
Trustworthy decompilation:
Extracting models of machine code inside an ITP

Magnus O. Myreen
University of Cambridge

TEITP 2010



The GCD program in ARM machine code:

E1510002 B0422001 C0411002 01AFFFFFB



Problems with machine code

Formal verification of machine code:

ARM/x86/PowerPC model

machine code

code

...
(12100/4500/2100 lines)

...

correctness statement
{P} code {Q}

Contribution: tools/methods which

I expose as little as possible of the big models to the user;

I make non-automatic proofs independent of the models



Problems with machine code

Formal verification of machine code:

ARM/x86/PowerPC model

machine code

code

...
(12100/4500/2100 lines)

...

correctness statement
{P} code {Q}

Contribution: tools/methods which

I expose as little as possible of the big models to the user;

I make non-automatic proofs independent of the models



Problems with machine code

Formal verification of machine code:

ARM/x86/PowerPC model

machine code

code

...
(12100/4500/2100 lines)

...

correctness statement
{P} code {Q}

Contribution: tools/methods which

I expose as little as possible of the big models to the user;

I make non-automatic proofs independent of the models



Problems with machine code

Formal verification of machine code:

ARM/x86/PowerPC model

machine code

code

...
(12100/4500/2100 lines)

...

correctness statement
{P} code {Q}

Contribution: tools/methods which

I expose as little as possible of the big models to the user;

I make non-automatic proofs independent of the models



Proposed solution

decompilercode (func,thm)

Decompiler:

I input: machine code

I output: function computed by code & certificate theorem



Trusted extension

My tools = ML programs which steer HOL4 to a proof

my tools

HOL4 kernel

standard HOL4 theories and tools:
SIMP, EVAL, METIS, SAT, Z3...

HOL4

Every proof passes the LCF-style logical kernel of HOL4.



This talk:

I explaining decompilation ‖ demo

I pros/cons of HOL4



Models of machine languages

Formal verification of machine code:

ARM/x86/PowerPC model

machine code

code

...
(12100/4500/2100 lines)

...

correctness statement
{P} code {Q}



Models of machine languages

Machine models borrowed from work by others:

ARM model, by Fox [ITP’10]

I covers practically all ARM instructions, for old and new ARMs

I extensively tested against real hardware

x86 model, by Sarkar et al. [POPL’09]

I covers all addressing modes in 32-bit mode x86

I includes approximately 30 instructions

PowerPC model, originally from Leroy [POPL’06]

I manual translation (Coq → HOL4) of Leroy’s PowerPC model

I instruction decoder added



Hoare triple

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 is described by theorem:

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state =

0xE0800000w) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state =

ARM WRITE REG 15w (ARM READ REG 15w state + 4w)

(ARM WRITE REG 0w

(ARM READ REG 0w state + ARM READ REG 0w state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARM MODEL

Informal syntax for this talk:

(aR 0w x * aPC p)

{R0 x ∗ PC p }

{(p,0xE0800000w)}

p : E0800000

(aR 0w (x+x) * aPC (p+4w))

{R0 (x+x) ∗ PC (p+4) }



Hoare triple

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 is described by theorem:

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state =

0xE0800000w) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state =

ARM WRITE REG 15w (ARM READ REG 15w state + 4w)

(ARM WRITE REG 0w

(ARM READ REG 0w state + ARM READ REG 0w state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARM MODEL

Informal syntax for this talk:

(aR 0w x * aPC p)

{R0 x ∗ PC p }

{(p,0xE0800000w)}

p : E0800000

(aR 0w (x+x) * aPC (p+4w))

{R0 (x+x) ∗ PC (p+4) }



Hoare triple

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 is described by theorem:

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state =

0xE0800000w) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state =

ARM WRITE REG 15w (ARM READ REG 15w state + 4w)

(ARM WRITE REG 0w

(ARM READ REG 0w state + ARM READ REG 0w state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARM MODEL Informal syntax for this talk:
(aR 0w x * aPC p) {R0 x ∗ PC p }
{(p,0xE0800000w)} p : E0800000
(aR 0w (x+x) * aPC (p+4w)) {R0 (x+x) ∗ PC (p+4) }



Demo.



Decompilation

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000
4: E3510000
8: 12800001

12: 15911000
16: 1AFFFFFB

the decompiler automatically extracts a readable function:

f (r0, r1, m) = let r0 = 0 in g(r0, r1, m)

g(r0, r1, m) = if r1 = 0 then (r0, r1, m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1, m)



Decompilation

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0
4: E3510000 L: cmp r1, #0
8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]
16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1, m) = let r0 = 0 in g(r0, r1, m)

g(r0, r1, m) = if r1 = 0 then (r0, r1, m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1, m)



Decompilation

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0
4: E3510000 L: cmp r1, #0
8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]
16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1, m) = let r0 = 0 in g(r0, r1, m)

g(r0, r1, m) = if r1 = 0 then (r0, r1, m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1, m)



Decompilation, correct?

Decompiler automatically proves a certificate theorem:

fpre(r0, r1, m)⇒

{ (R0, R1, M) is (r0, r1, m) ∗ PC p ∗ S }
p : E3A00000 E3510000 12800001 15911000 1AFFFFFB

{ (R0, R1, M) is f (r0, r1, m) ∗ PC (p + 20) ∗ S }

which informally reads:

for any initially value (r0, r1, m) in reg 0, reg 1 and memory,
the code terminates with f (r0, r1, m) in reg 0, reg 1 and memory.



Decompilation, verification example

To verify code: prove properties of function f ,

∀x l a m. list(l , a, m) ⇒ f (x , a, m) = (length(l), 0, m)

∀x l a m. list(l , a, m) ⇒ fpre(x , a, m)

since properties of f carry over to machine code via the certificate.

Proof reuse: Given similar x86 and PowerPC code:

31C085F67405408B36EBF7

38A000002C140000408200107E80A02E38A500014BFFFFF0

which decompiles into f ′ and f ′′, respectively. Manual proofs
above can be reused if f = f ′ = f ′′.



Decompilation, verification example

To verify code: prove properties of function f ,

∀x l a m. list(l , a, m) ⇒ f (x , a, m) = (length(l), 0, m)

∀x l a m. list(l , a, m) ⇒ fpre(x , a, m)

since properties of f carry over to machine code via the certificate.

Proof reuse: Given similar x86 and PowerPC code:

31C085F67405408B36EBF7

38A000002C140000408200107E80A02E38A500014BFFFFF0

which decompiles into f ′ and f ′′, respectively. Manual proofs
above can be reused if f = f ′ = f ′′.



Demo.



Decompilation, algorithm

Algorithm:

1. derive a Hoare-triple for each instruction

2. find all paths through code

3. for each loop/sub-component:

a. compose Hoare triples along each path
b. merge resulting Hoare triples
c. apply a loop rule, if necessary

The loop rule introduces a tail-recursive function, an instance of

tailrec(x) = if G (x) then tailrec(F (x)) else D(x)



Decompiler, implementation

Implementation:

I ML program which fully-automatically performs forward proof,

I no heuristics and no dangling proof obligations,

I ‘smart’ tactics, e.g. SIMP, avoided to be robust.

Details in Myreen et al. [FMCAD’08].



Applications

decompiler

ARM x86 PowerPC

code (func,thm)

machine-code Hoare triple



Applications

decompiler

ARM x86 PowerPC

compilerfunc

code

(code,thm)

(func,thm)

machine-code Hoare triple



Compiler

Synthesis often more practical. Given function f ,

f (r1) = if r1 < 10 then r1 else let r1 = r1 − 10 in f (r1)

our compiler generates ARM machine code:

E351000A L: cmp r1,#10
2241100A subcs r1,r1,#10
2AFFFFFC bcs L

and automatically proves a certificate HOL theorem:

` {R1 r1 ∗ PC p ∗ s }
p : E351000A 2241100A 2AFFFFFC

{R1 f (r1) ∗ PC (p+12) ∗ s }



Compiler

Synthesis often more practical. Given function f ,

f (r1) = if r1 < 10 then r1 else let r1 = r1 − 10 in f (r1)

our compiler generates ARM machine code:

E351000A L: cmp r1,#10
2241100A subcs r1,r1,#10
2AFFFFFC bcs L

and automatically proves a certificate HOL theorem:

` {R1 r1 ∗ PC p ∗ s }
p : E351000A 2241100A 2AFFFFFC

{R1 f (r1) ∗ PC (p+12) ∗ s }



Compilation example, cont.

One can prove properties of f since it lives inside HOL:

` ∀x . f (x) = x mod 10

Properties proved of f translate to properties of the machine code:

` {R1 r1 ∗ PC p ∗ s}
p : E351000A 2241100A 2AFFFFFC

{R1 (r1 mod 10) ∗ PC (p+12) ∗ s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let r1 = r1 mod 10 in



Compilation example, cont.

One can prove properties of f since it lives inside HOL:

` ∀x . f (x) = x mod 10

Properties proved of f translate to properties of the machine code:

` {R1 r1 ∗ PC p ∗ s}
p : E351000A 2241100A 2AFFFFFC

{R1 (r1 mod 10) ∗ PC (p+12) ∗ s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let r1 = r1 mod 10 in



Compilation example, cont.

One can prove properties of f since it lives inside HOL:

` ∀x . f (x) = x mod 10

Properties proved of f translate to properties of the machine code:

` {R1 r1 ∗ PC p ∗ s}
p : E351000A 2241100A 2AFFFFFC

{R1 (r1 mod 10) ∗ PC (p+12) ∗ s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let r1 = r1 mod 10 in



Additional feature: user-defined extensions

Using our theorem about mod, the compiler accepts:

g(r1, r2, r3) = let r1 = r1 + r2 in
let r1 = r1 + r3 in
let r1 = r1 mod 10 in

(r1, r2, r3)

Previously proved theorems can be used as building blocks for
subsequent compilations.



Implementation

To compile function f :

1. generate, without proof, code from input f ;

2. decompile, with proof, a function f ′ from generated code;

3. prove f = f ′.

Features:

I code generation completely separate from proof

I supports many light-weight optimisations without any
additional proof burden: instruction reordering, conditional
execution, dead-code elimination, duplicate-tail elimination, ...

I allows for significant user-defined extensions

Details in Myreen et al. [CC’09]



Implementation

To compile function f :

1. generate, without proof, code from input f ;

2. decompile, with proof, a function f ′ from generated code;

3. prove f = f ′.

Features:

I code generation completely separate from proof

I supports many light-weight optimisations without any
additional proof burden: instruction reordering, conditional
execution, dead-code elimination, duplicate-tail elimination, ...

I allows for significant user-defined extensions

Details in Myreen et al. [CC’09]



Demo.



LISP case study

Verified LISP implementations via compilation.

decompiler

ARM x86 PowerPC

compilerHOL4 functions for 
LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc. 

ARM, x86, PowerPC code 
and certificate theorems

machine-code Hoare triple



LISP case study

Verified LISP implementations via compilation.

decompiler

ARM x86 PowerPC

compilerHOL4 functions for 
LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc. 

ARM, x86, PowerPC code 
and certificate theorems

machine-code Hoare triple



LISP case study

Verified LISP implementations via compilation.

decompiler

ARM x86 PowerPC

compilerHOL4 functions for 
LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc. 

ARM, x86, PowerPC code 
and certificate theorems

machine-code Hoare triple



LISP case study

Verified LISP implementations via compilation.

decompiler

ARM x86 PowerPC

compilerHOL4 functions for 
LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc. 

ARM, x86, PowerPC code 
and certificate theorems

machine-code Hoare triple



Demo.



Restrictions of decompilation

(De)compilation applicable only to programs where:

1. jumps are to fixed offsets or procedure returns,

2. code and data are kept separate, and

3. its semantics is deterministic.

Decompiler extensively used in proof of JIT compiler with:

1. code pointers,

2. self-modifying code, and

3. a non-deterministic ISA model.

Decompiler applied to ‘well-behaved’ sub-components.



Restrictions of decompilation

(De)compilation applicable only to programs where:

1. jumps are to fixed offsets or procedure returns,

2. code and data are kept separate, and

3. its semantics is deterministic.

Decompiler extensively used in proof of JIT compiler with:

1. code pointers,

2. self-modifying code, and

3. a non-deterministic ISA model.

Decompiler applied to ‘well-behaved’ sub-components.



This talk:

I explaining decompilation ‖ demo

I pros/cons of HOL4



Pros/cons of HOL4

Pros:

I HOL4 is easily programmable

I lack of user interface — user at ML level

I easy to mix backwards/forwards reasoning

I conceptually simple

Cons:

I very space consuming, e.g. the term “[1, 20, 3000]”
is represented by > 30 cons cells

I not automatic enough, not modular enough, ...



Talk summary

Decompilation:

I automates Hoare triple reasoning,

I extracts function computed by code,

I useful for verification and code synthesis.

decompilercode (func,thm)

Questions?

(I can demo the verified Lisp or JIT on request.)



Talk summary

Decompilation:

I automates Hoare triple reasoning,

I extracts function computed by code,

I useful for verification and code synthesis.

decompilercode (func,thm)

Questions?

(I can demo the verified Lisp or JIT on request.)


