
CS 395T Computational Complexity of Machine Learning

Lecture 3: January 27, 2005 Lecturer: Adam Klivans
Scribe: Kevin Liu

3.1 Decision Trees Are Less Expressive Than DNFs

3.1.1 Recap

Recall the discussion in the last lecture that formally introduced DNFs and a solution due to Bshouty
1995 that gave an algorithm that learned DNFs in n variables with size polynomial in n. The
algorithm had running time nÕ(

√
n) and mistake bound nÕ(

√
n). (Recall that the notation Õ(f(n))

is equivalent to the traditional asymptotic notation of O(f(n)) while hiding log factors.)

We would like to find an algorithm for learning DNFs with an improved running time nÕ(n
1
3) and

running time nÕ(n
1
3). It remains an open research question whether or not there exists a polynomial

time algorithm for learning DNFs.

3.1.2 Decision Trees Can Be Expressed As DNFs

A polynomial size decision tree can be computed by a polynomial size DNF as folllows. Take each
satisfying path (path with leaf value 1) from root to leaf in the decision tree and form a term in the
DNF with the conjunction of all variables on that path. Finally taking the disjunction of all such
terms gives an equivalent DNF.

Consider the example in Figure ??.

Figure 3.1: Example decision tree.

3-1

Lecture 3: January 27, 2005 3-2

There exists an equivalent DNF of 3 variables, 3 terms, and a term length of 2, which is x2x1 +
x2x1 + x2x5.

3.2 Learning Halfspaces

3.2.1 Halfspaces Defined

Halfspaces will be used in our task to create a DNF learning algorithm with time and mistake bound
nÕ(n

1
3). They are useful since almost all learning algorithms can be reduced to learning halfspaces,

including those for learning decision trees, DNFs, and decision lists.

Definition 1 A halfspace is the function f(x̄) = SIGN(
∑n

i=1 aixi − Θ) for a1, a2, . . . , an ∈ Z,
Θ ∈ Z, and x̄ ∈ {0, 1}n.

f(x̄) evaluates to either + or −.

Definition 2 A linear threshhold function, or LTF, is a halfspace f .

3.2.2 A Halfspace Learning Scenario

We see examples of the form 〈0110001, +〉, . . . , 〈000111011,−〉
We wish to specify a halfspace that classifies these examples accordingly, producing the sketch in
Figure ??.

Figure 3.2: Halfspace sketch.

Lecture 3: January 27, 2005 3-3

3.2.3 An Algorithm For Learning Halfspaces

Maass and Turan 1990 give a polynomial time algorithm with a polynomial mistake bound for
learning halfspaces. Their result is not discussed here; the algorithm would make a good paper
presentation.

3.2.4 Another Algorithm For Learning Halfspaces

Instead we give a PAC learning model algorithm for learning halfspaces, due to Blumer, Ehrenfeucht,
Haussler, and Warmuth 1989.

1. Encode each example as a halfspace inequality. To do this, for all i substitute the value for
xi into the expression

∑n
i=1 aixi. Then set this expression as greater than or equal to Θ for

positive examples, and less than Θ otherwise.

2. Take O(n
ε) examples.

3. Feed the encoded inequalities to an linear programming solver.

4. Get a solution for the ai terms.

3.2.5 The Halfspace Scenario Revisited

The two specified examples in the previous scenario are encoded into inequalities as follows:

〈0110001,+〉 becomes a1 · 0 + a2 · 1 + a3 · 1 + a4 · 0 + a5 · 0 + a6 · 0 + a7 · 1 ≥ Θ.

Similarly, 〈000111011,−〉 becomes a4 + a5 + a6 + a8 + a9 < Θ.

3.2.6 Remarks On Another Algorithm For Learning Halfspaces

What if the unknown halfspace has enormous coefficients ai, e.g. something like 222. . .
2n

? (If
ai = 22n

, just outputting ai would require 2n bits and the algorithm would not be polynomial time.)

Actually, we can assume for all ai that ai ≤ 2n log n. The theorem is not proven here, but would
make a good paper presentation.

3.2.7 Decision Lists Can Be Expressed As Halfspaces

Consider a decision list with n variables that outputs either −1 or +1. A linear threshhold function
can be specified that is equivalent to the decision list as follows.

Lecture 3: January 27, 2005 3-4

1. Construct a term for the head of the list by multiplying together the output value by the
variable at the head by 2n+1.

2. Construct a similar term for the child of the head of the list, except that final factor is 2n.

3. Construct a similar term for the child of the child of the head of the list, except that final
factor is 2n−1. Continue in this fashion until a term is created for all nodes in the decision list.

4. Then add these terms together and add the final output value of the decision list.

5. The linear threshhold function is the sign function of the resulting expression.

As an example, take the decision list as shown in Figure ??.

Figure 3.3: Decision tree expressed as LTF example.

The equivalent LTF is f(x̄) = SIGN(25+1 · x1 − 25 · x2 + 25−1 · x3 − 25−2 · x4 + 25−3 · x5 + 1).

Note how the factors allow individual variables to dominate in decision list order.

The Maass and Turan mistake bounded model algorithm for learning LTFs can then be applied to
learn the original decision lists. Such an application has identical running time and mistake bound
to the decision list learning algorithm given two lectures ago, since poly(n) examples are needed.

3.3 Learning Polynomial Threshhold Functions

3.3.1 Polynomial Threshhold Functions Defined

Definition 3 A function f : {0, 1}n → {+,−} is computed by a polynomial threshhold func-
tion, or PTF, of degree d if there exists a real, multivariate polynomial p of total degree at most d
such that ∀x ∈ {0, 1}n f(x) = SIGN(p(x)−Θ) for some Θ.

(Aside: recall that the total degree of a multivariate polynomial is the maximum degree of any
monomial term, where the degree of a monomial term is the sum of the exponents of the variables
in that term.)

Lecture 3: January 27, 2005 3-5

3.3.2 An Algorithm For Learning Polynomial Threshhold Func-
tions/PTFs can Be Expressed As LTFs

We wish to learn polynomial threshhold functions of degree d. This is done in much the same way
as the method for learning LTFs above, except that we need to convert the PTF to an equivalent,
but larger, LTF.

Consider a PTF f = SIGN(p(x)).

Notice that we can express f as a sum over its monomials and their coefficients:

f = SIGN(
nO(d)∑

i=1

αiMi(x̄))

αi is the coefficient of a monomial and Mi(x̄) is a single monomial in f .

There are nO(d) such distinct monomials Mi(x̄) in f . (All these monomials are multilinear, i.e. all
variables have at most an exponent of 1. Then the count of such monomials is

∑d
i=0

(
n
i

)
. It is easy

to verify by induction on d that
∑d

i=0

(
n
i

) ≤ cnd for some constant c, giving the stated bound.)

The following algorithm learns PTF f :

1. For each monomial, introduce a new variable yi = Mi(x̄). This gives the following equivalent
expression:

f = SIGN(
nO(d)∑

i=1

αiyi)

2. Similarly expand each example into a linear inequality over nO(d) variables.

3. We now have an equivalent LTF learning problem. Apply Maass and Turan’s LTF learning
algorithm to this problem.

This algorithm has running time nO(d) and mistake bound nO(d).

3.3.3 PTF to LTF Conversion: An Example

Consider the PTF x0 + x1 + x2 + x1x2 + x0x1x2. A possible LTF that is equivalent would be
y0 + y1 + y2 + y5 + y6, where we have taken x0 = y0, x1 = y1, x2 = y2, x0x1 = y3, x0x2 = y4, x1x2 =
y5, x0x1x2 = y6.

Similarly, an example 〈110, +〉 might become 〈1101000, +〉, using the new variables above.

(Aside: it’s useful to think this one through - it’s not always possible to turn to the trick of intro-
ducing a new set of variables to reduce one learning problem into another.)

Lecture 3: January 27, 2005 3-6

3.3.4 PTFs For Different Learning Problems

Question: For a boolean function f , what is the lowest degree PTF computing f?

1. Decision lists ⇐⇒ PTFs of degree 1. (Recall the decision list to LTF argument.)

2. Decision trees ⇐⇒ PTFs of degree lg n. (Recall the argument in last lecture on the maximum
rank of any decision tree, and its use in converting decision trees into equivalent decision lists.)

3. DNFs ⇐⇒ PTFs of degree n
1
3 log n. This is optimal (modulo the log n factor).

3.3.5 Chebyshev Polynomials

Certain properties of Chebyshev polynomials will be used in the following lemma. For more details
on Chebyshev polynomials, please see the appendix.

A Chebyshev polynomial Pd(x) of order d is a univariate polynomial of degree d with the following
properties:

Pd(1) = 1

∀x ∈ [−1, 1], |Pd(x)| ≤ 1

∀x ≥ 1, P ′d(x) ≥ d2

Pd(1 +
1
d
) ≥ 2

The first and second property indicates that the Chebyshev polynomial may oscillate or have some
generally unspecified behavior for domain values in [−1, 1], but the function range is always contained
in [−1, 1].

However, outside of domain [−1, 1] the function explodes: the third property above concerning the
derivative of Pd(x) suggests this explosive growth.

The fourth property suggests that moving a little bit (1
d distance past 1) along the domain of the

Chebyshev polynomial will yield a value of 2.

Consider the plot of five example Chebyshev polynomials in Figure ??.

In the plot, P1 is plotted in red, P2 is plotted in yellow, P3 is plotted in green, P4 is plotted in blue,
and P5 is plotted in violet. Notice how all example ploynomials are within [−1, 1] for domain values
in [−1, 1], and they all have value 1 at domain value 1. Also notice how all polynomials have value 2
at domain value 1+ 1

d . It can also be seen that the polynomials grow quickly with increasing domain
values past 1.

Lecture 3: January 27, 2005 3-7

Figure 3.4: Plot of five example Chebyshev polynomials.

3.3.6 DNFs Can Be Expressed as PTFs

Lemma 1 Any DNF with s terms each of length at most t has a PTF of degree
√

t log s computing
that DNF.

Proof: We are given a DNF D = T1 ∨ . . . ∨ Ts. For 1 ≤ i ≤ s, term Ti = x1 ∧ . . . ∧ xt.

Consider the function si = x1+...+xt

t .

(Aside: notice that si 6∈ Z. To deal with this we can proceed until the end where we will have a
complicated rational polynomial and we can clear out denominators as desired.)

Now take the Chebyshev polynomial Qi = P√t

(
(1 + 1

t)(si(x̄))
)
.

Notice that the degree of Qi is
√

t. (The degrees multiply in the degree 1 argument to the function.)

For all x satisfying Ti, it must be that Qi ≥ 2. (Ti = 1, implying Si = 1, and so Qi = P√t(1+ 1
t)(1) ≥

2 by the fourth property above.)

For all x not satisfying Ti, it must be that Qi ≤ 1. This is since si ≤ t−1
t , implying:

Lecture 3: January 27, 2005 3-8

Qi ≤ P√t(1−
1
t
)(1 +

1
t
)

= P√t(1−
1
t2

)

< P√t(1) = 1

Now we apply a similar dominating powers trick as in the LTF to PTF conversion method, using
construction Qi.

Using the above strategy to obtain a Qi for each term in the DNF, we then consider the following
inequality (noting that it can be put into PTF form):

Qlog 2s
1 + Qlog 2s

2 + . . . + Qlog 2s
s > s

Consider x:

For all x satisfying the DNF, there exists a term Ti that is set to 1. WLOG say that second
term T2 is set to 1. Then Qlog 2s

2 contributes +2s to the inequality above. (Q2 ≥ 2, and so
Qlog 2s

2 ≥ 2log 2s = 2s.) At worst all other terms in the DNF are not satisfied, and for them at worst
Qi = −1 since −1 ≤ Qi(x) ≤ 1 for x ∈ [−1, 1] , and so for this case:

Qlog 2s
1 + Qlog 2s

2 + . . . + Qlog 2s
s ≥ −1 + 2s . . .− 1

=
s−1∑

j=1

(−1) + 2s

= 2s− s + 1 > s

Thus the inequality is satisfied.

For all x not satisfying the DNF, by similar reasoning the total sum is at most s. (For any x ∈ [−1, 1],
|xlog 2s| ≤ 1. Then

∑s
j=1 Qlog 2s

i (x) ≤ ∑s
j=1 1 ≤ s.)

Finally, the degree of the polynomial is
√

t log(2s). (Recall the comment above about the degree of
Qi.)

Lecture 3: January 27, 2005 3-9

3.3.7 Another Algorithm For Learning DNFs

The above Lemma immediately gives a
√

n lg n degree PTF. Following the reasoning throughout
the lecture immediately gives a nO(

√
n lg n) algorithm for learning DNFs. (Recall the PTF to LTF

conversion, and then apply Maass and Turan’s result for learning LTFs with their specified time and
mistake bounds.)

3.4 Remarks For Next Lecture

Notice that
√

t log s ∈ O(
√

n log n) if s is polynomial in n. This matches Bshouty’s algorithm for
learning DNFs w.r.t running time and mistake bounds, as discussed in last lecture.

Contrast today’s DNF learning algorithm and constructive proof with that lecture’s discussion. They
are completely different! No n appears anywhere in today’s lecture.

“With two completely different algorithms (for the same problem), it is usually useful to combine
them.”

There will also be a problem set next time.

3.5 Appendix A - More About Chebyshev Polynomials

As taken from http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html:

“The Chebyshev polynomials of the first kind are a set of orthogonal polynomials defined as the
solutions to the Chebyshev differential equation and denoted Tn(x). They are used as an approx-
imation to a least squares fit, and are a special case of the ultraspherical polynomial with α = 0.
They are also intimately connected with trigonometric multiple-angle formulas.”

The following definitions are paraphrased from the same Mathworld source.

Tn(z) =
1

4Πi

∮
(1− t2)t−n−1

1− 2tz + t2
dt

where the contour encloses the origin and is traversed in a counterclockwise direction (Arfken 1985,
p. 416).

Tn(cos θ) = cos(nθ)

Tn(x) =
n

2

bn/2c∑
r=0

(−1)r

n− r

(
n− r

r

)
(2x)n−2r

Lecture 3: January 27, 2005 3-10

Tn(x) = cos(n cos−1 x) =
bn/2c∑
m=0

(
n

2m

)
xn−2m(x2 − 1)m

Tn(x) = 2n−1Πn
k=1

{
x− cos

[
(2k − 1)Π

2n

]}

(Zwillinger 1995, p. 696).

The Chebyshev polynomial can also be obtained from the following generating functions:

g1(t, x) ≡ 1− t2

1− 2xt + t2
= T0(x) + 2

∞∑
n=1

Tn(x)tn

and

g2(t, x) ≡ 1− xt

1− 2xt + t2
=

∞∑
n=1

Tn(x)tn

for |x| ≤ 1 and |t| < 1 (Beeler et al. 1972, Item 15).

3.6 Appendix B - References

Eric W. Weisstein. ”Chebyshev Polynomial of the First Kind.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html.

Arfken, G. ”Chebyshev (Tschebyscheff) Polynomials” and ”Chebyshev Polynomials–Numerical Ap-
plications.” 13.3 and 13.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic
Press, pp. 731-748, 1985.

Beeler et al. . Item 15 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM.
Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 9, Feb. 1972.
http://www.inwap.com/pdp10/hbaker/hakmem/recurrence.html#item15.

Zwillinger, D. (Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC
Press, 1995.

W. Maass, Gy. Turin (1990): On the complexity of learning from counterexaanples and membership
queries, 31. FOCS (1990), 203-210.

N. H. Bshouty. Exact Learning Boolean Functions via the Monotone Theory. Information and
Computation, 123:146–153, 1995.

Lecture 3: January 27, 2005 3-11

Rosenblatt F 1958 The Perceptron: A probabilistic model for information storage and organization
in the brain. Psychological Review 65: 386-408.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2:285–318, 1988.

Anselm Blumer , A. Ehrenfeucht , David Haussler , Manfred K. Warmuth, Learnability and the
Vapnik-Chervonenkis dimension, Journal of the ACM (JACM), v.36 n.4, p.929-965, Oct. 1989

Nimrod Megiddo. Linear Programming. The Encyclopedia of Microcomputers. June 1991.

Steven Rudich. Great Theoretical Ideas in Computer Science. http://www-2.cs.cmu.edu/ 15251/.

