
Learning Halfspaces with Malicious Noise

Adam R. Klivans, Philip M. Long, and Rocco A. Servedio

klivans@cs.utexas.edu, plong@google.com, rocco@cs.columbia.edu

Abstract. We give new algorithms for learning halfspaces in the challenging
malicious noisemodel, where an adversary may corrupt both the labels and the
underlying distribution of examples. Our algorithms can tolerate malicious noise
rates exponentially larger than previous work in terms of the dependence on the
dimensionn, and succeed for the fairly broad class of all isotropic log-concave
distributions.
We give poly(n, 1/ǫ)-time algorithms for solving the following problems to ac-
curacyǫ:

– Learning origin-centered halfspaces inR
n with respect to the uniform dis-

tribution on the unit ball with malicious noise rateη = Ω(ǫ2/ log(n/ǫ)).
(The best previous result wasΩ(ǫ/(n log(n/ǫ))1/4).)

– Learning origin-centered halfspaces with respect to any isotropic log-concave
distribution onRn with malicious noise rateη = Ω(ǫ3/ log(n/ǫ)). This is
the first efficient algorithm for learning under isotropic log-concave distribu-
tions in the presence of malicious noise.

We also give a poly(n, 1/ǫ)-time algorithm for learning origin-centered halfs-
paces under any isotropic log-concave distribution onR

n in the presence ofad-
versarial label noiseat rateη = Ω(ǫ2/ log(1/ǫ)). In the adversarial label noise
setting (or agnostic model), labels can be noisy, but not example points them-
selves. Previous results could handleη = Ω(ǫ) but had running time exponential
in an unspecified function of1/ǫ.
Our analysis crucially exploits both concentration and anti-concentration prop-
erties of isotropic log-concave distributions. Our algorithms combine an itera-
tive outlier removal procedure using Principal Component Analysis together with
“smooth” boosting.

1 Introduction

A halfspaceis a Boolean-valued function of the formf = sign(
∑n

i=1 wixi − θ).
Learning halfspaces in the presence of noisy data is a fundamental problem in ma-
chine learning. In addition to its practical relevance, theproblem has connections to
many well-studied topics such as kernel methods [26], cryptographic hardness of learn-
ing [13], hardness of approximation [5, 8], learning Boolean circuits [1], and addi-
tive/multiplicative update learning algorithms [15, 6].

Learning an unknown halfspace from correctly labeled (non-noisy) examples is one
of the best-understood problems in learning theory, with work dating back to the famous
Perceptron algorithm of the 1950s [21] and a range of efficient algorithms known for
different settings [19, 14, 2, 17]. Much less is known, however, about the more difficult
problem of learning halfspaces in the presence of noise.

Important progress was made by Blumet al. [1] who gave a polynomial-time al-
gorithm for learning a halfspace underclassification noise. In this model each label
presented to the learner is flipped independently with some fixed probability; the noise
does not affect the actual example points themselves, whichare generated according to
an arbitrary probability distribution overRn. In the current paper we consider a much
more challenging noise model,malicious noise, which we describe below.

Malicious Noise.In this model, introduced by Valiant [27] (see also [12]), there is an
unknown target functionf and distributionD over examples. Each time the learner
receives an example, independently with probability1 − η it is drawn fromD and
labeled correctly according tof , but with probabilityη it is an arbitrary pair(x, y)
which may be generated by an omniscient adversary. The parameterη is known as the
“noise rate.”

Malicious noise is a notoriously difficult model with few positive results. It was al-
ready shown in [12] that for essentially all concept classes, it is information-theoretically
impossible to learn to accuracy1− ǫ if the noise rateη is greater thanǫ/(1+ ǫ). Indeed,
known algorithms for learning halfspaces [25, 11] or even simpler target functions [18]
with malicious noise typically make strong assumptions about the underlying distribu-
tionD, and can learn to accuracy1 − ǫ only for noise ratesη much smaller thanǫ.

In this paper we consider learning under the uniform distribution on the unit ball
in R

n, and more generally under any isotropic log-concave distribution. The latter is
a fairly broad class of distributions that includes spherical Gaussians and uniform dis-
tributions over a wide range of convex sets. Our algorithms can learn from malicious
noise rates that are quite high, as we now describe.

1.1 Main Results

Our first result is an algorithm for learning halfspaces in the malicious noise model with
respect to the uniform distribution on then-dimensional unit ball:

Theorem 1. There is apoly(n, 1/ǫ)-time algorithm that learns origin-centered halfs-
paces to accuracy1 − ǫ with respect to the uniform distribution on the unit ball inn
dimensions in the presence of malicious noise at rateη = Ω(ǫ2/ log(n/ǫ)).

The previous best result is due to Kalaiet al. [11] who gave apoly(n, 1/ǫ)-time
algorithm for malicious noise at rateΩ(ǫ/(n log(n/ǫ))1/4). Theorem 1 gives an expo-
nential improvement in the dependence onn in the noise rate that can be achieved.

Via a more sophisticated algorithm, we can learn in the presence of malicious noise
under any isotropic log-concave distribution:

Theorem 2. There is apoly(n, 1/ǫ)-time algorithm that learns origin-centered halfs-
paces to accuracy1− ǫ with respect to any isotropic log-concave distribution over R

n

and can tolerate malicious noise at rateη = Ω(ǫ3/ log(n/ǫ)).

We are not aware of any previous polynomial-time algorithmsfor learning under
isotropic log-concave distributions in the presence of malicious noise.

Finally, we also consider a somewhat relaxed noise model known asadversarial
label noise. In this model there is a fixed probability distributionP overRn × {−1, 1}

(i.e. over labeled examples) for which a1 − η fraction of draws are labeled according
to an unknown halfspace. The marginal distribution overR

n is assumed to be isotropic
log-concave; so the idea is that an “adversary” chooses anη fraction of examples to
mislabel, but unlike the malicious noise model she cannot change the (isotropic log-
concave) distribution of the actual example points inR

n. For this model we prove:

Theorem 3. There is apoly(n, 1/ǫ)-time algorithm that learns origin-centered halfs-
paces to accuracy1− ǫ with respect to any isotropic log-concave distribution over R

n

and can tolerate adversarial label noise at rateη = Ω(ǫ2/ log(1/ǫ)).

The previous best algorithm for learning halfspaces in thisframework, from [11]
(where it is referred to as “agnostically learning halfspaces under log-concave distri-
butions”), can tolerateη = Ω(ǫ), but its running time is exponential in an unspecified
function of1/ǫ. We tolerate a somewhat lower noise rate (though one that is indepen-
dent ofn), but run in truepoly(n, 1/ǫ) time.

1.2 Techniques

Outlier Removal. Consider first the simplest problem of learning an origin-centered
halfspace with respect to the uniform distribution on then-dimensional ball. A natural
idea is to use a simple “averaging” algorithm that takes the vector average of the positive
examples it receives and uses this as the normal vector of itshypothesis halfspace.
Servedio [24] analyzed this algorithm for the random classification noise model, and
Kalai et al. [11] extended the analysis to the adversarial label noise model. [11] also
showed that this simple algorithm learns to accuracyǫ with malicious noise at rate less
thanǫ/

√
n. (TheirΩ(ǫ/(n log(n/ǫ))1/4) result was achieved via a different algorithm.)

Intuitively the “averaging” algorithm can only tolerate low malicious noise rates
because the adversary can generate noisy examples which “pull” the average vector far
from its true location. Our main insight is the adversary does this most effectively when
the noisy examples are coordinated to pull in roughly the same direction. We use a form
of outlier detection based on Principal Component Analysisto detect such coordination.
This is done by computing the directionw of maximal variance of the data set; if the
variance in directionw is suspiciously large, we remove from the sample all pointsx

for which (w · x)2 is large. Our analysis shows that this causes many noisy examples,
and only a few non-noisy examples, to be removed.

We repeat this process until the variance in every directionis not too large. (This
cannot take too many stages since many noisy examples are removed in each stage.)
While some noisy examples may remain, we show that their disparate effects cannot
hurt the algorithm much.

Thus, in a nutshell, our overall algorithm for the uniform distribution is to first do
outlier removal1 by an iterated PCA-type procedure, and then simply run the averaging
algorithm on the remaining “cleaned-up” data set.

1 We note briefly that the sophisticated outlier removal techniques of [1, 4] do not seem to be
useful in our setting; those works deal with a strong notion of outliers, which is such that
no point on the unit ball can be an outlier if a significant fraction of points are uniformly
distributed on the unit ball.

Extending to Log-Concave Distributions via Smooth Boosting. We are able to show
that the iterative outlier removal procedure described above is useful for isotropic log-
concave distributions as well as the uniform distribution:if examples are removed in a
given stage, then many of the removed examples are noisy and only a few are non-noisy
(the analysis here uses concentration bounds for isotropiclog-concave distributions).
However, even if there were no noise in the data, the average of the positive examples
under an isotropic log-concave distribution need not give ahigh-accuracy hypothesis.
Thus the averaging algorithm alone will not suffice after outlier removal.

To get around this, we show that after outlier removal the average of the positive
examples gives a (real-valued)weakhypothesis that has some nontrivial predictive ac-
curacy. (Interestingly, the proof of this relies heavily onanti-concentration properties
of isotropic log-concave distributions!) A natural approach is then to use a boosting
algorithm to convert this weak learner into a strong learner. This is not entirely straight-
forward because boosting “skews” the distribution of examples; this has the undesirable
effects of both increasing the effective malicious noise rate, and causing the distribu-
tion to no longer be isotropic log-concave. However, by using a “smooth” boosting
algorithm [25] that skews the distribution as little as possible, we are able to control
these undesirable effects and make the analysis go through.(The extra factor ofǫ in the
bound of Theorem 2 compared with Theorem 1 comes from the factthat the boosting
algorithm constructs “1/ǫ-skewed” distributions.)

We note that our approach of using smooth boosting is reminiscent of [23, 25], but
the current algorithm goes well beyond that earlier work. [23] did not consider a noisy
scenario, and [25] only considered the averaging algorithmwithout any outlier removal
as the weak learner (and thus could only handle quite low rates of malicious noise, at
mostǫ/

√
n in our isotropic log-concave setting).

Finally, our results for learning under isotropic log-concave distributions with ad-
versarial label noise are obtained using a similar approach. The algorithm here is in
fact simpler than the malicious noise algorithm: since the adversarial label noise model
does not allow the adversary to alter the distribution of theexamples inRn, we can
dispense with the outlier removal and simply use smooth boosting with the averaging
algorithm as the weak learner. (This is why we get a slightly better quantitative bound
in Theorem 3 than Theorem 2).

Organization. For completeness we review the precise definitions of isotropic log-
concave distributions and the various learning models in Appendix A. We present the
simpler and more easily understood uniform distribution analysis first, proving Theo-
rem 1 in Section 2. The proof of Theorem 2, which builds on the ideas of Theorem 1,
is in Section 3. Because of space constraints we prove Theorem 3 in Appendix C.

2 The uniform distribution and malicious noise

In this section we prove Theorem 1. As described above, our algorithm first does outlier
removal using PCA and then applies the “averaging algorithm.”

We may assume throughout that the noise rateη is smaller than some absolute con-
stant, and that the dimensionn is larger than some absolute constant.

2.1 The Algorithm: Removing Outliers and Averaging

Consider the following AlgorithmAmu:

1. Draw a sampleS ofm = poly(n/ǫ) many examples from the malicious oracle.
2. Identify the directionw ∈ S

n−1 that maximizes

σ2
w

def
=

∑
(x,y)∈S

(w · x)2.

If σ2
w
< 10m log m

n then go to Step 4 otherwise go to Step 3.
3. Remove fromS every example that has(w · x)2 ≥ 10 log m

n . Go to Step 2.
4. For the examplesS that remain letv = 1

|S|
∑

(x,y)∈S yx and output the linear
classifierhv defined byhv(x) = sgn(v · x).

We first observe that Step 2 can be carried out in polynomial time:

Lemma 1. There is a polynomial-time algorithm that, given a finite collection S of
points inR

n, outputsw ∈ S
n−1 that maximizes

∑
x∈S(w · x)2.

Proof. If S is centered, i.e.
∑

x∈S x = 0, then the optimalw is the direction of maxi-
mum variance, and can be found using Principal Component Analysis (i.e. a polynomial-
time eigenvector computation, see e.g. [10]). Otherwise, we can perform the PCA on
S ∪−S, where−S = {−x : x ∈ S}. This works becauseS ∪−S is centered, and, for
eachw,

∑
x∈S∪−S(w · x)2 = 2

∑
x∈S(w · x)2. ⊓⊔

This implies that the entire algorithmAmu runs inpoly(m) time.
Before embarking on the analysis we establish a terminological convention. Much

of our analysis deals with high-probability statements over the draw of them-element
sampleS; it is straightforward but quite cumbersome to explicitly keep track of all of
the failure probabilities. Thus we write “with high probability” (or “w.h.p.”) in various
places below as a shorthand for “with probability at least1 − 1/poly(n/ǫ).” The inter-
ested reader can easily verify that an appropriatepoly(n/ǫ) choice ofm makes all the
failure probabilities small enough so that the entire algorithm succeeds with probability
at least1/2 as required.

2.2 Properties of the clean examples

In this subsection we establish properties of the clean examples that were sampled in
Step 1 ofAmu. The first says that no direction has much more variance than the expected
variance of1/n:

Lemma 2. W.h.p. over a random draw ofℓ clean examplesSclean, we have

max
a∈Sn−1

{
1

ℓ

∑
(x,y)∈Sclean

(a · x)2

}
≤ 1

n
+

√
O(n) logm

ℓ
.

Proof.The proof uses standard tools from VC theory and is in Appendix D. ⊓⊔
The next lemma says that in fact no direction has too many clean examples lying far

out in that direction:

Lemma 3. For anyβ > 0 andκ > 1, if Sclean is a random set ofℓ ≥ O(1)·n2β2eβ2n/2

(1+κ) ln(1+κ)

clean examples then w.h.p. we have

max
a∈Sn−1

{
1

ℓ

∑
x∈Sclean

1(a·x)2>β2

}
≤ (1 + κ)e−β2n/2.

Proof. In Appendix E. ⊓⊔

2.3 What is removed

In this section, we provide bounds on the number of clean and dirty examples removed
in Step 3.

The first bound is a Corollary of Lemma 3.

Corollary 1. W.h.p. over the random draw of them-element sampleS, the number of
clean examples removed during any execution of Step 3 inAmu is at most6n logm.

Proof.Since the noise rateη is sufficiently small, w.h.p. the numberℓ of clean examples
is at least (say)m/2. We would like to apply Lemma 3 withκ = 5ℓ4n log ℓ andβ =√

10 log m
n , and indeed we may do this because we have

O(1) · n2β2eβ2n/2

(1 + κ) ln(1 + κ)
≤ O(1) · n(logm)m5

(1 + κ) ln(1 + κ)
≤ O

(
m

logm

)
≤ m

2
≤ ℓ

for n sufficiently large. Since clean points are only removed if they have(a · x)2 > β2,
Lemma 3 gives us that the number of clean points removed is at most

m(1 + κ)e−β2n/2 ≤ 6m5n log(ℓ)/m5 ≤ 6n logm.

⊓⊔
The counterpart to Corollary 1 is the following lemma. It tells us that if examples

are removed in Step 3, then there must be manydirty examples removed. It exploits the
fact that Lemma 2 bounds the variance inall directionsa, so that it can be reused to
reason about what happens in different executions of step 3.

Lemma 4. W.h.p. over the random draw ofS, wheneverAmu executes step 3, it re-
moves at least4m log m

n noisy examples fromSdirty, the set of dirty examples inS.

Proof. As stated earlier we may assume thatη ≤ 1/4. This implies that w.h.p. the
fractionη̂ of noisy examples in the initial setS is at most1/2. Finally, Lemma 2 implies
thatm = Ω̃(n2) suffices for it to be the case that w.h.p., for alla ∈ S

n−1, for the
original multisetSclean of clean examples drawn in step 1, we have

∑
(x,y)∈Sclean

(a · x)2 ≤ 2m

n
. (1)

We shall say that a random sampleS that satisfies all these requirements is “reason-
able”. We will show that for any reasonable dataset, the number of noisy examples
removed during the execution of step 3 ofAmu is at least4m log m

n .

If we remove examples using directionw then it means
∑

(x,y)∈S(w · x)2 ≥
10m log m

n . SinceS is reasonable, by (1) the contribution to the sum from the clean
examples that survived to the current stage is at most2m/n so we must have

∑
(x,y)∈Sdirty

(w · x)2 ≥ 10m log(m)/n− 2m/n > 9m log(m)/n.

Let us decomposeSdirty into N ∪ F whereN (“near”) consists of those pointsx s.t.
(w · x)2 ≤ 10 log(m)/n andF (“far”) is the remaining points for which(w · x)2 >
10 log(m)/n. Since |N | ≤ |Sdirty| ≤ η̂m, (any dirty examples removed in earlier
rounds will only reduce the size ofSdirty) we have

∑
(x,y)∈N

(w · x)2 ≤ (η̂m)10 log(m)/n

and so

|F | ≥ ∑
(x,y)∈F

(w · x)2 ≥ 9m log(m)/n− (η̂m)10 log(m)/n ≥ 4m log(m)/n

(the last line used the fact thatη̂ < 1/2). Since the points inF are removed in Step 3,
the lemma is proved. ⊓⊔

2.4 Exploiting limited variance in any direction

In this section, we show that if all directional variances are small, then the algorithm’s
final hypothesis will have high accuracy.

We first recall a simple lemma which shows that a sample of “clean” examples
results in a high-accuracy hypothesis for the averaging algorithm:

Lemma 5 ([24]).Supposex1, ...,xm are chosen uniformly at random fromSn−1, and
a target weight vectoru ∈ S

n−1 produces labelsy1 = sign(u · x1), ..., ym = sign(u ·
xm). Let v = 1

m

∑m
t=1 ytxt. Then w.h.p. the component ofv in the direction ofu

satisfiesu ·v = Ω(1√
n
), while the rest ofv satisfies||v−(u ·v)u|| = O(

√
log(n)/m).

Now we can state Lemma 6.

Lemma 6. LetS = Sclean ∪ Sdirty be the sample ofm examples drawn from the noisy
oracleEXη(f,U). Let

– S′
clean be those clean examples that were never removed during step 3ofAmu,

– S′
dirty be those dirty examples that were never removed during step 3ofAmu,

– η′ =
|S′

dirty|
|S′

clean
∪S′

dirty
| , i.e. the fraction of dirty examples among the examples that

survive step 3, and

– α =
|Sclean−S′

clean|
|S′

clean
∪S′

dirty
| , the ratio of the number of clean points that were erroneously

removed to the size of the final surviving data set.

LetS′ def
= S′

clean ∪ S′
dirty. Suppose that , for every directionw ∈ S

n−1 we have

σ2
w

def
=

∑

(x,y)∈S′

(w · x)2 ≤ 10m logm

n
.

Then w.h.p. over the draw ofS, the halfspace with normal vectorv
def
= 1

|S′|
∑

(x,y)∈S′ yx

has error rate

O

(
√
η′ logm+ α

√
n+

√
n logn

m

)
.

Proof.The claimed bound is trivial unlessη′ ≤ o(1)/ logm andα ≤ o(1)/
√
n, so we

shall freely use these bounds in what follows.
Let u be the unit length normal vector for the target halfspace. Let vclean be the

average ofall the clean examples,v′
dirty be the average of the dirty (noisy) examples

that were not deleted (i.e. the examples inS′
dirty), andvdel be the average of the clean

examples that were deleted. Then

v =
1

|S′
clean ∪ S′

dirty|
∑

(x,y)∈S′

clean
∪S′

dirty

yx

=
1

|S′
clean ∪ S′

dirty|

((
∑

(x,y)∈Sclean

yx

)
+

(
∑

(x,y)∈S′

dirty

yx

)
−
(

∑
(x,y)∈Sclean−S′

clean

yx

))

v = (1 − η′ + α)vclean + η′v′
dirty − αvdel. (2)

Let us begin by exploiting the bound on the variance in every direction to bound the
length ofv′

dirty. For anyw ∈ S
n−1 we know that

∑
(x,y)∈S′

(w · x)2 ≤ 10m logm

n
, and hence

∑
(x,y)∈S′

dirty

(w · x)2 ≤ 10m logm

n

sinceS′
dirty ⊆ S′. The Cauchy-Schwarz inequality now gives

∑
(x,y)∈S′

dirty

|w · x| ≤

√
10m|S′

dirty| logm

n
.

Takingw to be the unit vector in the direction ofv′
dirty, we have‖v′

dirty‖ =

w · v′
dirty = w · 1

|S′
dirty|

∑
(x,y)∈S′

dirty

yx ≤ 1

|S′
dirty|

∑
(x,y)∈S′

dirty

|w · x| ≤
√

10m logm

|S′
dirty|n

.

(3)
Because the domain distribution is uniform, the error ofhv is proportional to the

angle betweenv andu, in particular,

Pr[hv 6= f] =
1

π
arctan

(||v − (v · u)u||
u · v

)
≤ (1/π)

||v − (v · u)u||
u · v . (4)

We have that||v − (v · u)u|| equals

||(1 − η′ + α)(vclean − (vclean · u)u) + η′(v′
dirty − (v′

dirty · u)u) − α(vdel − (vdel · u)u)||
≤ 2||vclean − (vclean · u)u|| + η′||v′

dirty|| + α||vdel||

where we have used the triangle inequality and the fact thatα, η are “small.” Lemma 5
lets us bound the first term in the sum byO(

√
log(n)/m), and the fact thatvdel is

an average of vectors of length 1 lets us bound the third byα. For the second term,
Equation (3) gives us

η′‖v′
dirty‖ ≤

√
10m(η′)2 logm

|S′
dirty|n

=

√
10mη′ logm

|S′|n ≤
√

20η′ logm

n
,

where for the last equality we used|S′| ≥ m/2 (which is an easy consequence of
Corollary 1 and the fact that w.h.p.|Sclean| ≥ 3m/4). We thus get

||v − (v · u)u|| ≤ O
(√

log(n)/m
)

+
√

20η′ log(m)/n+ α. (5)

Now we consider the denominator of (4). We have

u · v = (1 − η′ + α)(u · vclean) + η′u · v′
dirty − αu · vdel.

Similar to the above analysis, we again use Lemma 5 (but now the lower boundu ·v ≥
Ω(1/

√
n), Equation (3), and the fact that||vdel|| ≤ 1. Sinceα andη′ are “small,” we

get that there is an absolute constantc such thatu ·v ≥ c/
√
n−

√
20η′ log(m)/n−α.

Combining this with (5) and (4), we get

Pr[hv 6= f] ≤
O

(√
log n

m

)
+
√

20η′ log m
n + α

c√
n
−
√

20η′ log m
n − α

= O

(√
n logn

m
+
√
η′ logm+ α

√
n

)
.

⊓⊔

2.5 Proof of Theorem 1

By Corollary 1, w.h.p. each outlier removal stage removes atmost6n logm clean
points.

Since each outlier removal stage removes at least4m log m
n noisy examples, there

must be at mostO(n/(logm)) such stages. Consequently the total number of clean
examples removed across all stages isO(n2). Since w.h.p. the initial number of clean
examples is at leastm/2, this means that the final data set (on which the averaging
algorithm is run) contains at leastm/2 − O(n2) clean examples, and hence at least
m/2 − O(n2) examples in total. Consequently the value ofα from Lemma 6 after the
final outlier removal stage (the ratio of the total number of clean examples deleted, to
the total number of surviving examples) is at most 2n2

m/2−O(n2) .
The standard Hoeffding bound implies that w.h.p. the actualfraction of noisy exam-

ples in the original sampleS is at mostη+
√
O(logm)/m. It is easy to see that w.h.p.

the fraction of dirty examples does not increase (since eachstage of outlier removal re-
moves more dirty points than clean points, for a suitably largepoly(n/ǫ) value ofm),
and thus the fractionη′ of dirty examples among the remaining examples after the final
outlier removal stage is at mostη+

√
O(logm)/m. Applying Lemma 6, for a suitably

large valuem = poly(n/ǫ), we obtainPr[hv 6= f] ≤ O
(√
η logm

)
. Rearranging this

bound, we can learn to accuracyǫ even forη = Ω(ǫ2/ log(n/ǫ)). This completes the
proof of the theorem. ⊓⊔

3 Isotropic log-concave distributions and malicious noise

Our algorithmAmlc that works for arbitrary log-concave distributions uses smooth
boosting.

3.1 Smooth Boosting

A boosting algorithm uses a subroutine, called aweak learner, that is only guaran-
teed to output hypotheses with a non-negligible advantage over random guessing.2 The
boosting algorithm that we consider uses aconfidence-ratedweak learner [22], which
predicts{−1, 1} labels using continuous values in[−1, 1]. Formally, theadvantageof
a hypothesish′ with respect to a distributionD′ is defined to beEx∼D′[h′(x)f(x)],
wheref is the target function.

For the purposes of this paper, a boosting algorithm makes use of the weak learner,
an example oracle (possibly corrupted with noise), a desired accuracyǫ, and a boundγ
on the advantage of the hypothesis output by the weak learner.

A boosting algorithm that is trying to learn an unknown target functionf with re-
spect to some distributionD repeatedly simulates a (possibly noisy) example oracle
for f with respect to some other distributionD′ calls a subroutineAweak with respect
to this oracle, receiving aweak hypothesis, which mapsRn to the continuous interval
[−1, 1].

After repeating this for some number of stages, the boostingalgorithm combines
the weak hypotheses generated durings its various calls to the weak learner into a final
aggregate hypothesis which it outputs.

LetD,D′ be two distributions overRn.We say thatD′ is (1/ǫ)-smooth with respect
toD if D(x) ≤ (1/ǫ)D′(x) for all x ∈ R

n.
The following lemma from [25] (similar results can be readily found elsewhere,

see e.g. [7]) identifies the properties that we need from a boosting algorithm for our
analysis.

Lemma 7 ([25]). There is a boosting algorithmB and a polynomialp such that, for
any ǫ, γ > 0, the following properties hold. When learning a target function f us-
ing EXη(f,D), we have: (a) If each call toAweak takes timet, thenB takes time
p(t, 1/γ, 1/ǫ). (b) The weak learner is always called with an oracleEXη′(f,D′) where
D′ is (1/ǫ)-smooth with respect toD′ andη′ ≤ η/ǫ. (c) Suppose that for each distri-
butionEXη′(f,D′) passed toAweak byB, the output ofAweak has advantageγ. Then
the final outputh ofB satisfiesPrx∈D[h(x) 6= f(x)] ≤ ǫ.

2 For simplicity of presentation we ignore the confidence parameter of the weak learner in our
discussion; this can be handled in an entirely standard way.

3.2 The Algorithm

Our algorithm for learning under isotropic log-concave distributions with malicious
noise, AlgorithmAmlc, applies the smooth booster from Lemma 7 with the following
weak learner, which we call AlgorithmAmlcw. (The valuec0 is an absolute constant
that will emerge from our analysis.)

1. Drawm = poly(n/ǫ) examples from the oracleEXη′(f,D′).
2. Remove all those examples(x, y) for which ||x|| > √

3n logm.
3. Repeatedly

– find a direction (unit vector)w that maximizes
∑

(x,y)∈S(w · x)2 (see
Lemma 1)

– if
∑

(x,y)∈S(w ·x)2 ≤ c0m log(n/ǫ) then move on to Step 3, and otherwise
– remove fromS all examples(x, y) for which (w · x)2 > c0 log(n/ǫ), and

iterate again.
4. Letv = 1

|S|
∑

(x,y)∈S yx, and returnh defined byh(x) = v·x
3n log m , if |v · x| ≤

3n logm, andh(x) = sgn(v · x) otherwise.

Our main task is to analyze the weak learner. Given the following Lemma, Theo-
rem 2 will be an immediate consequence of Lemma 7 (proved in Appendix B).

Lemma 8. Suppose AlgorithmAmlcw is run usingEXη′(f,D′) wheref is an origin-
centered halfspace,D′ is (1/ǫ)-smooth w.r.t. an isotropic log-concave distributionD,
η′ ≤ η/ǫ, andη ≤ Ω(ǫ3/ log(n/ǫ)). Then w.h.p. the hypothesish returned byAmlcw

has advantageΩ
(

ǫ2

n log(n/ǫ)

)
.

4 Conclusion

There are relatively few algorithms for learning interesting classes of functions in the
presence of malicious noise. We hope that our results will help lead to the development
of more efficient algorithms for this challenging noise model.

As a concrete challenge for future work, we pose the following question: do there
exist computationally efficient algorithms for learning halfspaces underarbitrary dis-
tributions in the presence of malicious noise? As of now no better results are known for
this problem than the generic conversions of [12], which canbe applied to any concept
class. We feel that even a small improvement in the maliciousnoise rate that can be
handled for halfspaces would be a very interesting result.

References

[1] A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning
noisy linear threshold functions.Algorithmica, 22(1/2):35–52, 1997.

[2] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension.Journal of the ACM, 36(4):929–965, 1989.

[3] N. H. Bshouty, Y. Li, and P. M. Long. Using the doubling dimension to analyze the gener-
alization of learning algorithms.J. Comp. Sys. Sci., 2009. To appear.

[4] J. Dunagan and S. Vempala. Optimal outlier removal in high-dimensional spaces.J. Com-
puter & System Sciences, 68(2):335–373, 2004.

[5] V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswami. New results for learning noisy
parities and halfspaces. InProc. FOCS, pages 563–576, 2006.

[6] Yoav Freund and Robert E. Schapire. Large margin classification using the perceptron
algorithm.Machine Learning, 37(3):277–296, 1999.

[7] Dmitry Gavinsky. Optimally-smooth adaptive boosting and application to agnostic learn-
ing. Journal of Machine Learning Research, 4:101–117, 2003.

[8] V. Guruswami and P. Raghavendra. Hardness of learning halfspaces with noise. InProc.
FOCS, pages 543–552. IEEE Computer Society, 2006.

[9] D. Haussler, M. Kearns, N. Littlestone, and M. Warmuth. Equivalence of models for poly-
nomial learnability.Information and Computation, 95(2):129–161, 1991.

[10] I.T. Jolliffe. Principal Component Analysis. Springer Series in Statistics, 2002.
[11] A. Kalai, A. Klivans, Y. Mansour, and R. Servedio. Agnostically learning halfspaces.SIAM

Journal on Computing, 37(6):1777–1805, 2008.
[12] M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM Journal on

Computing, 22(4):807–837, 1993.
[13] A. Klivans and A. Sherstov. Cryptographic hardness forlearning intersections of halfs-

paces. InProc. FOCS, pages 553–562, 2006.
[14] N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold

algorithm.Machine Learning, 2:285–318, 1987.
[15] N. Littlestone. Redundant noisy attributes, attribute errors, and linear-threshold learning

using Winnow. InProc. COLT, pages 147–156, 1991.
[16] L. Lovász and S. Vempala. The geometry of logconcave functions and sampling algorithms.

Random Structures and Algorithms, 30(3):307–358, 2007.
[17] W. Maass and G. Turan. How fast can a threshold gate learn? In Computational Learning

Theory and Natural Learning Systems: Volume I: Constraintsand Prospects, pages 381–
414. MIT Press, 1994.

[18] Y. Mansour and M. Parnas. Learning conjunctions with noise under product distributions.
Information Processing Letters, 68(4):189–196, 1998.

[19] A. Novikoff. On convergence proofs on perceptrons. InProceedings of the Symposium on
Mathematical Theory of Automata, volume XII, pages 615–622, 1962.

[20] D. Pollard.Convergence of Stochastic Processes. Springer Verlag, 1984.
[21] F. Rosenblatt. The Perceptron: a probabilistic model for information storage and organiza-

tion in the brain.Psychological Review, 65:386–407, 1958.
[22] R. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predic-

tions. Machine Learning, 37:297–336, 1999.
[23] R. Servedio. PAC analogues of Perceptron and Winnow viaboosting the margin. InProc.

COLT, pages 148–157, 2000.
[24] R. Servedio.Efficient Algorithms in Computational Learning Theory. PhD thesis, Harvard

University, 2001.
[25] R. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine

Learning Research, 4:633–648, 2003.
[26] J. Shawe-Taylor and N. Cristianini.An introduction to support vector machines. Cambridge

University Press, 2000.
[27] L. Valiant. Learning disjunctions of conjunctions. InProceedings of the Ninth International

Joint Conference on Artificial Intelligence, pages 560–566, 1985.

A Definitions and Preliminaries

A.1 Learning with Malicious Noise

Given a probability distributionD overRn, and a target functionf : R
n → {−1, 1},

we define the oracleEXη(f,D) as follows:

– with probability1 − η the oracle drawsx according toD, and outputs(x, f(x)),
and

– with probabilityη the oracle outputs an arbitrary(x, y) pair. This “noisy” example
can be thought of as being generated adversarially and can depend on the state of
the learning algorithm and previous draws from the oracle.

Given a data set drawn fromEXη(f,D), we often refer to the examples(x, f(x))
(that came fromD) as “clean” examples and the remaining examples(x, y) as “dirty”
examples.

For a setS of probability distributions and a setF of possible target functions, we
say the a learning algorithmA learnsF to accuracy1 − ǫ with respect toS in the
presence of malicious noise at a rateη if the following holds: for anyf ∈ F , and
D ∈ S, given access toEXη(f,D), with probability at least1/2, the output hypothesis
h generated byA satisfiesPrx∼D[h(x) 6= f(x)] ≤ ǫ. (The probability of success may
be amplified arbitrarily close to 1 using standard techniques [9].)

We note that for learning under the uniform distribution on the unit ballSn−1, we
may assume w.l.o.g. that even noisy examples(x, y) havex ∈ S

n−1 – this is simply
because a learning algorithm can trivially identify and ignore any noisy example(x, y)
that has‖x‖ 6= 1.

A.2 Log-concave distributions

A probability distribution overRn is said to belog-concaveif its density function is
exp(−ψ(x)) for a convex functionψ.

A probability distribution overRnis isotropic if the mean of the distribution is0
and the covariance matrix is the identity, i.e.E[xixj] = 1 for i = j and0 otherwise.

Isotropic log-concave (henceforth abbreviated i.l.c.) distributions are a fairly broad
class of distributions. It is well known that any distribution induced by taking a uniform
distribution over an arbitrary convex set and applying a suitable linear transformation to
make it isotropic is then isotropic and log-concave. For an excellent treatment on basic
properties of log-concave distributions, see Lovasz and Vempala [16].

We will use the following facts:

Lemma 9 ([16]). Let D be an isotropic log-concave distribution overR
n and a ∈

S
n−1 any direction. Then forx drawn according toD, the distribution ofa · x is an

isotropic log-concave distribution overR.

Lemma 10 ([16]).Any isotropic log-concave distributionD overRn has light tails,

Pr
x∼D

[||x|| > β
√
n] ≤ e−β+1.

If n = 1, the density ofD is bounded:

Pr
x∼D

[x ∈ [a, b]] ≤ |b− a|.

B Proof of Lemma 8

Recall Lemma 8:

Lemma 8. Suppose AlgorithmAmlcw is run usingEXη′(f,D′) wheref is an origin-
centered halfspace,D′ is (1/ǫ)-smooth w.r.t. an isotropic log-concave distributionD,
η′ ≤ η/ǫ, andη ≤ Ω(ǫ3/ log(n/ǫ)). Then w.h.p. the hypothesish returned byAmlcw

has advantageΩ
(

ǫ2

n log(n/ǫ)

)
.

Before proving Lemma 8, we need to prove some uniformity results on non-noisy
examples drawn from an isotropic, log-concave distribution. This will enable us to use
outlier removal and averaging to find a weak learner.

B.1 Lemmas in support of Lemma 8

In this section, let us consider a single call to the weak learner with an oracleEXη′(f,D′)
whereD′ is (1/ǫ)-smooth with respect to an isotropic log-concave distribution D and
η′ ≤ η/ǫ. Our analysis will follow the same basic steps as Section 2.

A preliminary observation is that w.h.p. all clean examplesdrawn in Step 1 of Al-
gorithmAmlcw have‖x‖ ≤

√
3n logm; indeed, for any given draw ofx from D′, the

probability that‖x‖ >
√

3n logm is at most e
ǫm3 by Lemma 10. Therefore, w.h.p.,

only noisy examples are removed in Step 2 of the algorithm, and we shall assume that
the distributionsD andD′ are in fact supported entirely on{x : ‖x‖ ≤

√
3n logm}.

This assumption affects us in two ways: first, it costs us an additional e
ǫm2 in the fail-

ure probability analysis below (which is not a problem and isin fact swallowed up
by our “w.h.p.” notation). Second, it means that the overall1 − ǫ accuracy bound we
establish for the entire learning algorithm may be slightlyworse than the true value.
This is because our final hypothesis may always be wrong on theexamplesx that
have‖x‖ >

√
3n logm and are ignored in our analysis; however such examples have

probability mass at mostem3 under the isotropic log-concave distributionD (again by
Lemma 10), and thus the additional accuracy cost is at moste

m3 . Sinceǫ ≫ e
m3 , this

does not affect the overall correctness of our analysis. Note that a consequence of this
assumption is that we can just takeh(x) = v·x

3n log m .

The remarks about high-probability statements and failureprobabilities from Sec-
tion 2.1 apply here as well, and as in Section 2 we write “w.h.p.” as shorthand for “with
probability1 − 1/poly(n/ǫ).”

We first show that the expected variance ofD′ in every direction is not too large:

Lemma 11. For anya ∈ S
n−1 we haveEx∼D′[(a · x)2] = O(log(1/ǫ)).

Proof. For x chosen according toD, the distribution ofa · x is a unit variance log-
concave distribution by Lemma 9. Thus, for any positive integerk,

Ex∼D′ [(a · x)2] ≤ k +

∞∑

i=k

(i+ 1) Pr
x∼D′

[a · x ∈ (i, i+ 1]]

≤ k +
∞∑

i=k

(i+ 1)(1/ǫ) Pr
x∼D

[a · x ∈ (i, i+ 1]]

≤ k + (1/ǫ)

∞∑

i=k

(i+ 1) Pr
x∼D

[a · x > i]

≤ k + (1/ǫ)
∞∑

i=k

(i+ 1)e−i+1 ≤ k + (1/ǫ) ·Θ(ke−k)

where the first inequality in the last line uses Lemmas 9 and 10. Settingk = Θ(log(1/ǫ))
completes the proof. ⊓⊔

The following anticoncentration bound will be useful for proving that clean exam-
ples drawn fromD′ tend to be classified correctly with a large margin.

Lemma 12. Letu ∈ S
n−1. Then

Ex∼D′[|u · x|] ≥ ǫ/8.

Proof.Clearly
Ex∼D′ [|u · x|] ≥ (ǫ/4) Pr

x∼D′

[|u · x| > ǫ/4].

But by Lemma 10,

Pr
x∼D′

[|u · x| ≤ ǫ/4] ≤ 1

ǫ
Pr

x∼D
[|u · x| ≤ ǫ/4] ≤ ǫ/2

ǫ
= 1/2.

⊓⊔
The next two lemmas are isotropic log-concave analogues of the uniform distribu-

tion Lemmas 2 and 3 respectively. The first one says that w.h.p. no directiona has much
more variance than the expected variance in any direction:

Lemma 13. W.h.p. over a random draw ofℓ clean examplesSclean fromD′, we have

max
a∈Sn−1

1

ℓ

∑

(x,y)∈Sclean

(a · x)2

 ≤ O(1)

(
log

1

ǫ
+
n3/2 log2m√

ℓ

)
.

Proof.By Lemma 11, for anya ∈ S
n−1 we have

Ex∼D′ [(a · x)2] = Θ(log(1/ǫ)).

Since as remarked earlier we may assumeD′ is supported on{x : ‖x‖ ≤
√

3n logm},
we may apply Lemmas 19 and 20 (see Appendix D) with functionsfa defined byfa =
(a·x)2

3n log m This completes the proof. ⊓⊔
The second lemma says that for a sufficiently large clean dataset, w.h.p. no direction

has too many examples lying too far out in that direction:

Lemma 14. For anyβ > 0 andκ > 1, if Sclean is a set ofℓ ≥ O(1)ǫeβ(n ln(ǫeβ)+log m)
(1+κ) ln(1+κ)

clean examples drawn fromD′, then w.h.p. we have

max
a∈Sn−1

{
1

ℓ

∑

x∈Sclean

1(a·x)2>β2

}
≤ (1 + κ)

(
1

ǫ

)
e−β+1.

Proof.Lemma 10 implies that for the original isotropic log-concave distributionD, we
havePrx∼D[(a · x)2 > β] ≤ e−β+1. SinceD′ is (1/ǫ)-smooth with respect toD, this
implies that

Pr
x∈D′

[(a · x)2 > β] ≤ e−β+1

ǫ
. (6)

In the proof of Lemma 3, we observed that the VC-dimension of

{1(a·x)2>β : a ∈ R
n, β ∈ R}

isO(n), so applying Lemma 21 with (6) completes the proof of this lemma. ⊓⊔
The following is an isotropic log-concave analogue of Corollary 1, establishing that

not too many clean examples are removed in the outlier removal step:

Corollary 2. W.h.p. over the random draw of them-element sampleS fromEXη′(f,D′),
the number of clean examples removed during any execution ofthe outlier removal step
(final substep of Step 2) in AlgorithmAmlcw is at most6mǫ3/n4.

Proof. Since the true noise rateη is assumed sufficiently small, the valueη′ ≤ η/ǫ is
at mostǫ/4, and thus w.h.p. the numberℓ of clean examples inS is at least (say)m/2.
We would like to apply Lemma 14 withκ = (n/ǫ)c0−4 andβ = c0 log(n/ǫ), and we
may do this since we have

O(1)ǫeβ
(
n ln

(
ǫeβ
)

+ logm
)

(1 + κ) ln(1 + κ)
≤ O(1)ǫ(n/ǫ)c0n logm

(n/ǫ)c0−4 logm
≤ O(1)n5/ǫ3 ≪ m

2
≤ ℓ

for a suitable fixedpoly(n/ǫ) choice ofm. Since clean points are only removed if they
have(a · x)2 ≥ β2, Lemma 14 gives us that the number of clean points removed is at
most

m(1 + κ) · 1

ǫ
e−β+1 ≤ m

(6/ǫ)(n/ǫ)c0−4

(n/ǫ)c0
≤ 6mǫ3/n4.

⊓⊔
Not surprisingly, the following lemma is an analogue of Lemma 4; it lower bounds

the number of dirty examples that are removed in the outlier removal step.

Lemma 15. W.h.p. over the random draw ofS, any time AlgorithmAmlcw executes the
outlier removal step it removes at leastm

3n noisy examples.

Proof.Since our ultimate goal is only to prove that the algorithm succeeds for someη
which iso(ǫ), we may assume without loss of generality that the original noise rateη is
less thanǫ/4. This means thatη′ < 1/4, and consequently a Chernoff bound gives that
w.h.p. the fraction̂η′ of noisy examples inS at at the beginning of the weak learner’s

training is at most1/2. And Lemma 13 implies that for a sufficiently large polynomial
choice ofm, we have that w.h.p. for alla ∈ S

n−1, the following holds for all the clean
examples in the data before any examples were removed:

∑

(x,y)∈Sclean

(a · x)2 ≤ cm log(1/ǫ) (7)

wherec is an absolute constant. We say that a random sample that meets all these
requirements is “reasonable.” We now set the constantc0 that is used in the specification
of Amlc to be2c+ 2. We will now show that, for any reasonable sampleS, the number
of noisy examples removed during the first execution of the outlier removal step ofAmu

is at leastm3n .
If we remove examples using directionw then it means

∑
x∈S(w·x)2 ≥ c0m log(n/ǫ).

SinceS is reasonable, by (7) the contribution to the sum from the clean examples that
have survived until this point is at mostcm log(1/ǫ) so we must have

∑

(x,y)∈Sdirty

(w · x)2 ≥ (c0 − c)m log(n/ǫ).

Let Sdirty = N ∪ F whereN is the examples(x, y) for which x satisfies(w · x)2 ≤
c0 log(n/ǫ) andF is the other points. We have

∑

(x,y)∈N

(w · x)2 ≤ c0η̂
′m log(n/ǫ).

and so, since||x|| ≤ √
3n logm implies that(w ·x)2 ≤ 3n logm for all unit lengthw,

we have

|F | ≥
∑

(x,y)∈F

(w · x)2

3n logm
=

∑

(x,y)∈Sdirty

(w · x)2

3n logm
−

∑

(x,y)∈N

(w · x)2

3n logm

≥ (c0 − c)m log(n/ǫ) − c0η̂
′m log(n/ǫ)

3n logm

≥ m log(n/ǫ)

3n logm
≥ m

3n
,

where the next-to-last inequality usesη′ ≤ 1/2 andc0 = 2(c + 1), and the final one
usesm ≥ n/ǫ. The points inF are precisely the ones that are removed, and thus the
lemma is proved. ⊓⊔

B.2 Proof of Lemma 8

We first note that w.h.p. the weak learner must terminate after at most3n iterations of
outlier removal.

Let u be the unit length normal vector of the separating halfspacefor the target
functionf . The advantage ofh with respect toD′ can be expressed as

Ex∼D′[h(x)f(x)] =
Ex∼D′ [(v · x)f(x)]

3n logm
(8)

and so we shall work on lower boundingEx∈D′[(v · x)f(x)].
As in the proof of Lemma 6, let

– Sclean be all of the clean examples in the initial sampleS, andS′
clean be those that

are not removed in any stage of outlier removal;
– Sdirty be all of the dirty examples in the initial sampleS, andS′

dirty be those that
are not removed in any stage of outlier removal;

– η′ =
|S′

dirty|
|S′

clean
∪S′

dirty
| , i.e. the noise rate among the examples that survive until the end

of the training of the weak learner, and
– α =

|Sclean−S′

clean|
|S′

clean
∪S′

dirty
| , the ratio of the number of clean points that were erroneously

removed to the size of the final surviving data set.

As before we writeS′ for S′
clean∪S′

dirty. Also as before, letvclean be the average of
all the clean examples,v′

dirty be the average of the dirty (noisy) examples that were not
deleted, andvdel be the average of the clean examples that were deleted. Then arguing
exactly as before, we have

v = (1 − η′ + α)vclean + η′v′
dirty − αvdel. (9)

The expectation ofvclean will play a special role in the analysis:

v
∗
clean

def
= Ex∈D′[f(x)x].

Once again, we will demonstrate the limited effect ofv
′
dirty by bounding its length.

This time, the outlier removal enforces the fact that, for any w ∈ S
n−1, we have

∑

(x,y)∈S

(w · x)2 ≤ c0m log(n/ǫ).

Applying this for the unit vectorw in the direction ofv′
dirty as was done in Lemma 6,

this implies

‖v′
dirty‖ ≤

√
c0m log(n/ǫ)

|S′
dirty|

.

Next, let us apply this to bound an expression that captures the average harm done by
v
′
dirty.

|Ex∈D′ [f(x)(v′
dirty · x)]| = |v′

dirty · v∗
clean|

≤
√
c0m log(n/ǫ)

|S′
dirty|

||v∗
clean||. (10)

To show thatvclean plays a relatively large role, it is helpful to lower bound the
length ofv∗

clean. We do this by lower bounding the length of its projection onto the unit
normal vectoru of the target as follows:

v
∗
clean · u = E[(f(x)x) · u] = E[sgn(u · x)(x · u)] = E[|x · u|] ≥ ǫ/8,

by Lemma 12. Sinceu is unit length, this implies

||v∗
clean|| ≥ ǫ/8. (11)

Armed with this bound, we can now lower bound the benefit imparted byvclean:

Ez∈D′ [f(z)(vclean · z)] =
1

Sclean

∑

(x,y)∈Sclean

Ez∈D′ [yf(z)(x · z)]

=
1

Sclean

∑

(x,y)∈Sclean

(yx) · v∗
clean.

SinceE[(yx) · v
∗
clean] = ||v∗

clean||2, and (yx) · v∗
clean ∈ [−3n logm, 3n logm], a

Hoeffding bound implies that w.h.p.

Ez∈D′ [f(z)(vclean · z)] ≥ ||v∗
clean||2 −O(n log3/2m)/

√
|Sclean|.

Since the noise rateη′ is at mostη/ǫ andη certainly less thanǫ/4 as discussed above,
another Hoeffding bound gives that w.h.p.|Sclean| is at leastm/2; thus for a suitably
large polynomial choice ofm, using (11) we have

Ez∈D′ [f(z)(vclean · z)] ≥ ||v∗
clean||2 −O(n log3/2m)/

√
m/2 ≥ ||v∗

clean||2
2

. (12)

Now we are ready to put our bounds together and lower bound theadvantage ofv.
We have

Ex∈D′[f(x)(v · x)] = (1 − η′ + α)E[f(x)(vclean · x)]

+η′E[f(x)(v′
dirty · x)] − αE[f(x)(vdel · x)].

We bound each of the three contributions in turn. First, using 1 − η′ ≥ 1/2 and (12),

we have(1 − η′ + α)E[f(x)(vclean · x)] ≥ ||v∗

clean||2
4 .

Next, by (10), arguing as we did before equation (5), we have|η′E[f(x)(v′
dirty ·

x)]| ≤
√
c0η′ log(n/ǫ)||v∗

clean||. Since we may assume thatη ≤ c′ǫ3/ log(n/ǫ) for as
small a fixed constantc′ as we like (recall the overall bound of Theorem 2), we get

√
c0η′ log(n/ǫ)||v∗

clean|| ≤ (ǫ/64)||v∗
clean||

(for a suitably small constant choice ofc′), and this is less than||v
∗

clean||2
8 since||v∗

clean|| ≥
ǫ/8.

Finally Corollary 2, together with the fact that there are atmost3n iterations of
outlier removal and the final surviving data set is of size at leastm/4, gives us that

α ≤ (3n)(6mǫ3/n4)
m/4 , which (recalling that bothvdel and allx in the support ofD′ have

norm at most
√

3n logm) means that|αE[f(x)(vdel · x)| = o(ǫ2).
Combining all these bounds, we get

Ex∈D′[f(x)(v · x)] ≥ ||v∗
clean||2
4

− ||v∗
clean||2
8

− o(ǫ2) ≥ ǫ2

1024
by (11). Together with (8), the proof of Lemma 8 is completed.

C Learning under isotropic log-concave distributions with
adversarial label noise

C.1 The Model

We now define the model of learning with adversarial label noise under isotropic log-
concave distributions. In this model the learning algorithm has access to an oracle that
provides independent random examples drawn according to a fixed distributionP on
R

n × {−1, 1}, where

– the marginal distribution overRn is isotropic log-concave, and
– there is a halfspacef such thatPr(x,y)∼P [f(x) 6= y] = η.

The parameterη is thenoise rate. As usual, the goal of the learner is to output a
hypothesish such thatPr(x,y)∼D[h(x) 6= y] ≤ ǫ; if an algorithm achieves this goal, we
say it learns to accuracy1 − ǫ in the presence of adversarial label noise at rateη.

C.2 The Algorithm

Like the algorithmAmlc considered in the last section, the algorithmAalc studied in
this section applies the smooth boosting algorithm of Lemma7 to a weak learner that
performs averaging. The weak learnerAalcw behaves as follows:

1. Draw a setS of m examples according toP ′ (the oracle for a modified distri-
bution provided by the boosting algorithm).

2. Remove all examples(x, y) such that||x|| >
√

3n logm fromS.
3. Let v = 1

|S|
∑

(x,y)∈S yx. Return the confidence-rated classifierh defined by
h(x) = v·x

3n log m , if |v · x| ≤ 3n logm, andh(x) = sgn(v · x) otherwise.

C.3 Claim about the weak learner

As in the previous section, the heart of our analysis will be to analyze the weak learner.
We omit discussing the application of the smooth boosting algorithm here, as it is nearly
identical to Section 3.

Lemma 16. LetP ′ be a distribution that is(1/ǫ)-smooth with respect to a joint distri-
bution onRn × {−1, 1} whose marginal onRn is isotropic and log-concave. Further,
assume there exists a linear threshold functionf such thatPr(x,y)∼P ′ [f(x) 6= y] ≤ η/ǫ

andη ≤ Ω(ǫ3

log(1/ǫ)). Then with high probability,Aalcw outputs a hypothesis with ad-

vantageΩ(ǫ2

n log(n/ǫ)).

C.4 Lemmas in support of Lemma 16

In this section, let us focus our attention on a single call tothe weak learner. LetP ′

be the distribution provided to the weak learner, and letD′ be the marginal onRn.
As in Section 3, we may assume that the support ofD′ lies entirely onx such that
||x|| ≤ √

3n logm (this negligibly affects the final bounds obtained in our analyses).
By Lemma 7 we immediately have

Lemma 17 ([25]).P ′ is (1/ǫ)-smooth with respect toP .

The following technical lemma will be used to limit the ability of an adversary for
choosingP ′ to concentrate a lot of noise in one direction.

Lemma 18. LetE be any event with positive probability underD′, and letκ = D′(E).
For any unit lengtha ∈ R

n, Ex∼D′[|a · x| | E] = O
(
log 1

κǫ

)
.

Proof.Let β be such thatPrx∼D′ [|a ·x| > β] = κ. By Lemmas 9 and 10, together with
the fact thatD′ is (1/ǫ) smooth with respect toD, we have

κ ≤ 1

ǫ
e−β+1

which impliesβ ≤ 1 + log
(

2
ǫκ

)
.

LetF be the event that|a·x| > β. We will show thatEx∼D′ [|a·x| | E] ≤ Ex∼D′[|a·
x| | F], and then boundEx∼D′ [|a · x| | F]. If Pr[(E − F) ∪ (F − E)] = 0, then,
obviously,Ex∼D′ [|a·x| | E] = Ex∼D′[|a·x| | F]. SupposePr[(E−F)∪(F−E)] > 0.
Then

Ex∼D′[|a · x| | E]

= Ex∼D′[|a · x| | E ∩ F] Pr[E ∩ F] + Ex∼D′[|a · x| | E − F] Pr[E − F]

= Ex∼D′[|a · x| | E ∩ F] Pr[E ∩ F] + Ex∼D′[|a · x| | E − F] Pr[F − E]

(becausePr[E] = Pr[F])

< Ex∼D′[|a · x| | E ∩ F] Pr[E ∩ F] + Ex∼D′[|a · x| | F − E] Pr[F − E],

because for everyx ∈ E − F and everyx′ ∈ F − E,

|a · x| ≤ β < |a · x′|.

But

Ex∼D′[|a·x| | E∩F] Pr[E∩F]+Ex∼D′[|a·x| | F−E] Pr[F−E] = Ex∼D′[|a·x| | F],

so
Ex∼D′[|a · x| | E] < Ex∼D′ [|a · x| | F]. (13)

Now, settingb = ⌊β⌋, we have

Ex∼D′[|a · x| | F] ≤ 1

D′(F)

∑

i=b

(i+ 1) Pr
x∼D′

[|a · x| ∈ (i, i+ 1]]

≤ 1

D′(F)

∑

i=b

(i+ 1)e−i+1

=
1

D′(F)

(
O(
e−bb

ǫ
)

)

= O(b),

sinceD′(F) = Θ(e−b/ǫ). Combining with (13) completes the proof. ⊓⊔

C.5 Proof of Lemma 16

Fix some halfspacef such thatPr(x,y)∼P [f(x) 6= y] = η, and letu be the unit normal
vector of its separating hyperplane.

Let P ′ be the joint distribution given toAalcw and letD′ be its marginal onRn.
Lemma 17 implies thatD′ is (1/ǫ)-smooth with respect to the original marginal distri-
butionD.

First, we bound the advantage with respect toP ′ in terms of the tendency ofh to
agree with the best linear functionf :

E(x,y)∼P ′[h(x)y] ≥ E(x,y)∼P ′ [h(x)f(x)] − η = Ex∼D′[h(x)f(x)] − η. (14)

Furthermore, we have

Ex∼D′ [h(x)f(x)] = Ex∼D′

[
f(x)(x · v)

3n logm

]
(15)

so we will work on boundingEx∼D′[f(x)(x · v)].

Let P ′
clean be obtained by conditioning a random draw(x, y) from P ′ on the event

thatf(x) = y. DefineP ′
dirty analogously, and letD′

clean andD′
dirty be the correspond-

ing marginals onRn. Let

v
∗
clean = E(x,y)∼P ′

clean
[yx]

v
∗
dirty = E(x,y)∼P ′

dirty
[yx]

v
∗
correct = Ex∈D′[f(x)x].

Note that

Ex∼D′[f(x)(x · v)] = v
∗
correct · v =

1

m

∑

(x,y)∈S

v
∗
correct · (yx). (16)

Equation (16) expressesEx∼D′ [f(x)(x · v)], which is closely related to the advantage
of h through (15) and (14), as a sum of independent random variables, one for each
example. We will boundEx∼D′[f(x)(x · v)] by bounding the expected effect of a
random example on its value, and applying a Hoeffding bound.

Let η′ = Pr(x,y)∼P ′ [f(x) 6= y]. SinceP ′ is 1/ǫ-smooth with respect toP , we have
η′ ≤ η/ǫ. We can rearrange the effect of a random example as follows

E(x,y)∼P ′ [v∗
correct · (yx)] = (1 − η′)E(x,y)∼P ′ [v∗

correct · (f(x)x)|y = f(x)]

+η′E(x,y)∼P ′ [v∗
correct · (−f(x)x)|y 6= f(x)]

= (1 − η′)E(x,y)∼P ′ [v∗
correct · (f(x)x)|y = f(x)]

+η′E(x,y)∼P ′ [v∗
correct · (f(x)x)|y 6= f(x)]

−η′E(x,y)∼P ′ [v∗
correct · (f(x)x)|y 6= f(x)]

+η′E(x,y)∼P ′ [v∗
correct · (−f(x)x)|y 6= f(x)]

= E(x,y)∼P ′ [v∗
correct · (f(x)x)]

−2η′E(x,y)∼P ′[v∗
correct · (f(x)x)|y 6= f(x)]

= ||v∗
correct||2 − 2η′E(x,y)∼P ′ [v∗

correct · (f(x)x)|y 6= f(x)]

= ||v∗
correct||2 − 2η′vcorrect · vdirty

≥ ||v∗
correct||2 − 2η′||v∗

correct|| · ||v∗
dirty||

≥ 1

2
||v∗

correct||2 − 4(η′)2||v∗
dirty||2, (17)

The last line follows from the fact thatq2 − qr ≥ (q2 − r2)/2 for all realq, r.
So now our goals are a lower bound on||v∗

correct|| and an upper bound on||v∗
dirty||.

We can lower bound||v∗
correct|| essentially the same way we did before, by lower

bounding its projection onto the “target” normal vectoru:

v
∗
correct · u = E[(f(x)x) · u] = E[sgn(u · x)(x · u)] = E[|x · u|] ≥ ǫ/16, (18)

by Lemma 12.
We upper bound||v∗

dirty|| as follows:

||v∗
dirty||2 = v

∗
dirty · E

x∈D′

dirty
[(1 − f(x))x]

= ||v∗
dirty|| ·Ex∈D′

dirty

[(
v
∗
dirty

||v∗
dirty||

)
· (1 − f(x))x

]

≤ ||v∗
dirty|| ·Ex∈D′

dirty

[∣∣∣∣∣

(
v
∗
dirty

||v∗
dirty||

)
· x
∣∣∣∣∣

]

≤ ||v∗
dirty||O(log(1/(η′ǫ)))

by Lemma 18. Thus||v∗
dirty|| ≤ O(log(1/(η′ǫ))).

Combining this with (18), we have that if

(η′)2 · (log(1/(η′ǫ))2 ≤ cǫ2 (19)

for a suitably small constantc, then (17) is at leastΩ(ǫ2). Thus, for suchη′, by (16)
we have thatEx∼D′[f(x)(x · v)] is a sum ofm i.i.d. random variables, each with
mean at leastΩ(ǫ2), and coming from an interval of lengthO(n logm). Applying the

standard Hoeffding bound, polynomially many examples suffice forEx∼D′[f(x)(x ·
v)] ≥ Ω(ǫ2). Combining with (15) and (14), we are almost done: it remainsonly to
observe that (19) holds as long asη is at most a small constant multiple ofǫ2/ log(1/ǫ)
(recalling thatη′ ≤ η/ǫ).

D Proof of Lemma 2

Let us start with a couple of definitions and a bound from the literature.

Definition 1 (VC-dimension).A setF of {−1, 1}-valued functions defined on a com-
mon domainX shattersx1, ..., xd if every sequencey1, ..., yd ∈ {−1, 1} of function
values has a functionf such thatf(x1) = y1, ..., f(xd) = yd. The VC-dimension ofF
is the size of the largest set shattered byF .

Definition 2 (pseudo-dimension).For a setF of real-valued functions defined on a
common domainX , thepseudo-dimensionofF is the VC-dimension of{sign(f(·)−θ) :
f ∈ F, θ ∈ R}.

Lemma 19 ([20]).LetF be a set of real-valued functions defined on a common domain
X taking values in[0, 1], and letd be the pseudo-dimension ofF . LetD be a probability
distribution overX . Then ifx1, ..., xm are obtained by drawingm times independently
according toD, for anyδ > 0,

Pr

[
∃f ∈ F,

1

m

m∑

s=1

f(xs) > ED[f] +

√
cd log(1/δ)

m

]
≤ δ,

wherec > 0 is an absolute constant.

Now, let us bound the pseudo-dimension of the class of functions that we need.

Lemma 20. LetFn consist of the functionsf from R
n to R which can be defined by

f(x) = (a · x)2 for somea ∈ R
n. The pseudo-dimension ofFn is at mostO(n).

Proof.According to the definition, the pseudo dimension ofFn is the VC-dimension of
the setGn of {−1, 1}-valued functionsga,θ defined byga,θ(x) = sign((a · x)2 − θ).
Eachga,θ is equivalent to an OR of two halfspaces:

a · x ≥
√
θ OR (−a) · x ≥

√
θ

Thus the VC-dimension ofGn is at most the VC-dimension of the class of all ORs of
two halfspaces, which is known to beO(n) (see [2]). ⊓⊔

Applying Lemmas 19 and 20, we obtain Lemma 2.

E Proof of Lemma 3

We will use the following, which strengthens bounds like Lemma 19 when the expec-
tations being estimated are small. It differs from most bounds of this type by providing
an especially strong bound on the probability that the estimates aremuchlarger than the
true expectations.

Lemma 21 ([3]).SupposeF is a set of{0, 1}-valued functions with a common domain
X . Letd be the VC-dimension ofF . LetD be a probability distribution overX . Choose
α > 0 andK ≥ 4. Then if

m ≥ c
(
d log 1

α + log 1
δ

)

αK logK
,

wherec is an absolute constant, then

Pr
u∼Dm

[∃f ∈ F, ED(f) ≤ α but Êu(f) > Kα] ≤ δ,

whereÊu(f) = 1
m

∑m
i=1 f(ui).

To prove Lemma 3, we first use the fact that, for any fixeda ∈ S
n−1 andβ > 0, it

is known (see [11]) that

Pr
x∈Sn−1

[|a · x| > β] ≤ e−β2n/2.

Further, as in the proof of Lemma 2, we have that

|a · x| > β if and only if a · x > β OR (−a) · x > β,

so that the set of events whose probabilities we need to estimate is contained in the set
of unions of pairs of halfspaces. The VC-dimension of the latter is known to beO(n),
so applying Lemma 21 completes the proof.

