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The Harmonic Sieve

This lecture presents a polynomial-time algorithm based on boosting for learning DNF formulas to
arbitrary precision. The algorithm is due to Jackson [1].

14.1 Preliminaries

Let f = T1 ∨ T2 ∨ · · · ∨ Ts be a Boolean function in DNF on n variables. One of T1, T2, . . . , Ts must
be true on at least 1/s of the satisfying assignments to f ; denote some such term by T . The analysis
below treats f and T as Boolean functions from {−1, 1}n to {−1, 1}; we denote by f{0,1} and T {0,1}

their counterparts from {−1, 1}n to {0, 1}.

Let D be an arbitrary distribution over {−1, 1}n. We start by relating E
D

[f ] and E
D

[
f{0,1}]:

E
D

[f ] = −1 · Pr
D

[f = −1] + 1 · Pr
D

[f = 1]

= −1 ·
(
1− E

D

[
f{0,1}

])
+ 1 · E

D

[
f{0,1}

]
= 2E

D

[
f{0,1}

]
− 1.

Thus,

E
D

[
f{0,1}

]
=

E
D

[f ] + 1

2
. (14.1)

Second, we represent T {0,1} as its Fourier expansion. Let V ⊆ {x1, x2, . . . , xn} be the subset of
variables featured in T {0,1}. Without loss of generality, assume T does not feature negations of
variables.

T {0,1} =
∏
x∈V

1− χ{x}

2
=

∑
A⊆V

(−1)|A|χA

2|V |

= E
A

[
(−1)|A|χA

]
. (14.2)

The presence of any negated variables in T will affect only the signs of the terms in the above
summation. Since the analysis below does not depend on these signs, no loss of generality is incurred.
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14.2 Weakly Learning DNF’s

This section will show that any DNF f with s terms has an Ω(1/s) correlation with some parity
function χ. Combined with the KM algorithm for identifying large Fourier coefficients with queries,
this result will yield a weak learner for polynomial-size DNF’s.

Using (14.1), we obtain:
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[
f · T {0,1}

]
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]
≥
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f{0,1}]
s

=
E
D

[f ] + 1

2s
. (14.3)

On the other hand, (14.2) yields:
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Combing (14.3) and (14.4) yields the following inequality:
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D
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2s
≤ E

D
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]
≤ E

A

[∣∣∣E
D
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and
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D

[f ] + 1

2s
≤ E

A

[∣∣∣E
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Therefore, for some parity function χA,∣∣∣E
D

[f · χA]
∣∣∣ ≥ E

D
[f ] + 1

2s
.

Consider two cases:

• Case 1: ED[f ] ≥ −1/(2s + 1). The parity function χA above has a large correlation with f :

∣∣∣E
D

[f · χA]
∣∣∣ ≥ E

D
[f ] + 1

2s
≥ 2s + 1− 1

2s · (2s + 1)
=

1
2s + 1

.

• Case 2: ED[f ] < −1/(2s + 1). The parity function χ∅ = 1 has a large correlation with f :∣∣∣E
D

[χ∅ · f ]
∣∣∣ =

∣∣∣E
D

[f ]
∣∣∣ ≥ 1

2s + 1
.

In either case above, there exists some parity function χA with correlation at least 1/(2s + 1) with
f over distribution D. In other words, PrD[f = χA] ≥ 1/2+1/(2s+1). Thus, identifying the parity
function χA amounts to learning f over distribution D with advantage 1/(2s + 1) = Ω(1/s).
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14.3 Boosting

Boosting is a technique for learning a concept class to arbitrary precision given only a weak learner.
More specifically, a boosting algorithm receives:

1. a weak learner with advantage γ over an arbitrary distribution,

2. an accuracy requirement ε,

3. a success probability parameter δ,

4. access to the target function f ;

and with probability 1− δ produces a hypothesis h with Prx[h(x) = f(x)] ≥ 1− ε.

Boosting works in stages. At stage 1, the algorithm uses the weak learner to produce hypothesis h1

with accuracy Prx∼U [h1(x) = f(x)] ≥ 1/2+γ. At stage i, the algorithm constructs a distribution Di

that puts more weight on examples labeled incorrectly by h1, h2, . . . , hi−1, and uses the weak learner
to obtain a hypothesis hi with accuracy Prx∼Di

[hi(x) = f(x)] ≥ 1/2 + γ. At the end, the algorithm
outputs some combining function of the hypotheses h1, h2, . . . , hl (e.g., a majority classifier). There
are boosting algorithms that terminate within l = O( 1

γ2 log 1
ε ) stages and weight no example more

than 1
2nε .

14.4 Putting It All Together

A complication in using boosting to learn DNF formulas to arbitrary precision is the requirement
that the weak learner operate over an arbitrary distribution D. In particular, the KM algorithm
identifies large Fourier coefficients with respect to the uniform distribution, i.e., |Ex∼U [f · χA]| ≥ θ.

Observe that

Ex∼D[f(x)χA(x)] =
∑

x

D(x)f(x)χA(x) =
1
2n

∑
x

2nD(x)f(x)χA(x) = Ex∼U [2nD(x)f(x)χA(x)].

Thus, identifying χA with ED[f · χA] ≥ θ is tantamount to identifying a Fourier coefficient of
g(x) = 2nD(x)f(x) with absolute value θ or more. The distributions Di constructed in a boosting
algorithm are known, so any query to g can be answered via a query to f .

An analysis of KM for non-Boolean functions, such as g, yields a running time polynomial in 1/ε,
1/δ, 1/θ, and L∞(g). In our case, 1/θ = 2s + 1 and L∞(g) ≤ 2n · 1/(2nε) · 1 = 1/ε; the latter bound
follows because there are boosting algorithms that enforce |Di| ≤ 1/(2nε) for all i. As a result, DNF
formulas can be learned to arbitrary precision via a boosting algorithm that uses KM as a weak
learner. The time requirement of this implementation is polynomial in the DNF size s as well as the
usual parameters 1/ε and 1/δ.
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