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Lecture 2: September 12, 2005 Lecturer: Adam Klivans
Scribe: Alex Sherstov

PAC Learning

This lecture describes the model of probably approzimately correct (PAC) learning, introduced by
Valiant in 1984. The model is illustrated with learning algorithms for two concept classes: axis-
aligned rectangles and Boolean disjunctions.

2.1 Definitions

The input space X is the set of all instances of interest; we will typically work with the Boolean
input space X = {0,1}". A concept ¢ : X — {0,1} is a Boolean function defined over the input
space. A concept class C = {c1,ca,...} is a set of concepts.

In PAC learning, the objective is to learn a fixed but unknown concept ¢ € C with respect to a fixed
distribution D over the input space. This means that the learner receives a sequence of examples
(z1,c(x1)), (x2,c(x2)), ..., drawn independently at random from the distribution D and labeled by
the target concept c. The goal of the learner is to output a hypothesis h € C that is e-accurate w.r.t.
cover D: Pr,.p[h(z) # c(z)] < e

A concept class C is PAC learnable if there is an algorithm L such that for every concept ¢ € C
and every choice of 0, ¢ with 0 < §,e¢ < 1/2, with probability at least 1 — § algorithm L outputs a
hypothesis h € C satisfying Pryp[h(z) # c(z)] < e.

An algorithm runs in time t if it draws at most ¢ examples and requires at most ¢ time steps. A
concept class is efficiently PAC learnable if it is PAC learnable by an algorithm that runs in time
polynomial in 1/€,1/4, and instance length.

2.2 Example: Axis-Aligned Rectangles

Consider the input space X = R? of two-dimensional points and the concept class C of axis-aligned
rectangles. Consider the following algorithm for C: given a set of examples, output the tightest
rectangle that encompasses the positive points. Observe that this algorithm always outputs a con-
sistent hypothesis, namely, a rectangle contained inside the concept (and thus correct on all negative
instances).

Given m examples, what is the probability ¢ that the algorithm outputs a hypothesis with error e
or more? Consider any hypothesis (rectangle) h with such error. Consider the region outside h but
inside the target concept; its weight w.r.t. to the given distribution D is €, by assumption, since h is
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correct on all negative instances. Then one of the four bands of that region (2 vertical, 2 horizontal)
must have weight at least ¢/4 w.r.t. D. The likelihood of this event given m examples is at most
4(1 — €/4)™. This is our 4. Solving for m yields

m>%ln%
T e 5

This analysis shows that the proposed algorithm is indeed a PAC algorithm for C.

2.3 Another Example: Disjunctions

Our second example is the class of disjunctions on Boolean literals {x1, z2, ..., z,}. Consider the fa-
miliar elimination algorithm: start with all literals in the disjunction and, on each negative example,
eliminate the active literals.

Fix a concept ¢. What is the probability ¢ that after m examples, the algorithm will produce a
hypothesis with error € or worse w.r.t. ¢? For each literal y, define p(y) to be the fraction of inputs
x € {0, 1} that activate y but make ¢ false: on such inputs, having y in the disjunction will contribute
at most p(y) to the error. If p(y) < €/n for all y, the initial hypothesis is e-accurate. If there is
some y with p(y) > €/n, the probability that y will remain in the disjunction after m examples is
at most (1 —¢/n)™. By the union bound, the probability that any such literal y will remain in the
disjunction after m examples, is at most n(1 — e¢/n)™. This is our §. Solving for m yields
S

ey
proving that the proposed algorithm is a PAC learner. The reader is invited to extend the analysis
to the case when the concept class additionally contains disjunctions with negated variables.



