ..., Term hn]
:: Thm th
:: stack

After: stack

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 27 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Article Theories

The result of executing a proof article is a theory Γ . ∆.

Γ is the set of imported assumptions.
∆ is the set of exported theorems.

The definitions made by the article manifest themselves as
constants and types that appear in ∆ but not in Γ.

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 29 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Example Article Theory

Theory (Proof article defining the “unit” type)

input-types: -> bool

input-consts: ! /\ = ==> ? T select

assumed:

|- !t. (\x. t x) = t

|- T = ((\p. p) = \p. p)

|- (!) = \P. P = \x. T

|- (==>) = \p q. (p /\ q) = p

|- !P x. P x ==> P ((select) P)

|- (/\) = \p q. (\f. f p q) = \f. f T T

|- (?) = \P. !q. (!x. P x ==> q) ==> q

defined-types: unit

defined-consts: one

thms:

|- !v. v = one

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 31 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

HOL Light Experiment

To test the article format, we instrumented HOL Light v2.20
to emit articles for all of the theory files in the distribution.

Proofs fully expanded to primitive inferences are large.

However, the following compression techniques are effective
on proof articles:

The equivalent of hash-consing for types, terms and theorems.
Dead-inference elimination.

Concatenating all of the articles and compressing results in an
article with the following characteristics:

Contains 769,138 primitive inferences.
Applying gzip produces an 18Mb file.

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 33 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Compressing the HOL Light Theories

HOL Light article comp. comp. gzip’ed gzip’ed comp.
theory (Kb) (Kb) saving article comp. saving

(Kb) (Kb)
num 1,820 813 56% 227 113 51%
arith 27,469 7,548 73% 2,884 1,015 65%
wf 29,277 6,330 79% 3,222 861 74%
calc num 3,922 1,570 60% 374 203 46%
normalizer 2,845 688 76% 300 92 70%
grobner 2,417 748 70% 257 103 60%
ind-types 10,625 4,422 59% 1,274 599 53%
list 12,368 4,870 61% 1,485 673 55%
realax 23,628 7,989 67% 2,519 1,070 58%
calc int 2,844 861 70% 314 119 63%
realarith 16,275 4,684 72% 1,326 589 56%
real 30,031 9,346 69% 3,179 1,217 62%
calc rat 2,555 1,166 55% 289 157 46%
int 40,617 9,546 77% 3,465 1,249 64%
sets 168,586 30,315 83% 17,514 4,048 77%
iter 207,324 32,422 85% 17,557 4,199 77%
cart 20,351 3,632 83% 2,076 495 77%
define 82,185 16,409 81% 8,157 2,175 74%

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 35 / 36

Introduction Articles of Proof Theories Compressing Articles Summary

Summary

The article format for higher order logic theories is now stable.

Looking for volunteers to build tools to import and export
articles for HOL theorem provers.

Get in touch using the project web page:

http://gilith.com/research/opentheory

Joe Hurd and Rob Arthan Portable Higher Order Logic Proofs 36 / 36

http://gilith.com/
re
sear
ch/opentheory

	Introduction
	Articles of Proof
	Theories
	Compressing Articles
	Summary

