The HOL-4 Trust Story

Konrad Slind

Rockwell Collins

August 12, 2010

Konrad Slind The HOL-4 Trust Story



HOL-4

@ ADT of theorems, direct from LCF
@ Aninference rule is anything with ML type

Tt — - — 7p — thm

@ This covers axioms, primitive rules, derived rules, primitive
definition principles, derived definition principles (recursive
types, recursive functions, inductive relations, ...)

@ ML programming is used to compose inference steps
arbitrarily while preserving safety

@ Trust problem solved once and for all

Konrad Slind The HOL-4 Trust Story



HOL-4

@ ADT of theorems, direct from LCF
@ Aninference rule is anything with ML type

Tt — - — 7p — thm

@ This covers axioms, primitive rules, derived rules, primitive
definition principles, derived definition principles (recursive
types, recursive functions, inductive relations, ...)

@ ML programming is used to compose inference steps
arbitrarily while preserving safety

@ Trust problem solved once and for all
@ REALLY?

Konrad Slind The HOL-4 Trust Story



Complication: Persistent Theories

@ The end result of a HOL-4 proof effort is a theory

@ Theories are persistent, i.e., cached on disk in a readable
format

@ (In fact, HOL-4 theories are cached as ML modules.)

@ Can be read back in later sessions without replaying
proofs.

@ This requires theorem creation (a primitive step)

@ Hence persistent theory import, export, and manipulation
code is included in kernel

Konrad Slind The HOL-4 Trust Story



Theory Import Attack

@ A theory could be maliciously altered while externally
resident

@ For example it would be easy to add syntax that, when
parsed back in, would result in = T = F under no
assumptions.

@ Mitigated with tags (see later)

@ OR, one could arrange proof scripts in dependency order
and execute them in order, in a single session.

@ No need then to import any theory, so this class of attacks
avoided.

Konrad Slind The HOL-4 Trust Story



Choices: Two Kernels

HOL-4 comes with 2 different prelogic implementations
@ locally nameless (deBruijn terms + explicit substitutions)
@ name-carrying

Both build the entire system + regressions
Which one is faster? It depends.
Which one is more trustworthy? We don’t know!

Konrad Slind The HOL-4 Trust Story



Choices: Two Kernels

HOL-4 comes with 2 different prelogic implementations
@ locally nameless (deBruijn terms + explicit substitutions)
@ name-carrying

Both build the entire system + regressions
Which one is faster? It depends.
Which one is more trustworthy? We don’t know!

End introduction to HOL-4 kernel

Konrad Slind The HOL-4 Trust Story



Lazy Theorems (Boulton)

Richard Boulton’s PhD (early 90’s) was about making LCF-style
provers more efficient.

@ One idea was lazy theorems
@ Essentially a thunkified theorem:

unit — thm

Except that it is also paired with the statement of the
theorem:

lazy_thm = (term list « term) « (unit — thm)
@ Thus a lazy inference rule has type

T — -+ — Ty — lazy_thm

Konrad Slind The HOL-4 Trust Story



Lazy Theorems

@ Allows some cheap exploratory term manipulation on the
way to an actual proof. Only when a proof has been found
does the thunk get invoked and a real theorem produced.

@ Thus the actual proof is postponed until it is found

@ The technique resulted in some genuine speed-ups in
performance-critical theorem proving code

@ Revisited by Amjad in his HOL-4 based model-checker
(2005)

@ Trust impact: none, since genuine theorems arising from
real primitive inferences are ultimately produced.

Konrad Slind The HOL-4 Trust Story



Proof objects

HOL proofs have been formalized and generated, in a format
suitable for external checking.

@ von Wright, Wong (early 90’s), Skalberg, Obua (early 00’s),
Hurd,Arthan (10’s)

@ Are proofs doomed to be unfeasibly large? | used to think
so, but work of H,A is encouraging.

@ Trust impact: adds trust to LCF style (Pollack argument)

Konrad Slind The HOL-4 Trust Story



BDD Representations (Gordon,Amjad)

A more serious challenge for reasoning systems are proof
techniques that require specialized term representations.

@ Term representations in ITPs are quite general (e.g., first
order terms, lambda terms)
@ Typically pure

@ How to incorporate efficient term representations for
reasoning (often impure)?

@ Case Study : BDDs

Konrad Slind The HOL-4 Trust Story



BDD Representations

@ G,A constructed an LCF-style system connecting HOL
terms to BDDs.

@ A Representation Judgement is of the form (ignoring
variable ordering clutter)

t— b
and then propositional logic operations are paralleled by

BDD operations, e.g.,

t1 — b1 tg = b2
t; A t, — BDD_AND(b1, b2)

Konrad Slind The HOL-4 Trust Story



BDD Representations

@ There are similar judgements for the other prop.

operations.
@ Two more operations provide a bridge between HOL and
BDD:
F =t ti— b t — BDD_TRUE

b— b Ft

@ Then verifying modelcheckers for CTL and p-calculus built
on top (Amjad thesis)

Konrad Slind The HOL-4 Trust Story



BDD Representations

@ ML was used as the unifying environment to maintain the
two judgement systems (BDD-land and HOL-land)
‘side-by-side’ while also orchestrating the passage back
and forth between the representations.

@ BDD packages can be trusted by social process argument
(heavy usage, few bugs). The transformation of BDD
results to theorems occurs via a simple and small interface
(ADTs again). Results are tagged.

@ Trust impact: Trust weakened by reliance on BDD
package, but dependencies clear and interfaces clean, i.e.,
no other alien components.

Konrad Slind The HOL-4 Trust Story



Execution

@ ACL2 (and other systems?) supports logic definitions
being exported to corresponding meta-language definitions
and then executed, even to the point of using the results of
evaluation in theorems.

@ HOL-4 also allows definitions to be exported to
meta-language.

@ The generated code is completely separate from the
theorem prover.

@ We currently do not systematically incorporate execution
results back into proof (read-back uses type-based
translation)

@ Trust impact: none. Could use tags.

Konrad Slind The HOL-4 Trust Story



Execution

Question: What is the view in other systems?

Is incorporation of execution results trivially OK, or not?

Konrad Slind The HOL-4 Trust Story



Theorems by fiat

@ mk_thm coerces a formula into a theorem. Extremely
useful!

@ Generalized oracle facility:

mk_oracle_thm : tag — term list « term — thm
@ From this, obtain mk_thm and mk_axiom by creating a
separate tag for each.
@ Trust impact: complete loss of trust

@ Loss of trust can be monitored by suitable propagation of
tags

Konrad Slind The HOL-4 Trust Story



@ A tagis extra information attached to a theorem that is
useful to some external agent (person or program).

@ Doesn’t influence the meaning of the theorem.

@ Kalvala proposed using annotations (tags) systematically.
Hutter explored their use in automated proof (unification,
resolution)

@ Tags come in two flavours: meta-language and
object-language.

Konrad Slind The HOL-4 Trust Story



Object-Language Tags

Most are introduced by logical definitions of the form

FTag; x = x
FTag, x y = x

@ Can attach any kind of information to any subterm in a
semantically transparent way

@ Tag, M N puts tag N on term M and has the same type
and meaning as M.

@ Useful for some applications, e.g., control of rewriting,
rippling, origin tracking
@ Trust impact: none

Konrad Slind The HOL-4 Trust Story



Object-Language Tags

@ Such tags are not a panacea (consider using OL tag for
tracking formal proofs)

@ Also easy to remove such tags by rewriting with the above
definitions.

@ The absence of such a tag does not mean that the term
was not once tagged!

@ Crucial property for tracking oracle usage

Konrad Slind The HOL-4 Trust Story



Meta-Language Tags

MP
rHA=1B AFA

rUA+B

Consider the HOL-4 kernel code:

fun MP (THM(ol, Gamma,c)) (THM(o2,Delta,A’)) =
let val (A,B) = dest_imp c
in if aconv A A’
then THM (Tag.merge ol o2,
union_hyp Gamma Delta,
B)
else raise MP_Failed
end

Konrad Slind The HOL-4 Trust Story



Meta-Language Tags

A HOL-4 theorem has the form THM(tag, H, ¢)
@ An external function Tag.merge uniformly merges tags.
(Currently takes unions.)
@ Design currently being generalized.

@ Trust impact: none. Tag processing does not interfere with
the production of the theorem.

@ Also, tags only accumulate through inference, infecting
each theorem produced from a tagged theorem.

@ Important: a theorem with an empty tag means that no
oracle invocation was explicitly or implicitly used in the
derivation of the theorem, i.e., it has a proof in the HOL
logic.

Konrad Slind The HOL-4 Trust Story



HOL<->ACL2

Hunt, Kaufmann, Gordon, Reynolds have built and applied a
logically justified connection between HOL and ACL2.

@ ACL2 s-expressions formalized as HOL datatype

@ ACL2 operations imported and defined over sexp

@ ACL2 axioms identified and then proved

@ So ACL2 logic is sound, having a model

@ So if ACL2 proves something, then there is a HOL proof of
the corresponding sexp formula

Konrad Slind The HOL-4 Trust Story



HOL<->ACL2

@ Provides a logically sound link between the two systems

@ Has been used by Reynolds in his PhD, K,G have re-done
correctness proof for an LTL model-checking algorithm

@ Major Benefit: No need to send proofs!

@ Trust impact None, modulo faithfulness of transmission
mechanisms.

@ Prover A can use prover B to get a trusted result, without
proof translation or verification of B or checker verification.
Formal proof done once and forall.

Konrad Slind The HOL-4 Trust Story



HOL-in-HOL

John Harrison formalized something close to the
implementation of the HOL-Light kernel, and proved it correct.

This might give a path to reflection of new inference rules into

an LCF-style kernel, simply by showing that a proposed
inference rule is equal to an existing derived rule

Konrad Slind The HOL-4 Trust Story



THE END

Trust Story



