CS 395T Computational Complexity of Machine Learning

Lecture 11: February 24, 2005 Lecturer: Adam Klivans
Scribe: Justin Brickell

11.1 Hardness Results for Learning Intersection of Halfs-
paces

Recall from the previous lecture the basic form of proving that a problem P is NP-hard by reduction.
We take a problem @ that is known to be NP-hard, and reduce @ to P, i.e., we show that given a
solution to P, in polynomial time we can derive a solution to Q.

Given a hypergraph H = (V, E) with |V| = n we will provide a set of labelled examples F' that is
consistent with an intersection of [ halfspaces, provided that H is [-colorable. First, some notation:

For v; € V, a(v;) =(0,...,,0,1,0,...,0), where the 1 occurs at position i.
For e = (vj,vg,v;) € E, ale) = a(v;) + a(vg) + a(vy).

Now we provide the following set of labelled examples:

(O™, +)
(a(v;), —) for all v; € V
(a(e),+) for alle € E

Assume that H is l-colorable (i.e. V is colorable by [ colors such that no edge is monochromatic).
Then there is a function y mapping vertices to the integers 1...[. Consider the following halfspaces

for j € 1...1:
" 1

i=1

where wj; is equal to —1 if x(v;) = j and is equal to n otherwise. For convenience, denote

n

1

gj(x) = lejixi + 5
1=

The intersection of these halfspaces is given by

Claim 1 The intersection of halfspaces h is consistent with the examples.

Proof: We will consider all three classes of examples in turn.
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1 (0" +)
In this case, g;(z) = 1 for all j, so hj(z) is positive (true) for all j.

2. (a(v;),—) for all v; € V
Note that v; must have some color b. Then by definition, wy,, = —1, so hy(a(v;)) is negative
(false).

3. (a(e),+) foralleec E
For all colors ¢, h, is positive (true) because at least one of the w.; must be equal to n (and
not -1) due to the proper coloring.

We conclude that h is consistent with the examples. H

Given an intersection of [ halfspaces consistent with the examples, we can [-color H as follows:

For vertex v, consider a(v), and color v equal to the index of the first halfspace that makes a(v)
false.

Claim 2 This is a valid l-coloring of H.

Proof: First, note that every halfspace has a positive threshold because of the (O™, +) example.
Now, assume for the sake of a contradiction that some edge e = (vj, vg, v;) is not properly colored.
Then x(v;) = x(vg) = x(v;) = c. But then h.(a(e)) must be negative, which is a contradiction. l

11.2 Hardness results for learning 2-term DNF's

In this section, we will show that it is NP-hard to learn a 2-term DNF by an [-term DNF for any
constant [ > 0. There are two related problems that are currently open:

e Is it NP-hard to learn a 2-term DNF by an n-term DNE?

e Is it NP-hard to learn an intersection of 2 halfspaces by an intersection of n halfspaces?

Given a hypergraph H = (V, E) with |V| = n we will provide a set of labelled examples F' that is
consistent with an [-term DNF, provided that H is [-colorable. First, some notation:

For v; € V, b(v;) = (1,...,1,0,1,...,1), where the 0 occurs at position .
For e = (vj,vg,v;) € E, b(e) = b(v;) A b(vg) A b(uy).

Next we provide the following set of labelled examples:

(Onv *)
(b(vi), +) for allv; € V
(b(e),—) foralle e E
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Now we are ready to construct ¢, an [-term DNF that is consistent with the examples. For each

color ¢, let
tc = /\ Z;.
x; not colored ¢

t:\/tc.
c

Now define ¢ as

Claim 3 The I-term DNF't is consistent with the examples.
Proof: We will consider all three classes of examples in turn.

1. (O™, —)

t clearly evaluates to false.

2. (b(vi),+) for allv; € V
Assume v; is colored a.. Then t, will be true on b(v;).

3. (b(e),—) foralleec E
For every color «, e must have at least one vertex that is not colored a. Therefore ¢, is false
on b(e). Since this is true for all o, we conclude that ¢ is false on b(e).

We conclude that ¢ is consistent with the examples. ll
Given an intersection of [-term DNF consistent with the examples, we can [-color H as follows:
For vertex v, consider b(v), and color v equal to the index of the first term that satisfied by b(v).

This is a valid coloring because if some edge e consisted of vertices i, j, k all colored «, then b(e)
would satisfy ¢, which is a contradiction.

11.3 Miscellaneous Hardness Results

Is it NP-hard to learn the intersection of 2 halfspaces by the intersection of n halfspaces?
This is an open problem, but the answer is probably “yes.”
Here are some other hardness results whose proofs are not given in this course:
e For all € > 0, for all ¢ > 0, it is NP-hard to learn an intersection of n¢ halfspaces by an
intersection of n° halfspaces.

e It is NP-hard to estimate x(G) [The chromatic number of G| to within a 1 — e factor for all
€ > 0 i.e., it is NP-hard to N'~¢ color an N¢ colorable graph.

e It is NP-hard to learn an n®-term DNF by an intersection of n¢ halfspaces.

However, it is possible to learn an n-term DNF by an nV™-term DNF.
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11.4 Uniform Distribution Learning

This is a learning model equivalent to PAC learning with regard to the uniform distribution. As-
sume the learner receives labelled examples chosen uniformly at random over {0,1}". With high
probability (over the randomness of the learner and the received examples) the learner outputs h
such that
Pr |h(z) = f(x
Pr h@) = @)

is large.

11.5 Basis for functions

In this section we will describe two different basis for all functions f: {0,1}" — R.

1. The “term” basis.
Has 2™ basis vectors. For a string S € {0,1}", ts(x) =1 if 2 = s and 0 otherwise.

2. The “parity” basis.
For each s € [n],
_ 1 if )y, gz mod 2 =0
Xo(@) = { ~1 if Y ,cgzimod 2 =1

For f,g define .
(f.9) =5 Y. f@)-g) =E[f(x)-g()),

z€{0,1}n
11l =S )
Then any f can be uniquely expressed as
S Fs)xs (@),
sC[n]

where f(s) = (f, xs) = E[f - xs].



