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5.1 Learning using Polynomial Threshold Functions

5.1.1 Recap

Definition 1 A function f : {0, 1}n → {+,−} is computed by a Polynomial Threshold Func-

tion or PTF, of degree d if there exists a real, multivariate polynomial p of total degree at most d
such that ∀x ∈ {0, 1}n f(x) = SIGN(p(x) − θ) for some θ. The function f is then said to have

PTF degree d.

Note that the total degree of a multivariate polynomial is the maximum degree of any monomial
term, where the degree of a monomial term is computed as the sum of the exponents of the variables
in that term.

We have seen how polynomial threshold functions of degree d can be learned in time and mistake
bound nO(d). This leads to the following theorem:

Theorem 1 If all c ∈ C have PTF degree d then C is learnable in the Mistake Bound model in time

and mistake bound nO(d).

5.1.2 PTFs for different boolean function families

For the following families of functions, we want the lowest degree PTF that can compute a function
from that family.

• Decision Lists: PTFs of degree 1. (We previously showed that Decision lists can be converted
to equivalent half-spaces)

• Decision Trees: PTFs of degree O(log n) (Based on the conversion of decision trees to equivalent
decision lists using the rank of the tree)

• DNFs: PTFs of degree Õ(n
1

3 ) (Note that Õ hides log factors). This will be shown in the
subsequent sections.

5.1.3 Background - Chebyshev Polynomials

We will use certain properties of Chebyshev Polynomials to deduce the PTF degree of DNFs. For
more information on Chebyshev Polynomials, please see either the MathWorld article on ‘Chebyshev
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Polynomials of the First Kind’ or the Wikipedia article on Chebyshev Polynomials.

A Chebyshev Polynomial Cd(x) is a univariate polynomial of degree d with the following properties
(among others):

Cd(1) = 1

∀x ∈ [−1, 1], |Cd(x)| ≤ 1

∀x ≥ 1, C
′

d(x) ≥ d2

C√
d(1 +

1

d
) ≥ 2

The first and second properties indicate that the Chebyshev polynomials are contained in [−1, 1] for
x ∈ [−1, 1]. The actual behavior is unspecified, but that does not affect our analysis.

Also, the third property indicates that outside [−1, 1] the growth of the function is explosive. This
is also reflected in the fourth property which indicates how far from 1 we need to be to achieve a
value of at least 2.

An plot of the first few Chebyshev polynomials illustrates this functional behavior (see Figure 5.1).
Notice that all plotted functions are bounded within [−1, 1] for domain values in [−1, 1], with the
value 1 at x = 1. The explosive growth of the polynomials outside of this range can also be observed.
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Figure 5.1: Behavior of the first few Chebyshev polynomials.
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5.1.4 DNFs can be computed by PTFs

Lemma 1 For any DNF formula on n variables with s terms of length at most t, there exists a

PTF of degree
√

t log s that computes that DNF.

Proof: Let the DNF formula be D = T1 ∨ T2 ∨ · · · ∨ Tn. For 1 ≤ i ≤ s, let term Ti = x1 ∧ · · · ∧ xt.

Let x̄ denote the vector [x1, x2, · · · , xn].Consider the function ai(x̄) = x1+···+xt

t , and the Chebyshev

polynomial Qi(x̄) = C√
t((1 + 1

t ) · ai(x̄)). As ai(x̄) is of degree 1, Qi(x̄) is of degree
√

t.

Now, if Ti is true on some vector x̄, then Qi(x̄) ≥ 2. This is because all xj have to be 1, which
implies that ai = 1, and so Qi(x̄) = C√

t((1 + 1
t ) · 1) ≥ 2 by the fourth property of Chebyshev

polynomials listed above.

Similarly, if Ti is false on some vector x̄, then Qi(x̄) ≤ 1. This is because at least one xj is zero,
implying that ai ≤ t−1

t , and

Qi(x̄) ≤ C√
t((1 − 1

t
)(1 +

1

t
))

= C√
t(1 − 1

t2
)

< C√
t(1) = 1

Now, using the above strategy, we can obtain a Qi for each term in the original DNF. Consider the
following threshold function:

Qlog 2s
1 (x̄) + Qlog 2s

2 (x̄) + · · · + Qlog 2s
s (x̄) > s

Note that as each Qi is a polynomial of degree
√

t, the above inequality represents a Polynomial
Threshold Function of total degree

√
t log(2s).

For all x̄ satisfying the original DNF, there exists (at least one) term Ti that is set to 1. Assume,

without loss of generality, that the first term T1 is set to 1. Then as Q1(x̄) ≥ 2, and Qlog 2s
1 (x̄) ≥

2log 2s = 2s, the term Qlog 2s
1 (x̄) contributes at least 2s to the left side of the inequality. Also at

worst all other terms in the DNF are not satisfied. For these terms, as −1 ≤ Qi(x̄) ≤ 1 and

Qlog 2s
i (x̄) ≥ −1. So,

Qlog 2s
1 (x̄) + · · · + Qlog 2s

s (x̄) ≥ 2s + (−1) · · · + (−1)

= 2s +
s−1∑

j=1

(−1)

= 2s − s + 1 > s

which satisfies the inequality.

For all x̄ not satisfying the original DNF, every Qi term is in [−1, 1], which implies that |Qlog 2s
i (x̄)| ≤



Lecture 5: September 17, 2007 5-4

1, and thus
∑s

j=1 Qlog 2s
i (x̄) ≤

∑s
j=1 1 ≤ s. The inequality is not satisfied. This means that the

above threshold function is a PTF that computes the specified DNF.

The construction of a
√

t log(2s) PTF for DNF formulas immediately gives us an nO(
√

n log n) time
and mistake bound algorithm for learning DNFs, by exploiting the established algorithm for learning
PTFs.

5.1.5 Improved bound for learning DNFs

We now attempt to improve the nO(
√

n log n) algorithm using an alternate construction of the equiva-

lent PTF. (Partly reproduced from Klivans A. and Servedio R., “Learning DNF in Time 2Õ(n1/3)”).

Sketch of Proof For this, we use the method of ‘Augmented Decision Trees’ that was previously
employed to construct an equivalent Decision Tree from a given DNF formula. Recall that for any
given DNF, we were able to construct a rank 2n

t log s decision tree (all parameters are as before),
that was augmented with DNFs of term length t at the leaves of the tree.

Choose t = n
2

3 . Then for a given DNF, there exists a decision tree with rank 2 3
√

n log s with DNFs
of term length n

2

3 at the leaves that is equivalent to that DNF.

Using the claim proved in previous lemma, this implies that for a given DNF, there exists a decision
tree with rank 2 3

√
n log s with PTFs of degree 3

√
n log s at the leaves of the tree that is equivalent

that that DNF.

Now, using the method of converting decision trees to decision lists, we have that for any given DNF
formula, there exists a decision list with conjuncts of length 2 3

√
n log s, augmented with PTFs of

degree 3
√

n log s that computes that DNF. Call this decision list L.

Let C1, . . . , CR be the conjunctions contained in successive nodes of L and let P1(x), . . . , PR(x) be
the corresponding polynomials for the associated polynomial threshold functions at the outputs, i.e.
the polynomial threshold function corresponding to the j-th conjunction Cj computes the function
“Pj(x) ≥ 0”. If Pj(x) = 0 for some x ∈ {0, 1}n then we can replace Pj(x) by Pj(x) + δ/2, where
δ = min{−Pj(x) : x ∈ {0, 1}n and Pj(x) < 0}, without changing the function computed by the
polynomial threshold function. Now by scaling each Pj by an appropriate multiplicative factor we
can suppose without loss of generality that for each j = 1, . . . , R we have minx∈{0,1}n |Pj(x)| ≥ 1.

Consider the polynomial

Q(x) = A1C̃1(x)P1(x) + A2C̃2(x)P2(x) + · · · + ARC̃R(x)PR(x)

Here C̃j is the zero/one valued polynomial which corresponds to the monomial Cj , for example if

Cj is x3x̄4x5 then C̃j is x3(1 − x4)x5. Each value Aj is a positive constant chosen so as to satisfy
the following conditions:

AR = 1

AR−1 > max
x∈{0,1}n

|ARC̃R(x)PR(x)|,
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...

Aj > max
x∈{0,1}n

|Aj+1C̃j+1(x)Pj+1(x) + · · · + ARC̃R(x)PR(x)|,

...

A1 > max
x∈{0,1}n

|A2C̃2(x)P2(x) + · · · + ARC̃R(x)PR(x)|.

Then the polynomial threshold function “Q(x) ≥ 0” computes exactly the same function as the
decision list L. To see this, fix an input x ∈ {0, 1}n. If j is the index of the first conjunction Cj

which is satisfied by x, then C̃1(x) = C̃2(x) = · · · = C̃j−1(x) = 0, so the only terms of Q(x) which

make a nonzero contribution are AiC̃i(x)Pi(x) for i ≥ j. Since C̃j(x) = 1 and |Pj(x)| ≥ 1, the choice
of Aj ensures that the sign of Q(x) will be the same as that of Pj(x).

The degree of the polynomial Q(x) is at most 2 3
√

n log s + O( 3
√

n log s) which is O(n1/3 log s), giving
us an improved bound for learning DNFs.


