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Abstract

We give the first representation-independent hardness results for PAC learning intersections
of halfspaces, a central concept class in computational learning theory. Our hardness results
are derived from two public-key cryptosystems due to Regev, which are based on the worst-
case hardness of well-studied lattice problems. Specifically, we prove that a polynomial-
time algorithm for PAC learning intersections of nε halfspaces (for a constant ε > 0) in n
dimensions would yield a polynomial-time solution to Õ(n1.5)-uSVP (unique shortest vec-
tor problem). We also prove that PAC learning intersections of nε low-weight halfspaces
would yield a polynomial-time quantum solution to Õ(n1.5)-SVP and Õ(n1.5)-SIVP (short-
est vector problem and shortest independent vector problem, respectively). Our approach
also yields the first representation-independent hardness results for learning polynomial-
size depth-2 neural networks and polynomial-size depth-3 arithmetic circuits.

Key words: Cryptographic hardness results, intersections of halfspaces, computational
learning theory, lattice-based cryptography

1 Introduction

A halfspace in n dimensions is a Boolean function of the form a1x1+ · · ·+anxn > θ ,
where a1, . . . ,an,θ are integers. Halfspace-based learning methods have important
applications in almost every area of computer science, including data mining, arti-
ficial intelligence, and computer vision. A natural and important extension of the
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concept class of halfspaces is the concept class of intersections of halfspaces. While
many efficient algorithms exist for PAC learning a single halfspace, the problem
of learning the intersection of even two halfspaces remains a central challenge in
computational learning theory, and a variety of efficient algorithms have been de-
veloped for natural restrictions of the problem [17,18,21,31] (for a definition of the
PAC model see Section 2). Attempts to prove that the problem is hard have been
met with limited success: all known hardness results for the general problem of
PAC learning intersections of halfspaces apply only to the case of proper learning,
where the output hypothesis must be of the same form as the unknown concept.

1.1 Our Results

We obtain the first representation-independent hardness results for PAC learning in-
tersections of halfspaces. By “representation-independent,” we mean that we place
no restrictions on the learner’s output hypothesis other than polynomial-time com-
putability. Assuming the intractability of the lattice problems uSVP (unique short-
est vector problem), SVP (shortest vector problem), or SIVP (shortest independent
vector problem), we prove that there is no polynomial-time PAC learning algorithm
for intersections of nε halfspaces (for any ε > 0). The above lattice problems are
widely believed to be hard [24].

In this work, we will use cryptosystems based on the hardness of these lattice prob-
lems as a black box in order to obtain our hardness-of-learning results. We will
therefore not attempt to summarize the vast literature on the complexity of lat-
tice problems and instead refer the reader to several works by Regev [26,27] and
Aharonov and Regev [1]. We sketch the lattice problems briefly in Section 2.

Our hardness results apply even to intersections of light halfspaces, i.e., halfspaces
whose weight |θ |+ ∑

n
i=1 |ai| is bounded by a polynomial in n. We first state our

hardness results for intersections of arbitrary halfspaces. Throughout this paper,
“PAC learnable” stands for “learnable in the PAC model in polynomial time.”

Theorem 1.1 Assume that intersections of nε halfspaces in n dimensions are PAC-
learnable for some constant ε > 0. Then there is a polynomial-time solution to
Õ(n1.5)-uSVP.

With a different (incomparable) hardness assumption, we obtain an intractability
result for learning intersections of light halfspaces, a less powerful concept class:

Theorem 1.2 Assume that intersections of nε light halfspaces in n dimensions are
PAC-learnable for some constant ε > 0. Then there is a polynomial-time quantum
solution to Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

Oded Regev has informed us that Theorem 1.1 also applies to light halfspaces; see
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Remark 5.1 for details.

We note here that we can prove something slightly stronger than what is stated in
Theorem 1.2. That is, if intersections of nε light halfspaces in n dimensions are
PAC-learnable, we obtain a polynomial-time solution to the LWE (“Learning With
Errors”) problem, a version of the noisy parity learning problem over larger fields
(see Regev [24] for details).

These hardness results extend to polynomial-size depth-2 neural networks as fol-
lows:

Theorem 1.3 Assume that depth-2 polynomial-size circuits of majority gates are
PAC learnable. Then there is a polynomial-time solution to Õ(n1.5)-uSVP and
polynomial-time quantum solutions to Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

Finally, we prove a hardness result for learning depth-3 arithmetic circuits:

Theorem 1.4 Assume that depth-3 polynomial-size arithmetic circuits are PAC-
learnable in polynomial time. Then there is a polynomial-time quantum solution to
Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

We are not aware of any previous representation-independent hardness results for
learning small-depth arithmetic circuits.

A natural question to ask is whether our approach can yield hardness results for
other classes such as AC0 or, more ambitiously, polynomial-size DNF formulas.
In Section 6 we show that the decryption functions of the cryptosystems we use
contain PARITY as a subfunction, so we cannot directly apply this approach.

Remark. In a recent work, Feldman et al. [7] have independently obtained a re-
sult very similar to Theorem 1.3. They show that a polynomial-time algorithm for
learning depth-2 polynomial-size majority circuits would break the Ajtai-Dwork
cryptosystem. In contrast, our work makes use of more recent cryptosystems due
to Regev (the security of Regev’s cryptosystems is based on weaker assumptions
than the ones used by Ajtai and Dwork).

1.2 Previous Results

In his fundamental paper on learning, Valiant [30] established a cryptographic
hardness result for learning polynomial-size circuits. Kearns and Valiant [12]
used number-theoretic problems (inverting the RSA function, deciding quadratic
residuosity, and factoring Blum integers) to obtain hardness results for NC1 cir-
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cuits, constant-depth threshold circuits TC0, and deterministic finite automata.
Kharitonov [15] obtained hardness results for AC1 and NC1 circuits based on the
conjectured hardness of the subset sum problem. Kharitonov [14] later used the
Blum-Blum-Shub pseudorandom generator [6] to obtain a hardness result for learn-
ing AC0 and TC0 that holds even under the uniform distribution and if membership
queries are allowed.

Hardness results of any kind for learning intersections of halfspaces, by contrast,
have seen quite limited progress. Until recently, the problem was known to be hard
only for proper learning: if the learner’s output hypothesis must be from a restricted
class of functions (e.g., intersections of halfspaces), then the learning problem is
NP-hard with respect to randomized reductions [5,3]. Klivans and Sherstov [19]
have since obtained a 2Ω(

√
n) lower bound on the sample complexity of learning

intersections of
√

n halfspaces in the statistical query (SQ) model, an important
restriction of the PAC model. Since the SQ model is a restriction of PAC, the lower
bounds in [19] do not imply hardness in the PAC model, the subject of this paper.
We are not aware of any other results on the difficulty of learning intersections of
halfspaces.

We are also not aware of any representation-independent hardness results for PAC
learning small-depth arithmetic circuits. There is a long line of research establish-
ing lower bounds on the query complexity of polynomial interpolation algorithms
over various fields, but these do not imply hardness results for the problem of PAC
learning polynomials with small representations as arithmetic circuits (see Sec-
tion 5.1 for more details).

1.3 Our Techniques

Our results exploit recent cryptosystems due to Regev [23,24], which improve on
the security of the Ajtai-Dwork cryptosystem [2]. These cryptosystems are based
on the hardness of the well-studied lattice problems uSVP, SVP, and SIVP. As
pointed out in [24], an advantage of these problems is the equivalence of their
worst-case and average-case complexity. In other words, an efficient algorithm
for solving these problems on a nonnegligible (inverse-polynomial) fraction of in-
stances yields an efficient algorithm for solving every instance. This contrasts with
common number-theoretic problems such as factoring or deciding quadratic resid-
uosity. Furthermore, lattice-based cryptosystems feature decryption functions that
are completely different from modular exponentiation d(Y ) = Y D mod N, the de-
cryption function that is at the heart of virtually every number-theoretic cryptosys-
tem. As a result, lattice-based cryptosystems imply hardness results that number-
theoretic cryptosystems have not yielded.

An established method [12] for obtaining hardness results for a concept class C
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is to demonstrate that C can compute the decryption function of a public-key
cryptosystem. Intersections of a polynomial number of halfspaces, however, can-
not compute the decryption functions of the cryptosystems that we use. In fact,
the decryption functions in question contain PARITY as a subfunction (see Sec-
tion 6), which cannot be computed by intersections of a polynomial number of any
unate functions [19]. Furthermore, the decryption functions for Regev’s cryptosys-
tems perform a division or an iterated addition, which require threshold circuits of
depth 3 and 2, respectively [32,29]. Threshold circuits of depth 2 and higher are
known to be more powerful than intersections of halfspaces.

To overcome these difficulties, we use non-uniform distributions on {0,1}n to help
us with the computation. This technique allows us to use intersections of degree-
2 polynomial threshold functions to compute the decryption function while still
obtaining a hardness result for intersections of halfspaces.

The remainder of this article is organized as follows. Section 2 covers technical pre-
liminaries and provides a detailed overview of the cryptosystems that we use. The
crucial connection between learning and cryptography is the subject of Section 3.
The main ingredient of our proof is presented in Section 4 and is concerned with the
construction of efficient circuits for the decryption functions of the cryptosystems.
Section 5 establishes our main results, with further discussion in Section 6.

2 Preliminaries

A halfspace in n dimensions is a Boolean function f : {0,1}n →{0,1} of the form

f (x)=

{
1 if a1x1 +a2x2 + · · ·+anxn > θ ,

0 otherwise,

where a1, . . . ,an,θ are some fixed integers. It is well known that the absolute val-
ues of a1, . . . ,an,θ can be assumed to be at most 2O(n logn). The intersection of k
halfspaces is a Boolean function g =

∧k
i=1 hi, where each hi is a halfspace. A poly-

nomial threshold function (PTF) of degree d is a Boolean function of the form

f (x) =

{
1 if p(x) > 0,

0 otherwise,

where p is a degree-d polynomial in x1,x2, . . . ,xn with integer coefficients. Note
that a halfspace is a PTF of degree 1. The weight of a PTF f is the sum of the
absolute values of the integer coefficients of the associated polynomial p. A PTF
is called light if its weight is bounded by a polynomial in n. (Strictly speaking, this
definition concerns not a single PTF but rather an infinite sequence f1, f2, . . . , fn, . . .
of PTFs, one for each input length. For brevity, however, we will follow the general
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convention of identifying a sequence of functions f1, f2, . . . , fn, . . . with its typical
nth representative, fn).

We adopt the probably approximately correct (PAC) model of learning, due to
Valiant [30]. An overview of this model is as follows. A concept class C is any
set of Boolean functions {0,1}n → {0,1}. In the PAC model, one fixes an ar-
bitrary target function f ∈ C and a distribution µ on {0,1}n. The learner, who
does not know f or µ, receives labeled examples (x1, f (x1)),(x2, f (x2)), . . . , where
x1,x2, · · · ∈ {0,1}n are chosen independently at random according to µ. The learner
is said to learn C if, given ε ∈ (0,1) and poly(n, 1

ε
) labeled examples, it outputs a

hypothesis h that with high probability has Prx∼µ [ f (x) 6= h(x)] < ε. We will be
using a looser requirement called weak learning, which relaxes the success cri-
terion to Prx∼µ [ f (x) 6= h(x)] < 1

2 −
1
nc for a constant c; for contrast, the original

framework is known as strong learning. Throughout this paper, “PAC learning” is
a shorthand for PAC learning in polynomial time and under arbitrary distributions
µ. In this arbitrary-distribution setting, weak PAC learning is equivalent to strong
PAC learning, and we will sometimes not draw the distinction between the two
in the development to follow. For further background on computational learning
theory, see [13].

2.1 Lattice-based Cryptography

This subsection describes lattice-based cryptography and presents two relevant
lattice-based cryptosystems due to Regev [23,24]. A lattice in n dimensions is the
set {a1v1 + · · ·+anvn : a1, . . . ,an ∈Z} of all integral linear combinations of a given
basis v1, . . . ,vn ∈ Rn. The primary problems on lattices are the unique shortest
vector problem f (n)-uSVP, shortest vector problem f (n)-SVP, and shortest inde-
pendent vector problem f (n)-SIVP. In f (n)-uSVP, the goal is to find a shortest
nonzero vector in the lattice, provided that it is shorter by a factor of at least f (n)
than any other non-parallel vector. In f (n)-SVP, the goal is to approximate the
length of a shortest nonzero vector within a factor of f (n). Thus, uSVP is a special
case of SVP, distinguished by the “uniqueness” condition. Finally, in f (n)-SIVP,
the goal is to output a set of n linearly independent lattice vectors of length at
most f (n) · opt, where opt is the minimum length over all sets of n linearly in-
dependent vectors from the lattice (the length of a set is the length of its longest
vector). Note that all three problems become harder as the approximation factor
1 6 f (n) 6 poly(n) decreases. We will be working with f (n) = Õ(n1.5), an approx-
imation factor for which these three problems are believed to be hard (none of the
above lattice problems are known to admit a subexponential time solution for any
setting of f (n) we consider in this paper).

We note here that there is a large body of work examining the hardness of these lat-
tice problems depending on the choice of f (n). Roughly speaking, certain variants
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of the shortest vector problem are known to be NP-hard if f (n) is chosen to be a
small constant. On the other hand, it is known that for larger values of f (n), such as√

n, some lattice problems are unlikely to be NP-hard (i.e., if they were NP-hard,
the polynomial-time hierarchy would collapse). We refer the reader to the excellent
survey by Regev [27] for a detailed description of the hardness of these problems.

The cryptosystems below encrypt one-bit messages (0 and 1). Encryption is ran-
domized; decryption is deterministic. Let eK,r : {0,1} → {0,1}poly(n) denote the
encryption function corresponding to a choice of private and public keys K =
(Kpriv,Kpub) and a random string r. In discussing security, we will need the fol-
lowing notion.

Definition 2.1 (Distinguisher) An algorithm A is said to distinguish between the
encryptions of 0 and 1 if for some universal constant c,∣∣∣∣Pr

K,r
[A (Kpub,eK,r(1)) = 1]− Pr

K,r
[A (Kpub,eK,r(0)) = 1]

∣∣∣∣> 1
nc .

We focus on those aspects of the cryptosystems that are relevant to the hardness
proofs in this paper. For example, we state the numeric ranges of public and private
keys without describing the key generation procedure. We follow the established
convention of denoting polynomially-bounded quantities (in n) by lowercase let-
ters, and superpolynomial ones by capital letters.

2.2 The uSVP-based Cryptosystem

We start with a cryptosystem, due to Regev [23], whose security is based on the
worst-case hardness of uSVP. Let n be the security parameter. Denote N = 28n2

and m = cn2, where c is a universal constant. Let γ(n) be any function with
γ(n) = ω(n

√
logn), where faster-growing functions γ correspond to worse secu-

rity guarantees but also a lower probability of decryption error.

Private key: A real number H with
√

N 6 H < 2
√

N.
Public key: A vector (A1, . . . ,Am, i0), where i0 ∈ {1, . . . ,m} and each Ai ∈
{0, . . . ,N−1}.

Encryption: To encrypt 0, pick a random set S ⊆ [m] and output ∑i∈S Ai mod N.
To encrypt 1, pick a random set S ⊆ [m] and output bAi0/2c+∑i∈S Ai mod N.

Decryption: On receipt of W ∈ {0, . . . ,N− 1}, decrypt 0 if frac(WH/N) < 1/4,
and 1 otherwise. Here frac(a) 
 min{dae−a,a−bac} denotes the distance from
a ∈ R to the closest integer. By a standard argument, the security and correct-
ness of the cryptosystem are unaffected if we change the decryption function to
frac(AW ) < 1/4, where A is a representation of H/N to within poly(n) fractional
bits.
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Correctness: The probability of decryption error (over the choice of private and
public keys and the randomness in the encryption) is 2−Ω(γ(n)2/m).

Regev [23] showed that breaking the above cryptosystem would yield a
polynomial-time algorithm for uSVP. A more detailed statement follows (see The-
orem 4.5 and Lemma 5.4 of [23]):

Theorem 2.2 (Regev [23]) Assume that there is a polynomial-time distinguisher
between the encryptions of 0 and 1. Then there is a polynomial-time solution to
every instance of (

√
n · γ(n))-uSVP.

We will set γ(n) = n logn to make the probability of decryption error negligi-
ble (inverse-superpolynomial) while guaranteeing Õ(n1.5)-uSVP security. Regev’s
cryptosystem thus improves on the public-key cryptosystem of Ajtai and Dwork [2]
whose security is based on the worst-case hardness of O(n8)-uSVP, an easier prob-
lem than Õ(n1.5)-uSVP.

2.3 SVP- and SIVP-based Cryptosystem

The second cryptosystem [24] is based on the worst-case quantum hardness of SVP
and SIVP. Let n be the security parameter. Denote by p a prime with n2 < p < 2n2,
and let m = 5(n+1)(1+2logn). Let γ(n) be any function with γ(n) = ω(

√
n logn),

where faster-growing functions γ correspond to worse security guarantees but also
a lower probability of decryption error.

Private key: A vector s ∈ Zn
p.

Public key: A sequence of pairs (a1,b1), . . . ,(am,bm), where each ai ∈ Zn
p and

bi ∈ Zp.
Encryption: To encrypt 0, pick S ⊆ [m] randomly and output (∑i∈S ai,∑i∈S bi).

To encrypt 1, pick S ⊆ [m] randomly and output (∑i∈S ai,bp/2c+ ∑i∈S bi). (All
arithmetic is modulo p.)

Decryption: On receipt of (a,b) ∈ Zn
p ×Zp, decrypt 0 if b−〈a,s〉 is closer to 0

than to bp/2c modulo p. Decrypt 1 otherwise. (All arithmetic is modulo p.)
Correctness: The probability of decryption error (over the choice of private and

public keys and the randomness in the encryption) is 2−Ω(γ(n)2/m).

Regev [24] showed that breaking the above cryptosystem would imply a
polynomial-time quantum algorithm for solving SVP and SIVP. A more precise
statement is as follows (see Theorem 3.1 and Lemmas 4.4, 5.4 of [24]):

Theorem 2.3 (Regev [24]) Assume that there is a polynomial-time (possibly quan-
tum) algorithm for distinguishing between the encryptions of 0 and 1. Then there is
a polynomial-time quantum solution to Õ(n · γ(n))-SVP and Õ(n · γ(n))-SIVP.
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We adopt the setting γ(n) =
√

n log2 n to make the probability of decryption error
negligible while guaranteeing Õ(n1.5)-SVP and Õ(n1.5)-SIVP security. Observe
that this second cryptosystem is preferable to the first in that it is based on the
worst-case hardness of a more general lattice problem (SVP vs. uSVP). The dis-
advantage of the second cryptosystem is that breaking it would only yield a quan-
tum algorithm for SVP, as opposed to the first cryptosystem which would yield a
classical algorithm for uSVP.

3 Learning Decryption Functions vs. Breaking Cryptosystems

In their seminal paper [12], Kearns and Valiant established a key relationship be-
tween the security of a public-key cryptosystem and the hardness of learning an
associated concept class. We re-derive it below for completeness and extend it to
allow for errors in the decryption process. This link is a natural consequence of the
ease of encrypting messages with the public key. A large pool of such encryptions
can be viewed as a set of training examples for learning the decryption function. But
learning the decryption function to a nonnegligible advantage would mean breaking
the cryptosystem. Assuming that the cryptosystem is secure, we can thus conclude
that it is not feasible to learn the decryption function. We formalize this observation
in the following lemma:

Lemma 3.1 (Cryptography and learning; cf. Kearns & Valiant [12]) Consider
a public-key cryptosystem for encrypting individual bits by n-bit strings. Let C be
a concept class that contains all the decryption functions dK : {0,1}n → {0,1}
of the cryptosystem, one for each choice of key K = (Kpriv,Kpub). Let
ε(n) = PrK,r[dK(eK,r(0)) 6= 0 or dK(eK,r(1)) 6= 1] be the probability of de-
cryption error (over the choice of keys and randomization in the encryption). If
C is weakly PAC-learnable in time t(n) with t(n)ε(n) = 1/nω(1), then there is a
distinguisher between the encryptions of 0 and 1 that runs in time O(t(n)).

Proof. For a pair of keys K = (Kpriv,Kpub), let eK,r : {0,1} → {0,1}n be the
randomized encryption function (indexed by the choice of random string r). Let
dK : {0,1}n →{0,1} denote the matching decryption function. We will use the as-
sumed learnability of C to exhibit an algorithm A that runs in time O(t(n)) and
has

Pr
K,r

[A (Kpub,eK,r(1)) = 1]− Pr
K,r

[A (Kpub,eK,r(0)) = 1] >
1
nc

for some universal constant c, as long as t(n)ε(n) = 1/nω(1). The probability is
taken over the choice of keys, randomness in the encryption, and any internal ran-
domization in A . It follows that A is the desired distinguisher.

Algorithm A takes as input a pair (Kpub,w), where w ∈ {0,1}n is the encryption of
an unknown bit. First, A draws t(n) independent training examples, choosing each
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as follows:

(1) Pick b = 0 or b = 1, with equal probability.
(2) Pick r, an unbiased random string.
(3) Create a training example 〈eK,r(b),b〉.

Next, A passes the training examples to the assumed algorithm for learning C . As-
sume no decryption error has occurred, i.e., the decryption function dK is consistent
with all the generated examples. Then the learning algorithm outputs a hypothesis
h that approximates dK with a nonnegligible advantage:

Pr
b,r

[h(eK,r(b)) = dK(eK,r(b))] >
1
2

+
1
nc , (3.1)

for some constant c. With this hypothesis in hand, algorithm A outputs h(w) and
exits. 1

It remains to show that A is indeed a distinguisher. We will first handle the case in
which no decryption error occurs; call this event E . Then:

Pr
K,r

[A (Kpub,eK,r(1)) = 1 | E ]− Pr
K,r

[A (Kpub,eK,r(0)) = 1 | E ]

= Pr
K,r

[h(eK,r(1)) = 1]− Pr
K,r

[h(eK,r(0)) = 1]

= 2 Pr
K,b,r

[h(eK,r(b)) = b]−1

> 2
(

Pr
K,b,r

[h(eK,r(b)) = dK(eK,r(b))]− Pr
K,b,r

[dK(eK,r(b)) 6= b]
)
−1

> 1+
2
nc −2ε(n)−1

=
2
nc −2ε(n).

1 We have assumed that, given consistent training examples, the learner is guaranteed to
succeed in finding a hypothesis h that satisfies (3.1). This makes for a shorter and simpler
proof. In reality, we need only assume that the learner succeeds with probability 1/poly(n),
and outputs “FAIL” otherwise. To accommodate this more general setting, it suffices to
have A output a random value (0 or 1) whenever the learner fails.
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We now extend the analysis to account for possible decryption errors. Observe that
the likelihood of a decryption error on a run of A is small:

Pr[E ] = EK [Pr[E | K]]

6 EK

[
t(n) ·Pr

b,r
[dK(eK,r(b)) 6= b | K]

]
(by union bound)

= t(n) · Pr
K,b,r

[dK(eK,r(b)) 6= b]

6 t(n)ε(n).

This upper bound on Pr[E ], along with the above analysis of the error-free case,
allows us to complete the proof of the desired claim (for all n large enough):

Pr
K,r

[A (Kpub,eK,r(1)) = 1]− Pr
K,r

[A (Kpub,eK,r(0)) = 1]

>

(
Pr
K,r

[A (Kpub,eK,r(1)) = 1 | E ]− Pr
K,r

[A (Kpub,eK,r(0)) = 1 | E ]
)
−2Pr[E ]

>
2
nc −2ε(n)−2t(n)ε(n)

>
1
nc .

2

4 Implementing the Decryption Functions

Section 3 demonstrated that if a public-key cryptosystem is secure, then no con-
cept class that can implement its decryption function is efficiently PAC-learnable.
In what follows, we obtain implementations of the decryption functions from Sec-
tion 2 by intersections of degree-2 PTFs. This will lead to a hardness result for
learning intersections of degree-2 PTFs. We will obtain the main result of the pa-
per by noting that intersections of degree-2 PTFs are no harder to learn than are
intersections of halfspaces, a claim we formalize next.

Lemma 4.1 Assume that intersections of nε arbitrary (respectively, light) half-
spaces are weakly PAC-learnable. Then for any constant c > 0, intersections of
nc arbitrary (respectively, light) degree-2 PTFs are weakly PAC-learnable.

Proof. We will prove the “light” case only; the “arbitrary” case is analogous. Con-
sider the following concept classes:
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C : intersections of nε light halfspaces;

C ′ : intersections of nε light degree-2 PTFs;

C ′′ : intersections of nc light degree-2 PTFs.

First observe that a polynomial-time PAC-learning algorithm for C implies one for
C ′. This is because a degree-2 PTF in the n variables x1, . . . ,xn is a halfspace in the
n+
(n

2

)
variables x1, . . . ,xn, x1x2, x1x3, . . . , xn−1xn, which yields a polynomial-time

map from training/testing examples for a degree-2 PTF to those for a halfspace.
This map is naturally viewed as a change of distribution: a given distribution of
(x1, . . . ,xn) will induce another, non-uniform distribution in the n +

(n
2

)
new vari-

ables.

Finally, a polynomial-time learning algorithm for C ′ implies one for C ′′: by a stan-
dard padding argument, the problem of PAC learning the intersection of nc half-
spaces reduces to nε halfspaces for any constant c > 0. 2

4.1 The uSVP-based Cryptosystem

Recall that frac(a) 
 min{dae−a,a−bac} denotes the distance from a ∈R to the
closest integer. Throughout this section, {a} stands for the fractional part of a ∈R.
Define the Boolean predicate

NEAR-INT(a) = 1 ⇐⇒ frac(a) < 1/4.

This predicate ignores the integral part of a, meaning that NEAR-INT(a) =
NEAR-INT({a}).

The decryption function in the uSVP-based cryptosystem (Section 2) is dA(W ) =
NEAR-INT(AW ), where A is a fixed real number and W is an integer input,
both with a polynomial number of bits. We will demonstrate how to implement
NEAR-INT(AW ) with intersections of degree-2 PTFs. A critical ingredient of our
implementation is the “interval trick” of Siu and Roychowdhury [29], an insight-
ful idea that was used in [29] to obtain a depth-2 light-weight threshold circuit for
iterated addition.

Lemma 4.2 (Implementing the uSVP-based decryption function) Let A > 0
be a real number with k fractional bits. Then the function f (x) =
NEAR-INT(A∑

n−1
j=0 x j2 j) can be computed by the intersection of k PTFs with de-

gree 2 and weight O(k44k).

Proof. Let {A}= .b1b2 . . .bk be the fractional part of A in binary, with bi ∈ {0,1}

12



for all i. The integral part of A is irrelevant. Then{
A

n−1

∑
j=0

x j2 j

}
=

{
k

∑
i=1

n−1

∑
j=0

bix j2 j−i

}
=

{
k

∑
i=1

min{n−1,i−1}

∑
j=0

bix j2 j−i

}
,

where the last equation follows by dropping those terms bix j2 j−i that are whole
numbers. Denote

S(x) 

k

∑
i=1

min{n−1,i−1}

∑
j=0

bix j2 j−i

so that {A∑
n−1
j=0 x j2 j}= {S(x)}. Observe that S(x) is a multiple of 1/2k and ranges

between 0 and k. We will use degree-2 PTFs to identify intervals in [0,k] on which
NEAR-INT(S(x)) = 1. A listing of the first few such intervals is as follows:

Value of S(x) in binary NEAR-INT(S(x))

. 0 0 0 0 . . . 0 0
...

. 0 0 1 1 . . . 1 1

1

. 0 1 0 0 . . . 0 0
...

. 1 1 0 0 . . . 0 0

0

. 1 1 0 0 . . . 0 1
...

1 . 0 0 1 1 . . . 1 1

1

1 . 0 1 0 0 . . . 0 0
...

1 . 1 1 0 0 . . . 0 0

0

1 . 1 1 0 0 . . . 0 1
...

1 0 . 0 0 1 1 . . . 1 1

1

Each interval [a,b] can be recognized by the PTF(
S(x)− a+b

2

)2

6

(
b−a

2

)2

,

13



whose integral representation has weight O(k44k). To compute the negation of an
interval, we replace the inequality sign by “>”. Finally, there are at most 2k + 1
intervals because every two consecutive intervals, starting at the second, cover a
distance of 1 on the interval [0,k]. By AND’ing the negations of the k intervals
on which NEAR-INT(S(x)) = 0, we obtain the desired f as an AND of k weight-
O(k44k) degree-2 PTFs. 2

4.2 SVP- and SIVP-based Cryptosystems

For an integer a, define the Boolean predicate

NEAR-MIDp(a) ⇐⇒ |b−bp/2c|6 min{b, p−b},

where b ∈ {0,1, . . . , p− 1} is the integer with a ≡ b (mod p). Recall that the
decryption function in the SVP- and SIVP-based cryptosystem (Section 2) is
ds1,...,sn(b,a1, . . . ,an) = NEAR-MIDp(b−∑aisi), where all si,ai, and b are integers
in {0, . . . , p−1}= Zp. We will show how to compute ds1,...,sn with intersections of
degree-2 PTFs.

Lemma 4.3 (Implementing the SVP- and SIVP-based decryption function)
Let ds1,...,sn :

(
{0,1}log p)n+1 →{0,1} be the Boolean function defined by

ds1,...,sn(x) = NEAR-MIDp

(
log p−1

∑
i=0

2ix0,i−
n

∑
j=1

s j

log p−1

∑
i=0

2ix j,i

)
,

where all si are integers in {0, . . . , p− 1}. Then ds1,...,sn can be computed by the
intersection of n log p PTFs with degree 2 and weight O((pn log p)2).

Proof. Denote

S(x) 

log p−1

∑
i=0

2ix0,i−
n

∑
j=1

log p−1

∑
i=0

(2is j mod p)x j,i.

Thus, S(x) is the original weighted sum
(

∑
log p−1
i=0 2ix0,i−∑

n
j=1 s j ∑

log p−1
i=0 2ix j,i

)
with the coefficients reduced modulo p.

Using the definition of NEAR-MIDp, we have ds1,...,sn(x) = NEAR-MIDp(S(x)).
The integer S(x) ranges between −(p−1)n log p and p−1, a total range of length
< pn log p. As in the proof of Lemma 4.2, this range can be divided into consecutive
intervals on which ds1,...,sn(x) is constant (i.e., does not change value within an
interval).

14



Every two consecutive intervals cover a length of p units. Thus, there are a total of
6 2(pn log p)/p = 2n log p consecutive intervals. By picking out the n log p inter-
vals on which ds1,...,sn(x) = 0 and AND’ing their negations, we can compute ds1,...,sn

exactly. It remains to note that the negation of an interval [a,b] can be computed by
a degree-2 weight-O((pn log p)2) PTF of the form (S(x)− a+b

2 )2 > (b−a
2 )2. 2

We additionally observe that the decryption function in the SVP- and SIVP-based
cryptosystem can be computed by a depth-3 arithmetic circuit.

Lemma 4.4 (Extension to arithmetic circuits) Let ds1,...,sn :
(
{0,1}log p)n+1 →

{0,1} be the Boolean function defined by

ds1,...,sn(x) = NEAR-MIDp

(
log p−1

∑
i=0

2ix0,i−
n

∑
j=1

s j

log p−1

∑
i=0

2ix j,i

)
,

where all si are integers in {0, . . . , p−1}. Then ds1,...,sn can be computed by a depth-
3 arithmetic circuit of size poly(p,n).

Proof. Set S(x) as in the proof of Lemma 4.3. Then S(x) is an integer in the range
R 
 [−(p− 1)n log p, p− 1]∩Z and completely determines the target function:
ds1,...,sn(x) = NEAR-MIDp(S(x)).

Let g be a polynomial such that g(S(x)) = ds1,...,sn(x) for all Boolean inputs x. It
can be constructed by interpolating ds1,...,sn on the range of S(x) via the Lagrange
formula:

g(y) = ∑
r∈R

NEAR-MIDp(r) · ∏
r′∈R,r′ 6=r

y− r′

r− r′
.

Since the range R contains poly(p,n) integers, g(S(x)) can be computed by a depth-
3 arithmetic circuit of size poly(p,n) with input S(x) and summation gates at the
bottom. But S(x) is a sum of poly(p,n) terms, each a singleton variable xi or a
constant. Thus, ds1,...,sn can be computed directly by a depth-3 arithmetic circuit of
size poly(p,n) with inputs x. 2

5 Main Results

Based on the assumed hardness of the cryptosystems in Section 2 and the learning-
to-cryptography reductions of Sections 3 and 4, we are in a position to prove the
desired hardness results for learning intersections of halfspaces.

Theorem 1.1. (Restated from page 2.) Assume that intersections of nε halfspaces
in n dimensions are PAC-learnable for some constant ε > 0. Then there is a
polynomial-time solution to Õ(n1.5)-uSVP.
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Proof. Let C denote the concept class of intersections of nε halfspaces, and let C ′

denote the concept class of intersections of nc degree-2 PTFs (for a large enough
constant c > 0). By Lemma 4.1, the assumed PAC-learnability of C implies the
PAC-learnability of C ′. By Lemma 4.2, all the decryption functions in the uSVP-
based cryptosystem are in C ′. A PAC-learning algorithm for C ′ would thus yield
a distinguisher between the encryptions of 0 and 1 (by Lemma 3.1) and hence an
efficient solution to O(

√
n · γ(n))-uSVP for γ(n) = n logn (by Theorem 2.2). 2

Remark 5.1 Oded Regev has informed us [25] that Theorem 1.1 is also valid
for light halfspaces, rather than arbitrary ones as stated. To see this, note that in
Regev’s first cryptosystem (Lemma 5.2 of [23]), except with probability exponen-
tially small in n, the quantity frac(AW ) is bounded away from 1

4 by a small con-
stant. Therefore, with extremely high probability, we can ignore many of the least
significant bits of AW , as these bits can only change the value of AW by o(1). In
Lemma 4.2, this allows one to restrict the sum S(x) to contain only terms bix j2 j−i

with j− i >−C logn (for a sufficiently large constant C > 0), since the remain-
ing terms contribute at most o(1). The integral representation of the resulting PTF
would have polynomial weight, leading to hardness for intersections of light half-
spaces.

Theorem 1.2. (Restated from page 2.) Assume that intersections of nε light half-
spaces in n dimensions are PAC-learnable for some constant ε > 0. Then there is a
polynomial-time quantum solution to Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

Proof. Let C denote the concept class of intersections of nε light halfspaces, and
let C ′ denote the concept class of intersections of nc light degree-2 PTFs (for a
large enough constant c > 0). By Lemma 4.1, the assumed PAC-learnability of C
implies the PAC-learnability of C ′. By Lemma 4.3, the decryption function in the
uSVP-based cryptosystem is in C ′. A PAC-learning algorithm for C ′ would thus
yield a distinguisher between the encryptions of 0 and 1 (by Lemma 3.1) and, as a
result, an efficient quantum solution to Õ(n · γ(n))-SVP and Õ(n · γ(n))-SIVP for
γ(n) =

√
n log2 n (by Theorem 2.3). 2

Theorems 1.1 and 1.2 both imply a hardness result for learning polynomial-size
depth-2 circuits of majority gates, a concept class commonly denoted by L̂T2. To
prove this, we will need a result regarding light threshold circuits, due to Gold-
mann, Håstad, and Razborov [9] and Goldmann and Karpinski [10]. Let L̂Td denote
the class of depth-d polynomial-size circuits of threshold gates with polynomially-
bounded weights. Let L̃Td denote the class of depth-d polynomial-size threshold
circuits in which only the output gate is required to have polynomially-bounded
weights.

Theorem 5.2 [9,10] For any fixed integer d, L̂Td = L̃Td.

16



We are now in a position to prove the desired hardness result for depth-2 neural
networks.

Theorem 1.3. (Restated from page 3.) Assume that depth-2 polynomial-size cir-
cuits of majority gates are PAC learnable. Then there is a polynomial-time solu-
tion to Õ(n1.5)-uSVP and polynomial-time quantum solutions to Õ(n1.5)-SVP and
Õ(n1.5)-SIVP.

Proof. Let ∧L̂T1 (respectively, ∧LT1) denote the concept classes of intersections
of polynomially many light (respectively, arbitrary) halfspaces. By Theorems 1.1
and 1.2, it suffices to show that ∧L̂T1 ⊆ L̂T2 and ∧LT1 ⊆ L̂T2. The first state-
ment is obvious: each halfspace is already a majority gate (with the inputs suit-
ably negated/replicated), and the top gate AND( f1, f2, . . . , ft) can be replaced by
a majority gate MAJ(−t, f1, f2, . . . , ft). To prove that ∧LT1 ⊆ L̂T2, observe that
∧LT1 ⊆ L̃T2 (by an argument similar to the first case) and L̃T2 = L̂T2 (by Theo-
rem 5.2). 2

5.1 Hardness for PAC Learning Arithmetic Circuits

Here we give a hardness result for PAC learning depth-3 arithmetic circuits over
the integers. Many researchers have constructed efficient, sparse polynomial inter-
polation algorithms where the learner has query access to the unknown polynomial
[20,22,28]. If, in addition to membership queries, the learner can make equiva-
lence queries, Klivans and Shpilka [16] have shown how to exactly learn restricted
types of depth-3 arithmetic circuits via multiplicity automata techniques [4]. We
show that if the learner receives random examples only, then learning depth-3
polynomial-size arithmetic circuits is as hard as solving Õ(n1.5)-SVP in quantum
polynomial-time:

Theorem 1.4. (Restated from page 3.) Assume that depth-3 polynomial-size arith-
metic circuits are PAC-learnable in polynomial time. Then there is a polynomial-
time quantum solution to Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

Proof. Invoke Lemma 4.4 and argue as before (see the proofs of Theorems 1.1
and 1.2). 2

6 Hardness for AC0?

A natural question to ask is whether our approach could yield hardness results
for other concept classes. Particularly interesting candidates are AC0 and, more
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ambitiously, polynomial-size DNF formulas. Here we prove that the decryption
functions of Regev’s cryptosystems contain PARITY as a subfunction and thus are
not computable in AC0.

We start with the easier proof. Recall that the decryption function of the SVP-
and SIVP-based cryptosystem is fs1,...,sn(a1, . . . ,an,b) = NEAR-MIDp(b−∑aisi),
where all si,ai, and b are integers in {0, . . . , p−1}= Zp with n2 < p < 2n2.

Proposition 6.1 (SVP-, SIVP-based cryptosystem and AC0) The decryption
function of the SVP- and SIVP-based cryptosystem, fs1,...,sn(a1, . . . ,an,b) =
NEAR-MIDp(b−∑aisi), is not in AC0.

Proof. Let x1,x2, . . . ,xn ∈ {0,1}n. Note that

NEAR-MIDp(
p−1

2 ∑xi) = NEAR-MIDp(
p
2 ∑xi) = PARITY(x1, . . . ,xn).

The first equality holds because 1
2 ∑xi 6 n

2 � p. Thus, PARITY(x1, . . . ,xn) is a sub-
function of NEAR-MIDp(b−∑aisi). Since AC0 cannot compute PARITY [8,11],
the claim follows. 2

Recall now that the decryption function in the uSVP-based cryptosystem is
dA(X) = NEAR-INT(AX), where A is a fixed real number and X is an integer input.
For convenience, we assume that X has n+1 bits rather than n.

Proposition 6.2 (uSVP-based cryptosystem and AC0) The decryption function
of the uSVP-based cryptosystem, dA(X) = NEAR-INT(AX), is not in AC0.

Proof. We will show that dA(X) computes PARITY on a subset of Θ(n/ logn) bits
from among x1, . . . ,xn (when the other bits are set to 0). The claim will follow.

Let ∆ 
 3 + logn and A 
 ∑
n/∆

i=0 2−i∆−1. For convenience of notation, we assume
that ∆ | n. In what follows, we show that dA(X) =PARITY(x0,x∆,x2∆, . . . ,xn) when
xi = 0 for all i 6∈ {0,∆,2∆, . . . ,n}. Namely,

dA(X) = NEAR-INT(AX)

= NEAR-INT

((
n/∆

∑
i=0

1
2i∆+1

)(
n/∆

∑
j=0

x j∆2 j∆

))

= NEAR-INT

(
∑

i
∑
j>i

x j∆2 j∆

2i∆+1 +∑
i

xi∆2i∆

2i∆+1 +∑
i

∑
j<i

x j∆2 j∆

2i∆+1

)
.

The first summation features only whole numbers and can thus be dropped. The
second summation is precisely 1

2(x0 + x∆ + x2∆ + · · ·+ xn), a multiple of 1
2 . The
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third summation does not exceed 1/8 (by the choice of ∆ and the geometric series)
and thus does not affect the result. We obtain:

dA(X) = NEAR-INT
(

x0 + x∆ + x2∆ + · · ·+ xn

2

)
.

The latter expression is clearly PARITY(x0,x∆,x2∆, . . . ,xn). 2
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