
ACL2: Implementation of a Computational
Logic

Matt Kaufmann
The University of Texas at Austin

Dept. of Computer Science

June 10, 2015

Overview ACL2 Introduction Logical Foundations Conclusion

HELLO!

I’m so happy to be visiting here! I plan to be in Gothenburg
until August 15. Thanks, Ali!

Today I’ll discuss a logic and software tool, ACL2, which has
been my focus off and on since the early 1990s.

(But my intention in Gothenburg is to return to my roots in
model theory, especially models of set theory and arithmetic.)

2/34

Overview ACL2 Introduction Logical Foundations Conclusion

HELLO!

I’m so happy to be visiting here! I plan to be in Gothenburg
until August 15.

Thanks, Ali!

Today I’ll discuss a logic and software tool, ACL2, which has
been my focus off and on since the early 1990s.

(But my intention in Gothenburg is to return to my roots in
model theory, especially models of set theory and arithmetic.)

2/34

Overview ACL2 Introduction Logical Foundations Conclusion

HELLO!

I’m so happy to be visiting here! I plan to be in Gothenburg
until August 15. Thanks, Ali!

Today I’ll discuss a logic and software tool, ACL2, which has
been my focus off and on since the early 1990s.

(But my intention in Gothenburg is to return to my roots in
model theory, especially models of set theory and arithmetic.)

2/34

Overview ACL2 Introduction Logical Foundations Conclusion

HELLO!

I’m so happy to be visiting here! I plan to be in Gothenburg
until August 15. Thanks, Ali!

Today I’ll discuss a logic and software tool, ACL2, which has
been my focus off and on since the early 1990s.

(But my intention in Gothenburg is to return to my roots in
model theory, especially models of set theory and arithmetic.)

2/34

Overview ACL2 Introduction Logical Foundations Conclusion

HELLO!

I’m so happy to be visiting here! I plan to be in Gothenburg
until August 15. Thanks, Ali!

Today I’ll discuss a logic and software tool, ACL2, which has
been my focus off and on since the early 1990s.

(But my intention in Gothenburg is to return to my roots in
model theory, especially models of set theory and arithmetic.)

2/34

Overview ACL2 Introduction Logical Foundations Conclusion

OUTLINE

Overview

ACL2 Introduction

Logical Foundations

Conclusion

3/34

Overview ACL2 Introduction Logical Foundations Conclusion

OUTLINE

Overview

ACL2 Introduction

Logical Foundations

Conclusion

4/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW

Quoting the ACL2 home page:

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

Goal for this talk:
Say something about ACL2 of interest to logicians.

I The focus will be on mechanizing logic for a practical
proof assistant.

I Boring or not, logical challenges must be addressed!
(Note: ACL2 does not generate formal proofs.)

5/34

http://www.cs.utexas.edu/users/moore/acl2/

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW

Quoting the ACL2 home page:

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

Goal for this talk:
Say something about ACL2 of interest to logicians.

I The focus will be on mechanizing logic for a practical
proof assistant.

I Boring or not, logical challenges must be addressed!
(Note: ACL2 does not generate formal proofs.)

5/34

http://www.cs.utexas.edu/users/moore/acl2/

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW

Quoting the ACL2 home page:

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

Goal for this talk:
Say something about ACL2 of interest to logicians.

I The focus will be on mechanizing logic for a practical
proof assistant.

I Boring or not, logical challenges must be addressed!
(Note: ACL2 does not generate formal proofs.)

5/34

http://www.cs.utexas.edu/users/moore/acl2/

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW

Quoting the ACL2 home page:

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

Goal for this talk:
Say something about ACL2 of interest to logicians.

I The focus will be on mechanizing logic for a practical
proof assistant.

I Boring or not, logical challenges must be addressed!
(Note: ACL2 does not generate formal proofs.)

5/34

http://www.cs.utexas.edu/users/moore/acl2/

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW

Quoting the ACL2 home page:

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

Goal for this talk:
Say something about ACL2 of interest to logicians.

I The focus will be on mechanizing logic for a practical
proof assistant.

I Boring or not, logical challenges must be addressed!

(Note: ACL2 does not generate formal proofs.)

5/34

http://www.cs.utexas.edu/users/moore/acl2/

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW

Quoting the ACL2 home page:

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

Goal for this talk:
Say something about ACL2 of interest to logicians.

I The focus will be on mechanizing logic for a practical
proof assistant.

I Boring or not, logical challenges must be addressed!
(Note: ACL2 does not generate formal proofs.)

5/34

http://www.cs.utexas.edu/users/moore/acl2/

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: THE PLAN FOR TODAY

I’ll start by following these slides . . .
. . . but I’d be happy to take us in whatever direction you’d
prefer (if I can!).

I’ve prepared about an hour’s worth of material, so there
should be plenty of time to explore . . .
. . . and of course, I can skip slides.

Please feel free to ask questions!

Let’s start with some context.

6/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: THE PLAN FOR TODAY

I’ll start by following these slides . . .

. . . but I’d be happy to take us in whatever direction you’d
prefer (if I can!).

I’ve prepared about an hour’s worth of material, so there
should be plenty of time to explore . . .
. . . and of course, I can skip slides.

Please feel free to ask questions!

Let’s start with some context.

6/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: THE PLAN FOR TODAY

I’ll start by following these slides . . .
. . . but I’d be happy to take us in whatever direction you’d
prefer (if I can!).

I’ve prepared about an hour’s worth of material, so there
should be plenty of time to explore . . .
. . . and of course, I can skip slides.

Please feel free to ask questions!

Let’s start with some context.

6/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: THE PLAN FOR TODAY

I’ll start by following these slides . . .
. . . but I’d be happy to take us in whatever direction you’d
prefer (if I can!).

I’ve prepared about an hour’s worth of material, so there
should be plenty of time to explore . . .

. . . and of course, I can skip slides.

Please feel free to ask questions!

Let’s start with some context.

6/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: THE PLAN FOR TODAY

I’ll start by following these slides . . .
. . . but I’d be happy to take us in whatever direction you’d
prefer (if I can!).

I’ve prepared about an hour’s worth of material, so there
should be plenty of time to explore . . .
. . . and of course, I can skip slides.

Please feel free to ask questions!

Let’s start with some context.

6/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: THE PLAN FOR TODAY

I’ll start by following these slides . . .
. . . but I’d be happy to take us in whatever direction you’d
prefer (if I can!).

I’ve prepared about an hour’s worth of material, so there
should be plenty of time to explore . . .
. . . and of course, I can skip slides.

Please feel free to ask questions!

Let’s start with some context.

6/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: THE PLAN FOR TODAY

I’ll start by following these slides . . .
. . . but I’d be happy to take us in whatever direction you’d
prefer (if I can!).

I’ve prepared about an hour’s worth of material, so there
should be plenty of time to explore . . .
. . . and of course, I can skip slides.

Please feel free to ask questions!

Let’s start with some context.

6/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: FORMAL VERIFICATION

Many organizations now use tools to formally verify hardware
and software systems, augmenting traditional testing by using
tools based on some notion of proof.

Such tools are typically equivalence checkers, model checkers, or
static checkers.

But occasionally, interactive theorem provers (ITPs) are used, e.g.
Coq, Isabelle, HOL4, PVS, Agda — or ACL2.

As far as I know, ACL2 is the only ITP used with some
regularity at several companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities.

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

7/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: FORMAL VERIFICATION
Many organizations now use tools to formally verify hardware
and software systems, augmenting traditional testing by using
tools based on some notion of proof.

Such tools are typically equivalence checkers, model checkers, or
static checkers.

But occasionally, interactive theorem provers (ITPs) are used, e.g.
Coq, Isabelle, HOL4, PVS, Agda — or ACL2.

As far as I know, ACL2 is the only ITP used with some
regularity at several companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities.

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

7/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: FORMAL VERIFICATION
Many organizations now use tools to formally verify hardware
and software systems, augmenting traditional testing by using
tools based on some notion of proof.

Such tools are typically equivalence checkers, model checkers, or
static checkers.

But occasionally, interactive theorem provers (ITPs) are used, e.g.
Coq, Isabelle, HOL4, PVS, Agda — or ACL2.

As far as I know, ACL2 is the only ITP used with some
regularity at several companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities.

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

7/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: FORMAL VERIFICATION
Many organizations now use tools to formally verify hardware
and software systems, augmenting traditional testing by using
tools based on some notion of proof.

Such tools are typically equivalence checkers, model checkers, or
static checkers.

But occasionally, interactive theorem provers (ITPs) are used, e.g.
Coq, Isabelle, HOL4, PVS, Agda — or ACL2.

As far as I know, ACL2 is the only ITP used with some
regularity at several companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities.

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

7/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: FORMAL VERIFICATION
Many organizations now use tools to formally verify hardware
and software systems, augmenting traditional testing by using
tools based on some notion of proof.

Such tools are typically equivalence checkers, model checkers, or
static checkers.

But occasionally, interactive theorem provers (ITPs) are used, e.g.
Coq, Isabelle, HOL4, PVS, Agda — or ACL2.

As far as I know, ACL2 is the only ITP used with some
regularity at several companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities.

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

7/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: FORMAL VERIFICATION
Many organizations now use tools to formally verify hardware
and software systems, augmenting traditional testing by using
tools based on some notion of proof.

Such tools are typically equivalence checkers, model checkers, or
static checkers.

But occasionally, interactive theorem provers (ITPs) are used, e.g.
Coq, Isabelle, HOL4, PVS, Agda — or ACL2.

As far as I know, ACL2 is the only ITP used with some
regularity at several companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities.

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

7/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: FORMAL VERIFICATION
Many organizations now use tools to formally verify hardware
and software systems, augmenting traditional testing by using
tools based on some notion of proof.

Such tools are typically equivalence checkers, model checkers, or
static checkers.

But occasionally, interactive theorem provers (ITPs) are used, e.g.
Coq, Isabelle, HOL4, PVS, Agda — or ACL2.

As far as I know, ACL2 is the only ITP used with some
regularity at several companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities.

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

7/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: FORMAL VERIFICATION
Many organizations now use tools to formally verify hardware
and software systems, augmenting traditional testing by using
tools based on some notion of proof.

Such tools are typically equivalence checkers, model checkers, or
static checkers.

But occasionally, interactive theorem provers (ITPs) are used, e.g.
Coq, Isabelle, HOL4, PVS, Agda — or ACL2.

As far as I know, ACL2 is the only ITP used with some
regularity at several companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities.

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

7/34

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: INTERACTIVE THEOREM PROVING

I Yearly ITP conference
I Many ITP systems (e.g., ACL2) can send sub-problems to

automatic proof tools, e.g., SAT solvers for Boolean
problems.

I ITP is typically more scalable than automatic theorem
proving, but requires some human assistance. For ACL2:
prove lemmas used to simplify terms in later proofs.

Some particular strengths of ACL2 among ITPs:

I Proof automation
I Proof debugging utilities
I Fast execution
I Documentation (about 100,000 lines for just the system)

8/34

http://www.inf.kcl.ac.uk/staff/urbanc/itp-2015/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: INTERACTIVE THEOREM PROVING

I Yearly ITP conference

I Many ITP systems (e.g., ACL2) can send sub-problems to
automatic proof tools, e.g., SAT solvers for Boolean
problems.

I ITP is typically more scalable than automatic theorem
proving, but requires some human assistance. For ACL2:
prove lemmas used to simplify terms in later proofs.

Some particular strengths of ACL2 among ITPs:

I Proof automation
I Proof debugging utilities
I Fast execution
I Documentation (about 100,000 lines for just the system)

8/34

http://www.inf.kcl.ac.uk/staff/urbanc/itp-2015/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: INTERACTIVE THEOREM PROVING

I Yearly ITP conference
I Many ITP systems (e.g., ACL2) can send sub-problems to

automatic proof tools, e.g., SAT solvers for Boolean
problems.

I ITP is typically more scalable than automatic theorem
proving, but requires some human assistance. For ACL2:
prove lemmas used to simplify terms in later proofs.

Some particular strengths of ACL2 among ITPs:

I Proof automation
I Proof debugging utilities
I Fast execution
I Documentation (about 100,000 lines for just the system)

8/34

http://www.inf.kcl.ac.uk/staff/urbanc/itp-2015/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: INTERACTIVE THEOREM PROVING

I Yearly ITP conference
I Many ITP systems (e.g., ACL2) can send sub-problems to

automatic proof tools, e.g., SAT solvers for Boolean
problems.

I ITP is typically more scalable than automatic theorem
proving, but requires some human assistance.

For ACL2:
prove lemmas used to simplify terms in later proofs.

Some particular strengths of ACL2 among ITPs:

I Proof automation
I Proof debugging utilities
I Fast execution
I Documentation (about 100,000 lines for just the system)

8/34

http://www.inf.kcl.ac.uk/staff/urbanc/itp-2015/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: INTERACTIVE THEOREM PROVING

I Yearly ITP conference
I Many ITP systems (e.g., ACL2) can send sub-problems to

automatic proof tools, e.g., SAT solvers for Boolean
problems.

I ITP is typically more scalable than automatic theorem
proving, but requires some human assistance. For ACL2:
prove lemmas used to simplify terms in later proofs.

Some particular strengths of ACL2 among ITPs:

I Proof automation
I Proof debugging utilities
I Fast execution
I Documentation (about 100,000 lines for just the system)

8/34

http://www.inf.kcl.ac.uk/staff/urbanc/itp-2015/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: INTERACTIVE THEOREM PROVING

I Yearly ITP conference
I Many ITP systems (e.g., ACL2) can send sub-problems to

automatic proof tools, e.g., SAT solvers for Boolean
problems.

I ITP is typically more scalable than automatic theorem
proving, but requires some human assistance. For ACL2:
prove lemmas used to simplify terms in later proofs.

Some particular strengths of ACL2 among ITPs:

I Proof automation
I Proof debugging utilities
I Fast execution
I Documentation (about 100,000 lines for just the system)

8/34

http://www.inf.kcl.ac.uk/staff/urbanc/itp-2015/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: INTERACTIVE THEOREM PROVING

I Yearly ITP conference
I Many ITP systems (e.g., ACL2) can send sub-problems to

automatic proof tools, e.g., SAT solvers for Boolean
problems.

I ITP is typically more scalable than automatic theorem
proving, but requires some human assistance. For ACL2:
prove lemmas used to simplify terms in later proofs.

Some particular strengths of ACL2 among ITPs:

I Proof automation

I Proof debugging utilities
I Fast execution
I Documentation (about 100,000 lines for just the system)

8/34

http://www.inf.kcl.ac.uk/staff/urbanc/itp-2015/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: INTERACTIVE THEOREM PROVING

I Yearly ITP conference
I Many ITP systems (e.g., ACL2) can send sub-problems to

automatic proof tools, e.g., SAT solvers for Boolean
problems.

I ITP is typically more scalable than automatic theorem
proving, but requires some human assistance. For ACL2:
prove lemmas used to simplify terms in later proofs.

Some particular strengths of ACL2 among ITPs:

I Proof automation
I Proof debugging utilities

I Fast execution
I Documentation (about 100,000 lines for just the system)

8/34

http://www.inf.kcl.ac.uk/staff/urbanc/itp-2015/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: INTERACTIVE THEOREM PROVING

I Yearly ITP conference
I Many ITP systems (e.g., ACL2) can send sub-problems to

automatic proof tools, e.g., SAT solvers for Boolean
problems.

I ITP is typically more scalable than automatic theorem
proving, but requires some human assistance. For ACL2:
prove lemmas used to simplify terms in later proofs.

Some particular strengths of ACL2 among ITPs:

I Proof automation
I Proof debugging utilities
I Fast execution

I Documentation (about 100,000 lines for just the system)

8/34

http://www.inf.kcl.ac.uk/staff/urbanc/itp-2015/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: INTERACTIVE THEOREM PROVING

I Yearly ITP conference
I Many ITP systems (e.g., ACL2) can send sub-problems to

automatic proof tools, e.g., SAT solvers for Boolean
problems.

I ITP is typically more scalable than automatic theorem
proving, but requires some human assistance. For ACL2:
prove lemmas used to simplify terms in later proofs.

Some particular strengths of ACL2 among ITPs:

I Proof automation
I Proof debugging utilities
I Fast execution
I Documentation (about 100,000 lines for just the system)

8/34

http://www.inf.kcl.ac.uk/staff/urbanc/itp-2015/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: ON USING ACL2

This talk will focus on logical aspects of ACL2, so will say
rather little about using ACL2.

NOTE: A longer variant of this talk, but oriented towards CS
grad students and with more focus on using ACL2, is here:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/acl2-intro.pdf

That talk mentions this link to several demos and their logs:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/demos.tgz

9/34

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: ON USING ACL2

This talk will focus on logical aspects of ACL2, so will say
rather little about using ACL2.

NOTE: A longer variant of this talk, but oriented towards CS
grad students and with more focus on using ACL2, is here:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/acl2-intro.pdf

That talk mentions this link to several demos and their logs:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/demos.tgz

9/34

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: ON USING ACL2

This talk will focus on logical aspects of ACL2, so will say
rather little about using ACL2.

NOTE: A longer variant of this talk, but oriented towards CS
grad students and with more focus on using ACL2, is here:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/acl2-intro.pdf

That talk mentions this link to several demos and their logs:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/demos.tgz

9/34

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz

Overview ACL2 Introduction Logical Foundations Conclusion

OVERVIEW: ON USING ACL2

This talk will focus on logical aspects of ACL2, so will say
rather little about using ACL2.

NOTE: A longer variant of this talk, but oriented towards CS
grad students and with more focus on using ACL2, is here:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/acl2-intro.pdf

That talk mentions this link to several demos and their logs:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/demos.tgz

9/34

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz

Overview ACL2 Introduction Logical Foundations Conclusion

OUTLINE

Overview

ACL2 Introduction

Logical Foundations

Conclusion

10/34

Overview ACL2 Introduction Logical Foundations Conclusion

OUTLINE

Overview

ACL2 Introduction

Logical Foundations

Conclusion

11/34

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRODUCTION

I Freely available, including libraries of certifiable books

I Let’s explore the ACL2 home page.
I ACL2 is written mostly in itself (!).

I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.
I History

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

12/34

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRODUCTION

I Freely available, including libraries of certifiable books
I Let’s explore the ACL2 home page.

I ACL2 is written mostly in itself (!).
I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.
I History

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

12/34

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRODUCTION

I Freely available, including libraries of certifiable books
I Let’s explore the ACL2 home page.
I ACL2 is written mostly in itself (!).

I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.
I History

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

12/34

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRODUCTION

I Freely available, including libraries of certifiable books
I Let’s explore the ACL2 home page.
I ACL2 is written mostly in itself (!).

I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.
I History

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

12/34

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRODUCTION

I Freely available, including libraries of certifiable books
I Let’s explore the ACL2 home page.
I ACL2 is written mostly in itself (!).

I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.
I History

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

12/34

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRODUCTION

I Freely available, including libraries of certifiable books
I Let’s explore the ACL2 home page.
I ACL2 is written mostly in itself (!).

I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.
I History

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

12/34

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRODUCTION

I Freely available, including libraries of certifiable books
I Let’s explore the ACL2 home page.
I ACL2 is written mostly in itself (!).

I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.

I History
I Bob Boyer and J Moore started ACL2 in 1989. I joined and

Bob dropped out in 1993. J and I continue its development.
I Boyer-Moore Theorem Provers go back to the start of their

collaboration in 1971.

12/34

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRODUCTION

I Freely available, including libraries of certifiable books
I Let’s explore the ACL2 home page.
I ACL2 is written mostly in itself (!).

I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.
I History

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

12/34

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRODUCTION

I Freely available, including libraries of certifiable books
I Let’s explore the ACL2 home page.
I ACL2 is written mostly in itself (!).

I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.
I History

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

12/34

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRODUCTION

I Freely available, including libraries of certifiable books
I Let’s explore the ACL2 home page.
I ACL2 is written mostly in itself (!).

I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.
I History

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

12/34

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 DEMOS

I ACL2 programming and evaluation
[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automatic theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I The demos above, with logs, are in the gzipped tar file
demos-1-and-2.tgz in this directory.

I Interfaces include Emacs, ACL2 Sedan (Eclipse-based),
none.

13/34

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-1.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-1-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-2.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-2-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demos-1-and-2.tgz
http://acl2s.ccs.neu.edu/acl2s/

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 DEMOS

I ACL2 programming and evaluation
[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automatic theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I The demos above, with logs, are in the gzipped tar file
demos-1-and-2.tgz in this directory.

I Interfaces include Emacs, ACL2 Sedan (Eclipse-based),
none.

13/34

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-1.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-1-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-2.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-2-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demos-1-and-2.tgz
http://acl2s.ccs.neu.edu/acl2s/

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 DEMOS

I ACL2 programming and evaluation
[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automatic theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I The demos above, with logs, are in the gzipped tar file
demos-1-and-2.tgz in this directory.

I Interfaces include Emacs, ACL2 Sedan (Eclipse-based),
none.

13/34

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-1.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-1-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-2.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-2-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demos-1-and-2.tgz
http://acl2s.ccs.neu.edu/acl2s/

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 DEMOS

I ACL2 programming and evaluation
[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automatic theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I The demos above, with logs, are in the gzipped tar file
demos-1-and-2.tgz in this directory.

I Interfaces include Emacs, ACL2 Sedan (Eclipse-based),
none.

13/34

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-1.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-1-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-2.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-2-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demos-1-and-2.tgz
http://acl2s.ccs.neu.edu/acl2s/

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 DEMOS

I ACL2 programming and evaluation
[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automatic theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I The demos above, with logs, are in the gzipped tar file
demos-1-and-2.tgz in this directory.

I Interfaces include Emacs, ACL2 Sedan (Eclipse-based),
none.

13/34

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-1.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-1-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-2.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demo-2-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/demos-1-and-2.tgz
http://acl2s.ccs.neu.edu/acl2s/

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRO WRAP-UP

ACL2 is a mature system with features not discussed today,
including:

I Prover algorithms
I Using the prover effectively
I Programming support
I System-level support

(We can expand on these topics if there is time and interest.)

14/34

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRO WRAP-UP

ACL2 is a mature system with features not discussed today,
including:

I Prover algorithms

I Using the prover effectively
I Programming support
I System-level support

(We can expand on these topics if there is time and interest.)

14/34

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRO WRAP-UP

ACL2 is a mature system with features not discussed today,
including:

I Prover algorithms
I Using the prover effectively

I Programming support
I System-level support

(We can expand on these topics if there is time and interest.)

14/34

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRO WRAP-UP

ACL2 is a mature system with features not discussed today,
including:

I Prover algorithms
I Using the prover effectively
I Programming support

I System-level support

(We can expand on these topics if there is time and interest.)

14/34

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRO WRAP-UP

ACL2 is a mature system with features not discussed today,
including:

I Prover algorithms
I Using the prover effectively
I Programming support
I System-level support

(We can expand on these topics if there is time and interest.)

14/34

Overview ACL2 Introduction Logical Foundations Conclusion

ACL2 INTRO WRAP-UP

ACL2 is a mature system with features not discussed today,
including:

I Prover algorithms
I Using the prover effectively
I Programming support
I System-level support

(We can expand on these topics if there is time and interest.)

14/34

Overview ACL2 Introduction Logical Foundations Conclusion

PARTIAL TIMELINE

Boyer and Moore meet

insertion sort

binary adder

expression compiler

prime factorization

BDX930 abandoned

RSA

unsolvability of halting problem

FM8501

Gödel

FM8502

KIT OS kernel

Piton

micro Gypsy compiler

Unity
Gauss

FM9001

Byzantine Generals

clock sync

biphase mark

Motorola 68020

Nqthm compiler

DEC alpha
Motorola CAP

Paris-Harrington Ramsey

AMD K5 floating-point division
µcode

real-time model

Rockwell JEM1

initial ACL2 workshop

Logic formalization (Spain),
ongoing

IBM floating point algorithms

Kalman filters

FM9801

UCLID integration prototype
AAMP7G MIL cert.

Y86

Dijkstra shortest path

sixth ACL2 workshop

Rockwell Greenhills OS

Galois/Rockwell SHADE
AMD floating-point rtl, ongoing

ACM Software System Award

Buyer/seller

x86 ring model/proof

fast consensus analysis

Y86 with STOBJ
X86 ISA

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

15/34

Overview ACL2 Introduction Logical Foundations Conclusion

OUTLINE

Overview

ACL2 Introduction

Logical Foundations

Conclusion

16/34

Overview ACL2 Introduction Logical Foundations Conclusion

OUTLINE

Overview

ACL2 Introduction

Logical Foundations

Conclusion

17/34

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (1)

The ACL2 logic is a first-order logic with induction up to ε0.

But all ACL2 theories extend a given ground-zero theory, which
is essentially Peano Arithmetic with ε0-induction, extended
with data types for:

I characters,
I strings,
I symbols,
I complex numbers with rational coefficients, and
I closure under a pairing operation (cons).

18/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ORDINALS

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (1)

The ACL2 logic is a first-order logic with induction up to ε0.

But all ACL2 theories extend a given ground-zero theory, which
is essentially Peano Arithmetic with ε0-induction, extended
with data types for:

I characters,
I strings,
I symbols,
I complex numbers with rational coefficients, and
I closure under a pairing operation (cons).

18/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ORDINALS

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (1)

The ACL2 logic is a first-order logic with induction up to ε0.

But all ACL2 theories extend a given ground-zero theory, which
is essentially Peano Arithmetic with ε0-induction, extended
with data types for:

I characters,
I strings,
I symbols,
I complex numbers with rational coefficients, and
I closure under a pairing operation (cons).

18/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ORDINALS

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (2)

Evolving theories: conservative extensions

I Suppose theory T1 extends theory T0. Then T1 is a
conservative extension of theory T0 if every theorem of T1 in
the language of T0 is a theorem of T0.

I ACL2 extensions are conservative . . .
I . . . even with recursive definitions, since “termination”

must be provable.
I M. Kaufmann and J Moore, “Structured Theory

Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

I Importance: One may want to introduce new concepts to
carry out some proofs, but this must be done
conservatively in order to believe the results.

19/34

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (2)

Evolving theories: conservative extensions

I Suppose theory T1 extends theory T0. Then T1 is a
conservative extension of theory T0 if every theorem of T1 in
the language of T0 is a theorem of T0.

I ACL2 extensions are conservative . . .
I . . . even with recursive definitions, since “termination”

must be provable.
I M. Kaufmann and J Moore, “Structured Theory

Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

I Importance: One may want to introduce new concepts to
carry out some proofs, but this must be done
conservatively in order to believe the results.

19/34

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (2)

Evolving theories: conservative extensions

I Suppose theory T1 extends theory T0. Then T1 is a
conservative extension of theory T0 if every theorem of T1 in
the language of T0 is a theorem of T0.

I ACL2 extensions are conservative . . .

I . . . even with recursive definitions, since “termination”
must be provable.

I M. Kaufmann and J Moore, “Structured Theory
Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

I Importance: One may want to introduce new concepts to
carry out some proofs, but this must be done
conservatively in order to believe the results.

19/34

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (2)

Evolving theories: conservative extensions

I Suppose theory T1 extends theory T0. Then T1 is a
conservative extension of theory T0 if every theorem of T1 in
the language of T0 is a theorem of T0.

I ACL2 extensions are conservative . . .
I . . . even with recursive definitions, since “termination”

must be provable.

I M. Kaufmann and J Moore, “Structured Theory
Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

I Importance: One may want to introduce new concepts to
carry out some proofs, but this must be done
conservatively in order to believe the results.

19/34

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (2)

Evolving theories: conservative extensions

I Suppose theory T1 extends theory T0. Then T1 is a
conservative extension of theory T0 if every theorem of T1 in
the language of T0 is a theorem of T0.

I ACL2 extensions are conservative . . .
I . . . even with recursive definitions, since “termination”

must be provable.
I M. Kaufmann and J Moore, “Structured Theory

Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

I Importance: One may want to introduce new concepts to
carry out some proofs, but this must be done
conservatively in order to believe the results.

19/34

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (2)

Evolving theories: conservative extensions

I Suppose theory T1 extends theory T0. Then T1 is a
conservative extension of theory T0 if every theorem of T1 in
the language of T0 is a theorem of T0.

I ACL2 extensions are conservative . . .
I . . . even with recursive definitions, since “termination”

must be provable.
I M. Kaufmann and J Moore, “Structured Theory

Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

I Importance: One may want to introduce new concepts to
carry out some proofs, but this must be done
conservatively in order to believe the results.

19/34

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (3)
Fun example in ACL2(r), a variant of ACL2 that supports the
real numbers due to Ruben Gamboa:

The Overspill Principle of non-standard analysis.
Informally:
If internal predicate P(n, x) holds for all standard natural
numbers n, then P(n, x) holds for some non-standard natural
number n.

I overspill.lisp: Nice formalization
I overspill-proof.lisp: Ugly proof, but LOCAL to the

main proof, by conservativity

NOTE: If there is time and interest, I’ll show how to apply the
Overspill Principle in ACL2.

But for now, let’s just show how LOCAL and conservativity
apply: 25 lines in overspill-proof.lisp correspond to 256
lines in overspill-proof.lisp.

20/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=COMMON-LISP____REAL
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill.lisp
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill-proof.lisp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (3)
Fun example in ACL2(r), a variant of ACL2 that supports the
real numbers due to Ruben Gamboa:
The Overspill Principle of non-standard analysis.

Informally:
If internal predicate P(n, x) holds for all standard natural
numbers n, then P(n, x) holds for some non-standard natural
number n.

I overspill.lisp: Nice formalization
I overspill-proof.lisp: Ugly proof, but LOCAL to the

main proof, by conservativity

NOTE: If there is time and interest, I’ll show how to apply the
Overspill Principle in ACL2.

But for now, let’s just show how LOCAL and conservativity
apply: 25 lines in overspill-proof.lisp correspond to 256
lines in overspill-proof.lisp.

20/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=COMMON-LISP____REAL
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill.lisp
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill-proof.lisp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (3)
Fun example in ACL2(r), a variant of ACL2 that supports the
real numbers due to Ruben Gamboa:
The Overspill Principle of non-standard analysis.
Informally:
If internal predicate P(n, x) holds for all standard natural
numbers n, then P(n, x) holds for some non-standard natural
number n.

I overspill.lisp: Nice formalization
I overspill-proof.lisp: Ugly proof, but LOCAL to the

main proof, by conservativity

NOTE: If there is time and interest, I’ll show how to apply the
Overspill Principle in ACL2.

But for now, let’s just show how LOCAL and conservativity
apply: 25 lines in overspill-proof.lisp correspond to 256
lines in overspill-proof.lisp.

20/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=COMMON-LISP____REAL
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill.lisp
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill-proof.lisp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (3)
Fun example in ACL2(r), a variant of ACL2 that supports the
real numbers due to Ruben Gamboa:
The Overspill Principle of non-standard analysis.
Informally:
If internal predicate P(n, x) holds for all standard natural
numbers n, then P(n, x) holds for some non-standard natural
number n.

I overspill.lisp: Nice formalization

I overspill-proof.lisp: Ugly proof, but LOCAL to the
main proof, by conservativity

NOTE: If there is time and interest, I’ll show how to apply the
Overspill Principle in ACL2.

But for now, let’s just show how LOCAL and conservativity
apply: 25 lines in overspill-proof.lisp correspond to 256
lines in overspill-proof.lisp.

20/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=COMMON-LISP____REAL
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill.lisp
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill-proof.lisp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (3)
Fun example in ACL2(r), a variant of ACL2 that supports the
real numbers due to Ruben Gamboa:
The Overspill Principle of non-standard analysis.
Informally:
If internal predicate P(n, x) holds for all standard natural
numbers n, then P(n, x) holds for some non-standard natural
number n.

I overspill.lisp: Nice formalization
I overspill-proof.lisp: Ugly proof, but LOCAL to the

main proof, by conservativity

NOTE: If there is time and interest, I’ll show how to apply the
Overspill Principle in ACL2.

But for now, let’s just show how LOCAL and conservativity
apply: 25 lines in overspill-proof.lisp correspond to 256
lines in overspill-proof.lisp.

20/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=COMMON-LISP____REAL
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill.lisp
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill-proof.lisp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (3)
Fun example in ACL2(r), a variant of ACL2 that supports the
real numbers due to Ruben Gamboa:
The Overspill Principle of non-standard analysis.
Informally:
If internal predicate P(n, x) holds for all standard natural
numbers n, then P(n, x) holds for some non-standard natural
number n.

I overspill.lisp: Nice formalization
I overspill-proof.lisp: Ugly proof, but LOCAL to the

main proof, by conservativity

NOTE: If there is time and interest, I’ll show how to apply the
Overspill Principle in ACL2.

But for now, let’s just show how LOCAL and conservativity
apply: 25 lines in overspill-proof.lisp correspond to 256
lines in overspill-proof.lisp.

20/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=COMMON-LISP____REAL
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill.lisp
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill-proof.lisp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (3)
Fun example in ACL2(r), a variant of ACL2 that supports the
real numbers due to Ruben Gamboa:
The Overspill Principle of non-standard analysis.
Informally:
If internal predicate P(n, x) holds for all standard natural
numbers n, then P(n, x) holds for some non-standard natural
number n.

I overspill.lisp: Nice formalization
I overspill-proof.lisp: Ugly proof, but LOCAL to the

main proof, by conservativity

NOTE: If there is time and interest, I’ll show how to apply the
Overspill Principle in ACL2.

But for now, let’s just show how LOCAL and conservativity
apply: 25 lines in overspill-proof.lisp correspond to 256
lines in overspill-proof.lisp.

20/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=COMMON-LISP____REAL
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill.lisp
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill-proof.lisp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/dini-notes.txt

Overview ACL2 Introduction Logical Foundations Conclusion

Key parts of the book overspill.lisp:
(local (include-book "overspill-proof"))
(set-enforce-redundancy t)
(defstub overspill-p (n x) t)

(defun overspill-p* (n x)
(if (zp n)

(overspill-p 0 x)
(and (overspill-p n x)

(overspill-p* (1- n) x))))

(defchoose overspill-p-witness (n) (x)
(or (and (natp n) (standardp n)

(not (overspill-p n x)))
(and (natp n) (i-large n)

(overspill-p* n x))))

(defthm overspill-p-overspill
(let ((n (overspill-p-witness x)))
(or (and (natp n) (standardp n)

(not (overspill-p n x)))
(and (natp n) (i-large n)

(implies (and (natp m)
(<= m n))

(overspill-p m x)))))
:rule-classes nil) 21/34

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (4)

Many “simple” logical issues require care in the
implementation. While LOCAL is a great example, there are
others.

We’ll look at just a few on the next slides.

22/34

Overview ACL2 Introduction Logical Foundations Conclusion

LOGICAL FOUNDATIONS (4)

Many “simple” logical issues require care in the
implementation. While LOCAL is a great example, there are
others.

We’ll look at just a few on the next slides.

22/34

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (1)

Defattach allows non-conservative extensions. Example:

I Constraint for “specification” function spec:
x ∈ Z =⇒ spec(x) ∈ Z

I Define function f: f(x, y) = spec(x + y)
I Define “implementation function” impl: impl(x) = 10 ∗ x
I Attach impl to spec:
(defattach spec impl)

Result not provable from axioms for f and spec:

ACL2 !>(f 3 4)
70
ACL2 !>

23/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFATTACH

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (1)

Defattach allows non-conservative extensions. Example:

I Constraint for “specification” function spec:
x ∈ Z =⇒ spec(x) ∈ Z

I Define function f: f(x, y) = spec(x + y)
I Define “implementation function” impl: impl(x) = 10 ∗ x
I Attach impl to spec:
(defattach spec impl)

Result not provable from axioms for f and spec:

ACL2 !>(f 3 4)
70
ACL2 !>

23/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFATTACH

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (1)

Defattach allows non-conservative extensions. Example:

I Constraint for “specification” function spec:
x ∈ Z =⇒ spec(x) ∈ Z

I Define function f: f(x, y) = spec(x + y)

I Define “implementation function” impl: impl(x) = 10 ∗ x
I Attach impl to spec:
(defattach spec impl)

Result not provable from axioms for f and spec:

ACL2 !>(f 3 4)
70
ACL2 !>

23/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFATTACH

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (1)

Defattach allows non-conservative extensions. Example:

I Constraint for “specification” function spec:
x ∈ Z =⇒ spec(x) ∈ Z

I Define function f: f(x, y) = spec(x + y)
I Define “implementation function” impl: impl(x) = 10 ∗ x

I Attach impl to spec:
(defattach spec impl)

Result not provable from axioms for f and spec:

ACL2 !>(f 3 4)
70
ACL2 !>

23/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFATTACH

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (1)

Defattach allows non-conservative extensions. Example:

I Constraint for “specification” function spec:
x ∈ Z =⇒ spec(x) ∈ Z

I Define function f: f(x, y) = spec(x + y)
I Define “implementation function” impl: impl(x) = 10 ∗ x
I Attach impl to spec:
(defattach spec impl)

Result not provable from axioms for f and spec:

ACL2 !>(f 3 4)
70
ACL2 !>

23/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFATTACH

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (1)

Defattach allows non-conservative extensions. Example:

I Constraint for “specification” function spec:
x ∈ Z =⇒ spec(x) ∈ Z

I Define function f: f(x, y) = spec(x + y)
I Define “implementation function” impl: impl(x) = 10 ∗ x
I Attach impl to spec:
(defattach spec impl)

Result not provable from axioms for f and spec:

ACL2 !>(f 3 4)

70
ACL2 !>

23/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFATTACH

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (1)

Defattach allows non-conservative extensions. Example:

I Constraint for “specification” function spec:
x ∈ Z =⇒ spec(x) ∈ Z

I Define function f: f(x, y) = spec(x + y)
I Define “implementation function” impl: impl(x) = 10 ∗ x
I Attach impl to spec:
(defattach spec impl)

Result not provable from axioms for f and spec:

ACL2 !>(f 3 4)
70
ACL2 !>

23/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFATTACH

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (2)
Issues to consider:

I Is (local (defattach ...)) supported?
YES, local is supported.

I Then how do we deal with conservativity?
Two theories: The current theory for reasoning and a
stronger evaluation theory, extended using defattach:

spec(x) = impl(x)

I Ah, but what about this?
(thm (equal (f 3 4) 70))

The proof fails! (Whew!)
I Why is the evaluation theory consistent?

A key requirement is that the attachment relation is
suitably acyclic.

For details, including issues pertaining to evaluation, see the
Essay on Defattach comment in the ACL2 sources.

24/34

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (2)
Issues to consider:

I Is (local (defattach ...)) supported?

YES, local is supported.
I Then how do we deal with conservativity?

Two theories: The current theory for reasoning and a
stronger evaluation theory, extended using defattach:

spec(x) = impl(x)

I Ah, but what about this?
(thm (equal (f 3 4) 70))

The proof fails! (Whew!)
I Why is the evaluation theory consistent?

A key requirement is that the attachment relation is
suitably acyclic.

For details, including issues pertaining to evaluation, see the
Essay on Defattach comment in the ACL2 sources.

24/34

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (2)
Issues to consider:

I Is (local (defattach ...)) supported?
YES, local is supported.

I Then how do we deal with conservativity?
Two theories: The current theory for reasoning and a
stronger evaluation theory, extended using defattach:

spec(x) = impl(x)

I Ah, but what about this?
(thm (equal (f 3 4) 70))

The proof fails! (Whew!)
I Why is the evaluation theory consistent?

A key requirement is that the attachment relation is
suitably acyclic.

For details, including issues pertaining to evaluation, see the
Essay on Defattach comment in the ACL2 sources.

24/34

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (2)
Issues to consider:

I Is (local (defattach ...)) supported?
YES, local is supported.

I Then how do we deal with conservativity?

Two theories: The current theory for reasoning and a
stronger evaluation theory, extended using defattach:

spec(x) = impl(x)

I Ah, but what about this?
(thm (equal (f 3 4) 70))

The proof fails! (Whew!)
I Why is the evaluation theory consistent?

A key requirement is that the attachment relation is
suitably acyclic.

For details, including issues pertaining to evaluation, see the
Essay on Defattach comment in the ACL2 sources.

24/34

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (2)
Issues to consider:

I Is (local (defattach ...)) supported?
YES, local is supported.

I Then how do we deal with conservativity?
Two theories: The current theory for reasoning and a
stronger evaluation theory, extended using defattach:

spec(x) = impl(x)

I Ah, but what about this?
(thm (equal (f 3 4) 70))

The proof fails! (Whew!)
I Why is the evaluation theory consistent?

A key requirement is that the attachment relation is
suitably acyclic.

For details, including issues pertaining to evaluation, see the
Essay on Defattach comment in the ACL2 sources.

24/34

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (2)
Issues to consider:

I Is (local (defattach ...)) supported?
YES, local is supported.

I Then how do we deal with conservativity?
Two theories: The current theory for reasoning and a
stronger evaluation theory, extended using defattach:

spec(x) = impl(x)

I Ah, but what about this?
(thm (equal (f 3 4) 70))

The proof fails! (Whew!)
I Why is the evaluation theory consistent?

A key requirement is that the attachment relation is
suitably acyclic.

For details, including issues pertaining to evaluation, see the
Essay on Defattach comment in the ACL2 sources.

24/34

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (2)
Issues to consider:

I Is (local (defattach ...)) supported?
YES, local is supported.

I Then how do we deal with conservativity?
Two theories: The current theory for reasoning and a
stronger evaluation theory, extended using defattach:

spec(x) = impl(x)

I Ah, but what about this?
(thm (equal (f 3 4) 70))

The proof fails! (Whew!)

I Why is the evaluation theory consistent?
A key requirement is that the attachment relation is
suitably acyclic.

For details, including issues pertaining to evaluation, see the
Essay on Defattach comment in the ACL2 sources.

24/34

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (2)
Issues to consider:

I Is (local (defattach ...)) supported?
YES, local is supported.

I Then how do we deal with conservativity?
Two theories: The current theory for reasoning and a
stronger evaluation theory, extended using defattach:

spec(x) = impl(x)

I Ah, but what about this?
(thm (equal (f 3 4) 70))

The proof fails! (Whew!)
I Why is the evaluation theory consistent?

A key requirement is that the attachment relation is
suitably acyclic.

For details, including issues pertaining to evaluation, see the
Essay on Defattach comment in the ACL2 sources.

24/34

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (2)
Issues to consider:

I Is (local (defattach ...)) supported?
YES, local is supported.

I Then how do we deal with conservativity?
Two theories: The current theory for reasoning and a
stronger evaluation theory, extended using defattach:

spec(x) = impl(x)

I Ah, but what about this?
(thm (equal (f 3 4) 70))

The proof fails! (Whew!)
I Why is the evaluation theory consistent?

A key requirement is that the attachment relation is
suitably acyclic.

For details, including issues pertaining to evaluation, see the
Essay on Defattach comment in the ACL2 sources.

24/34

Overview ACL2 Introduction Logical Foundations Conclusion

DEFATTACH (2)
Issues to consider:

I Is (local (defattach ...)) supported?
YES, local is supported.

I Then how do we deal with conservativity?
Two theories: The current theory for reasoning and a
stronger evaluation theory, extended using defattach:

spec(x) = impl(x)

I Ah, but what about this?
(thm (equal (f 3 4) 70))

The proof fails! (Whew!)
I Why is the evaluation theory consistent?

A key requirement is that the attachment relation is
suitably acyclic.

For details, including issues pertaining to evaluation, see the
Essay on Defattach comment in the ACL2 sources.

24/34

Overview ACL2 Introduction Logical Foundations Conclusion

QUANTIFICATION, CHOICE, & INDUCTION (1)

Quantification is implemented using what amounts to a choice
operator. Example:

When asked to define
r(y, z) = (∃x)(p(x, y, z) ∧ q(x, y, z))
ACL2 generates the following.

Conservatively introduce w(y, z) and r(y, z) using local witness
w(y, z) = (ε x)(p(x, y, z) ∧ q(x, y, z))
to prove these axioms:

I r(y, z) = (p(w(y, z), y, z) ∧ q(w(y, z), y, z))
I (p(x, y, z) ∧ q(x, y, z)) =⇒ r(y, z)

25/34

Overview ACL2 Introduction Logical Foundations Conclusion

QUANTIFICATION, CHOICE, & INDUCTION (1)

Quantification is implemented using what amounts to a choice
operator. Example:

When asked to define
r(y, z) = (∃x)(p(x, y, z) ∧ q(x, y, z))
ACL2 generates the following.

Conservatively introduce w(y, z) and r(y, z) using local witness
w(y, z) = (ε x)(p(x, y, z) ∧ q(x, y, z))
to prove these axioms:

I r(y, z) = (p(w(y, z), y, z) ∧ q(w(y, z), y, z))
I (p(x, y, z) ∧ q(x, y, z)) =⇒ r(y, z)

25/34

Overview ACL2 Introduction Logical Foundations Conclusion

QUANTIFICATION, CHOICE, & INDUCTION (1)

Quantification is implemented using what amounts to a choice
operator. Example:

When asked to define
r(y, z) = (∃x)(p(x, y, z) ∧ q(x, y, z))
ACL2 generates the following.

Conservatively introduce w(y, z) and r(y, z) using local witness
w(y, z) = (ε x)(p(x, y, z) ∧ q(x, y, z))
to prove these axioms:

I r(y, z) = (p(w(y, z), y, z) ∧ q(w(y, z), y, z))
I (p(x, y, z) ∧ q(x, y, z)) =⇒ r(y, z)

25/34

Overview ACL2 Introduction Logical Foundations Conclusion

QUANTIFICATION, CHOICE, & INDUCTION (2)

This sort of thing is clearly conservative (assuming the Axiom
of Choice or at least well-orderable models). . .

. . . IF we ignore induction!

Conservativity with induction follows from a model-theoretic
forcing argument.

26/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONSERVATIVITY-OF-DEFCHOOSE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONSERVATIVITY-OF-DEFCHOOSE

Overview ACL2 Introduction Logical Foundations Conclusion

QUANTIFICATION, CHOICE, & INDUCTION (2)

This sort of thing is clearly conservative (assuming the Axiom
of Choice or at least well-orderable models). . .

. . . IF we ignore induction!

Conservativity with induction follows from a model-theoretic
forcing argument.

26/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONSERVATIVITY-OF-DEFCHOOSE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONSERVATIVITY-OF-DEFCHOOSE

Overview ACL2 Introduction Logical Foundations Conclusion

QUANTIFICATION, CHOICE, & INDUCTION (2)

This sort of thing is clearly conservative (assuming the Axiom
of Choice or at least well-orderable models). . .

. . . IF we ignore induction!

Conservativity with induction follows from a model-theoretic
forcing argument.

26/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONSERVATIVITY-OF-DEFCHOOSE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONSERVATIVITY-OF-DEFCHOOSE

Overview ACL2 Introduction Logical Foundations Conclusion

META-THEORETIC REASONING (1)

In ACL2, you can:

I code a simplifier,
I prove that it is sound, and
I direct its use during later proofs.

We can return to this on an extra slide, if there is time and
interest.

27/34

Overview ACL2 Introduction Logical Foundations Conclusion

META-THEORETIC REASONING (1)

In ACL2, you can:

I code a simplifier,

I prove that it is sound, and
I direct its use during later proofs.

We can return to this on an extra slide, if there is time and
interest.

27/34

Overview ACL2 Introduction Logical Foundations Conclusion

META-THEORETIC REASONING (1)

In ACL2, you can:

I code a simplifier,
I prove that it is sound, and

I direct its use during later proofs.

We can return to this on an extra slide, if there is time and
interest.

27/34

Overview ACL2 Introduction Logical Foundations Conclusion

META-THEORETIC REASONING (1)

In ACL2, you can:

I code a simplifier,
I prove that it is sound, and
I direct its use during later proofs.

We can return to this on an extra slide, if there is time and
interest.

27/34

Overview ACL2 Introduction Logical Foundations Conclusion

META-THEORETIC REASONING (1)

In ACL2, you can:

I code a simplifier,
I prove that it is sound, and
I direct its use during later proofs.

We can return to this on an extra slide, if there is time and
interest.

27/34

Overview ACL2 Introduction Logical Foundations Conclusion

OTHER LOGICAL CHALLENGES

Here are some other challenges in the foundations of ACL2.

I Functional instantiation allows the replacement of functions
f1, . . . , fk by other functions g1, . . . , gk such that the gi
satisfy the axioms introducing the fi.

I Packages provide namespaces — e.g., PKG1::F and
PKG2::F are distinct. But packages introduce axioms such
as symbol-package-name(PKG1::F) = "PKG1". So
package introduction is not conservative and hence must be
recorded.

I One can specify a measure in order to admit a recursive
definition. But what if the measure is defined in terms of a
function whose definition is LOCAL?

28/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDDEN-DEFPKG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDDEN-DEFPKG

Overview ACL2 Introduction Logical Foundations Conclusion

OTHER LOGICAL CHALLENGES

Here are some other challenges in the foundations of ACL2.

I Functional instantiation allows the replacement of functions
f1, . . . , fk by other functions g1, . . . , gk such that the gi
satisfy the axioms introducing the fi.

I Packages provide namespaces — e.g., PKG1::F and
PKG2::F are distinct. But packages introduce axioms such
as symbol-package-name(PKG1::F) = "PKG1". So
package introduction is not conservative and hence must be
recorded.

I One can specify a measure in order to admit a recursive
definition. But what if the measure is defined in terms of a
function whose definition is LOCAL?

28/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDDEN-DEFPKG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDDEN-DEFPKG

Overview ACL2 Introduction Logical Foundations Conclusion

OTHER LOGICAL CHALLENGES

Here are some other challenges in the foundations of ACL2.

I Functional instantiation allows the replacement of functions
f1, . . . , fk by other functions g1, . . . , gk such that the gi
satisfy the axioms introducing the fi.

I Packages provide namespaces — e.g., PKG1::F and
PKG2::F are distinct. But packages introduce axioms such
as symbol-package-name(PKG1::F) = "PKG1". So
package introduction is not conservative and hence must be
recorded.

I One can specify a measure in order to admit a recursive
definition. But what if the measure is defined in terms of a
function whose definition is LOCAL?

28/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDDEN-DEFPKG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDDEN-DEFPKG

Overview ACL2 Introduction Logical Foundations Conclusion

OTHER LOGICAL CHALLENGES

Here are some other challenges in the foundations of ACL2.

I Functional instantiation allows the replacement of functions
f1, . . . , fk by other functions g1, . . . , gk such that the gi
satisfy the axioms introducing the fi.

I Packages provide namespaces — e.g., PKG1::F and
PKG2::F are distinct. But packages introduce axioms such
as symbol-package-name(PKG1::F) = "PKG1". So
package introduction is not conservative and hence must be
recorded.

I One can specify a measure in order to admit a recursive
definition. But what if the measure is defined in terms of a
function whose definition is LOCAL?

28/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDDEN-DEFPKG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDDEN-DEFPKG

Overview ACL2 Introduction Logical Foundations Conclusion

OUTLINE

Overview

ACL2 Introduction

Logical Foundations

Conclusion

29/34

Overview ACL2 Introduction Logical Foundations Conclusion

OUTLINE

Overview

ACL2 Introduction

Logical Foundations

Conclusion

30/34

Overview ACL2 Introduction Logical Foundations Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.

I People are actually paid to prove theorems with ACL2.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I As an ITP system, it relies on user guidance for large
problems but enjoys scalability.

I Mechanizing a logic, for efficient and flexible evaluation
and proof, can present challenges.

I For more information, see the ACL2 home page, in
particular links to The Tours and Publications, which links
to introductory material.

THANK YOU!

31/34

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____The_02Tours
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://www.cs.utexas.edu/users/moore/publications/how-to-prove-thms/index.html

Overview ACL2 Introduction Logical Foundations Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.
I People are actually paid to prove theorems with ACL2.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I As an ITP system, it relies on user guidance for large
problems but enjoys scalability.

I Mechanizing a logic, for efficient and flexible evaluation
and proof, can present challenges.

I For more information, see the ACL2 home page, in
particular links to The Tours and Publications, which links
to introductory material.

THANK YOU!

31/34

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____The_02Tours
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://www.cs.utexas.edu/users/moore/publications/how-to-prove-thms/index.html

Overview ACL2 Introduction Logical Foundations Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.
I People are actually paid to prove theorems with ACL2.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I As an ITP system, it relies on user guidance for large
problems but enjoys scalability.

I Mechanizing a logic, for efficient and flexible evaluation
and proof, can present challenges.

I For more information, see the ACL2 home page, in
particular links to The Tours and Publications, which links
to introductory material.

THANK YOU!

31/34

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____The_02Tours
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://www.cs.utexas.edu/users/moore/publications/how-to-prove-thms/index.html

Overview ACL2 Introduction Logical Foundations Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.
I People are actually paid to prove theorems with ACL2.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I As an ITP system, it relies on user guidance for large
problems but enjoys scalability.

I Mechanizing a logic, for efficient and flexible evaluation
and proof, can present challenges.

I For more information, see the ACL2 home page, in
particular links to The Tours and Publications, which links
to introductory material.

THANK YOU!

31/34

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____The_02Tours
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://www.cs.utexas.edu/users/moore/publications/how-to-prove-thms/index.html

Overview ACL2 Introduction Logical Foundations Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.
I People are actually paid to prove theorems with ACL2.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I As an ITP system, it relies on user guidance for large
problems but enjoys scalability.

I Mechanizing a logic, for efficient and flexible evaluation
and proof, can present challenges.

I For more information, see the ACL2 home page, in
particular links to The Tours and Publications, which links
to introductory material.

THANK YOU!

31/34

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____The_02Tours
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://www.cs.utexas.edu/users/moore/publications/how-to-prove-thms/index.html

Overview ACL2 Introduction Logical Foundations Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.
I People are actually paid to prove theorems with ACL2.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I As an ITP system, it relies on user guidance for large
problems but enjoys scalability.

I Mechanizing a logic, for efficient and flexible evaluation
and proof, can present challenges.

I For more information, see the ACL2 home page, in
particular links to The Tours and Publications, which links
to introductory material.

THANK YOU!

31/34

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____The_02Tours
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://www.cs.utexas.edu/users/moore/publications/how-to-prove-thms/index.html

Overview ACL2 Introduction Logical Foundations Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.
I People are actually paid to prove theorems with ACL2.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I As an ITP system, it relies on user guidance for large
problems but enjoys scalability.

I Mechanizing a logic, for efficient and flexible evaluation
and proof, can present challenges.

I For more information, see the ACL2 home page, in
particular links to The Tours and Publications, which links
to introductory material.

THANK YOU!
31/34

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____The_02Tours
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://www.cs.utexas.edu/users/moore/publications/how-to-prove-thms/index.html

Overview ACL2 Introduction Logical Foundations Conclusion

EXTRA SLIDES

We can go on, time permitting....

32/34

Overview ACL2 Introduction Logical Foundations Conclusion

Some ACL2 features not discussed further today:

I Prover algorithms
I Waterfall, linear arithmetic, Boolean reasoning, . . .
I Rewriting: Conditional, congruence-based, rewrite cache,

syntaxp, bind-free, . . .

I Using the prover effectively
I The-method and introduction-to-the-theorem-prover
I Theories, hints, rule-classes, . . .
I Accumulated-persistence, brr, proof-checker, dmr, . . .

I Programming support, including (just a few):
I Guards
I Hash-cons and function memoization
I Packages
I Mutable State, stobjs, arrays, applicative hash tables, . . .

I System-level: Emacs support, books and certification,
abbreviated printing, parallelism (ACL2(p)), . . .

33/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HINTS-AND-THE-WATERFALL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LINEAR-ARITHMETIC
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BOOLEAN-REASONING
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REWRITE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONGRUENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SET-RW-CACHE-STATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYNTAXP
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BIND-FREE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THE-METHOD
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____INTRODUCTION-TO-THE-THEOREM-PROVER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THEORIES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HINTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____RULE-CLASSES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ACCUMULATED-PERSISTENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BRR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROOF-CHECKER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DMR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GUARD
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HONS-AND-MEMOIZATION
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PACKAGES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ARRAYS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EMACS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BOOKS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CERTIFY-BOOK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SET-EVISC-TUPLE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PARALLELISM

Overview ACL2 Introduction Logical Foundations Conclusion

META-THEORETIC REASONING (2)
ACL2 supports a notion of “eval”, together with this sort of
meta theorem, directing the use of fn to transform terms that
are calls of nth or of foo.

(defthm fn-correct-1
(equal (evl x a)

(evl (fn x) a))
:rule-classes ((:meta :trigger-fns (nth foo))))

More complex forms are supported, including:
I extended-metafunctions that take STATE and contextual

inputs;
I transformations at the goal level; and
I hypotheses that extract known information from the

logical world.
For details, including issues pertaining to evaluation, see the
Essay on Correctness of Meta Reasoning comment in the ACL2
sources. Attachments provide a challenge.

34/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EXTENDED-METAFUNCTIONS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META-EXTRACT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WORLD

Overview ACL2 Introduction Logical Foundations Conclusion

META-THEORETIC REASONING (2)
ACL2 supports a notion of “eval”, together with this sort of
meta theorem, directing the use of fn to transform terms that
are calls of nth or of foo.
(defthm fn-correct-1
(equal (evl x a)

(evl (fn x) a))
:rule-classes ((:meta :trigger-fns (nth foo))))

More complex forms are supported, including:
I extended-metafunctions that take STATE and contextual

inputs;
I transformations at the goal level; and
I hypotheses that extract known information from the

logical world.
For details, including issues pertaining to evaluation, see the
Essay on Correctness of Meta Reasoning comment in the ACL2
sources. Attachments provide a challenge.

34/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EXTENDED-METAFUNCTIONS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META-EXTRACT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WORLD

Overview ACL2 Introduction Logical Foundations Conclusion

META-THEORETIC REASONING (2)
ACL2 supports a notion of “eval”, together with this sort of
meta theorem, directing the use of fn to transform terms that
are calls of nth or of foo.
(defthm fn-correct-1
(equal (evl x a)

(evl (fn x) a))
:rule-classes ((:meta :trigger-fns (nth foo))))

More complex forms are supported, including:

I extended-metafunctions that take STATE and contextual
inputs;

I transformations at the goal level; and
I hypotheses that extract known information from the

logical world.
For details, including issues pertaining to evaluation, see the
Essay on Correctness of Meta Reasoning comment in the ACL2
sources. Attachments provide a challenge.

34/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EXTENDED-METAFUNCTIONS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META-EXTRACT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WORLD

Overview ACL2 Introduction Logical Foundations Conclusion

META-THEORETIC REASONING (2)
ACL2 supports a notion of “eval”, together with this sort of
meta theorem, directing the use of fn to transform terms that
are calls of nth or of foo.
(defthm fn-correct-1
(equal (evl x a)

(evl (fn x) a))
:rule-classes ((:meta :trigger-fns (nth foo))))

More complex forms are supported, including:
I extended-metafunctions that take STATE and contextual

inputs;

I transformations at the goal level; and
I hypotheses that extract known information from the

logical world.
For details, including issues pertaining to evaluation, see the
Essay on Correctness of Meta Reasoning comment in the ACL2
sources. Attachments provide a challenge.

34/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EXTENDED-METAFUNCTIONS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META-EXTRACT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WORLD

Overview ACL2 Introduction Logical Foundations Conclusion

META-THEORETIC REASONING (2)
ACL2 supports a notion of “eval”, together with this sort of
meta theorem, directing the use of fn to transform terms that
are calls of nth or of foo.
(defthm fn-correct-1
(equal (evl x a)

(evl (fn x) a))
:rule-classes ((:meta :trigger-fns (nth foo))))

More complex forms are supported, including:
I extended-metafunctions that take STATE and contextual

inputs;
I transformations at the goal level; and

I hypotheses that extract known information from the
logical world.

For details, including issues pertaining to evaluation, see the
Essay on Correctness of Meta Reasoning comment in the ACL2
sources. Attachments provide a challenge.

34/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EXTENDED-METAFUNCTIONS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META-EXTRACT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WORLD

Overview ACL2 Introduction Logical Foundations Conclusion

META-THEORETIC REASONING (2)
ACL2 supports a notion of “eval”, together with this sort of
meta theorem, directing the use of fn to transform terms that
are calls of nth or of foo.
(defthm fn-correct-1
(equal (evl x a)

(evl (fn x) a))
:rule-classes ((:meta :trigger-fns (nth foo))))

More complex forms are supported, including:
I extended-metafunctions that take STATE and contextual

inputs;
I transformations at the goal level; and
I hypotheses that extract known information from the

logical world.

For details, including issues pertaining to evaluation, see the
Essay on Correctness of Meta Reasoning comment in the ACL2
sources. Attachments provide a challenge.

34/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EXTENDED-METAFUNCTIONS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META-EXTRACT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WORLD

Overview ACL2 Introduction Logical Foundations Conclusion

META-THEORETIC REASONING (2)
ACL2 supports a notion of “eval”, together with this sort of
meta theorem, directing the use of fn to transform terms that
are calls of nth or of foo.
(defthm fn-correct-1
(equal (evl x a)

(evl (fn x) a))
:rule-classes ((:meta :trigger-fns (nth foo))))

More complex forms are supported, including:
I extended-metafunctions that take STATE and contextual

inputs;
I transformations at the goal level; and
I hypotheses that extract known information from the

logical world.
For details, including issues pertaining to evaluation, see the
Essay on Correctness of Meta Reasoning comment in the ACL2
sources.

Attachments provide a challenge.

34/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EXTENDED-METAFUNCTIONS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META-EXTRACT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WORLD

Overview ACL2 Introduction Logical Foundations Conclusion

META-THEORETIC REASONING (2)
ACL2 supports a notion of “eval”, together with this sort of
meta theorem, directing the use of fn to transform terms that
are calls of nth or of foo.
(defthm fn-correct-1
(equal (evl x a)

(evl (fn x) a))
:rule-classes ((:meta :trigger-fns (nth foo))))

More complex forms are supported, including:
I extended-metafunctions that take STATE and contextual

inputs;
I transformations at the goal level; and
I hypotheses that extract known information from the

logical world.
For details, including issues pertaining to evaluation, see the
Essay on Correctness of Meta Reasoning comment in the ACL2
sources. Attachments provide a challenge.

34/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EXTENDED-METAFUNCTIONS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META-EXTRACT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WORLD

	Overview
	ACL2 Introduction
	Logical Foundations
	Conclusion

