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Learning Intersections of Halfspaces

6.1 Approximate Representations of Functions

In a previous lecture, we introduced the notion of a weak representation of a function. An alter-
native formalism for approximate representation is based on the real-valued difference between the
function’s true value and the output of the approximating polynomial. For example, we may be
interested in finding a polynomial p satisfying |p(x)− or(x)| ≤ ε for all x.

For the simpler functions (such as and,or), a degree-Θ(
√

n) polynomial suffices. For more compli-
cated functions (such as majority), a degree-n polynomial is necessary. Note that in this formalism,
any function can be approximated to arbitrary accuracy with a degree-n polynomial. It suffices (i)
to form the sum of the 2n polynomials each of which evaluates to 1 on a distinct assignment to the
variables and to 0 on all others; and (ii) to weigh these polynomials by the output of the actual
function.

6.2 Intersections of Halfspaces

Previous lectures looked at the problem of learning a halfspace. In this lecture, we turn our attention
to learning intersections of two or more halfspaces. We would like to generalize our results to
arbitrary functions on multiple halfspaces.

Consider two halfspaces given by the PTF’s f(x) = sign(f̂(x)) and g(x) = sign(ĝ(x)), where f̂(x) =∑n
i=1 αixi− θ1 and ĝ(x) =

∑n
i=1 βixi− θ2 are degree-1 polynomials in n variables. We would like to

learn the function f(x) ∧ g(x). As any other function on Booleans, f(x) ∧ g(x) can be represented
by a degree-n PTF. On the other hand, a lower bound on the degree of such a PTF is log n

log log n . Our
goal is to discover a low-degree PTF representation. This problem remains unsolved for the general
case. Our solution will assume that the weights in f̂ and ĝ are bounded by W :

n∑
i=1

|αi|+ |θ1| ≤ W and
n∑

i=1

|βi|+ |θ1| ≤ W.

We will additionally assume that f(x) =⇒ f̂(x) ≥ 1 and ¬f(x) =⇒ f̂(x) ≤ −1; likewise for g.
Without this additional requirement, the restriction W on the weights is irrelevant and can always
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be achieved by normalizing the weights in a suitable way. Under these assumptions, we will prove
the existence of a degree-O(log W ) PTF representing the intersection. This is a nontrivial result if
the weights are small: W � 2n.

6.3 Approximating the Sign Function

If it were possible to represent the sign function accurately with a low-degree polynomial q, our goal
would be accomplished: the PTF representing the intersection would be simply q(f̂(x))+q(ĝ(x)) ≥ 2.
This is the strategy we will adopt in this lecture. Our first step is to supply a low-degree polynomial
approximation to the sign function. Namely, consider the following univariate functions:

pl(x) = (x− 1)
l∏

i=1

(x− 2l)2 and sl(x) =
−pl(−x) + pl(x)
−pl(−x)− pl(x)

.

Lemma 1 The functions pl and sl above satisfy:

(a) 0 ≤ 4pl(x) ≤ −pl(−x) for 1 ≤ x ≤ 2l;

(b) 1 ≤ sl(x) ≤ 5/3 for 1 ≤ x ≤ 2l, and
−5/3 ≤ sl(x) ≤ −1 for −2l ≤ x ≤ −1.

Proof: We prove (a) first. Trivially, 4pl(x) ≥ 0. It remains to show that 4pl(x) ≤ −pl(−x). Let
x ∈ [2k, 2k+1], where k < l. Then 4pl and −pl(−x) can be rewritten as:

4pl(x) = [4(x− 2k)2] · (x− 1)(x− 2)2(x− 4)2 · · · (x− 2k−1)2(x− 2k+1)2 · · · (x− 2l)2,

−pl(−x) = [(x + 2k)2] · (x + 1)(x + 2)2(x + 4)2 · · · (x + 2k−1)2(x + 2k+1)2 · · · (x + 2l)2.

Every factor in the expression for −pl(−x), except for the first, is strictly greater than the corre-
sponding factor in the expression for 4pl(x). Thus, it is sufficient to show that 4(x−2k)2 ≤ (x+2k−1).
We have:

4(x− 2k)2 ≤ 4(2k+1 − 2k)2 = 4 · 22k = 22k+2, and

(x + 2k)2 ≥ (2k + 2k)2 = 22k+2.

This completes the proof of part (a).

To prove part (b), consider first the case x ∈ [1, 2l]. An upper bound on sl(x) = −pl(−x)+pl(x)
−pl(−x)−pl(x) is

obtained by substituting −pl(−x)/4 for pl(x) and noting that −pl(−x) 6= 0; this yields sl(x) ≤ 5/3.
A lower bound is obtained by substituting 0 for pl(x), which yields sl(−x) ≥ 1. The argument for
x ∈ [−2l,−1] is analogous.
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6.4 A More Accurate Approximation of the Sign Function

Thus, the rational function sl(x) approximates the sign function within 2/3. The numerator and
denominator both have degree 2l + 1. A better approximation can be obtained using:

slog t
l (x) def=

(−pl(−x))log t + (pl(x))log t

(−pl(−x))log t − (pl(x))log t
,

where log t ≥ 1 is an odd integer, to ensure that the sign is preserved. The quality of the approxi-
mation for t ≥ 3 is given by the following lemma:

Lemma 2 The function slog t
l for t ≥ 3 satisfies:

(a) 1 ≤ slog t
l (x) ≤ 1 + 1/t for 1 ≤ x ≤ 2l, and

(b) −1− 1/t ≤ slog t
l (x) ≤ −1 for −2l ≤ x ≤ −1.

Proof: Assume first that x ∈ [1, 2l]. Raising each constituent of inequality (a) in Lemma 1 to the
odd power log t and simplifying yields:

0 ≤ (pl(x))log t ≤ (−pl(−x))log t

t2
.

An argument analogous to that in Lemma 1 yields the following lower and upper bounds: 1 ≤
slog t

l ≤ 1 + 2/(t2 − 1). Noting that 2/(t2 − 1) < 1/t for t ≥ 3, we obtain: 1 ≤ slog t
l ≤ 1 + 1/t.

The argument for x ∈ [−2l,−1] is analogous.

6.5 Application to Learning Intersections

We now revisit the problem of learning the intersection of two halfspaces f(x) = sign(
∑n

i=1 αixi−θ1)
and g(x) = sign(

∑n
i=1 βixi − θ2). Consider the rational functions Rf (x) = slog W (

∑n
i=1 αixi − θ1)

and Rg(x) = slog W (
∑n

i=1 βixi−θ2). Denote R(x) = Rf (x)+Rg(x). We will show that f(x)∧g(x) ≡
R(x) ≥ 2:

⇒: Suppose f(x) ∧ g(x). Then
∑n

i=1 αixi − θ1 ≥ 1 and
∑n

i=1 βixi − θ2 ≥ 1. By Lemma 1, the
sum R(x) is at least 2.

⇐: Suppose ¬f(x) ∨ ¬g(x). Then
∑n

i=1 αixi − θ1 ≤ −1 or
∑n

i=1 βixi − θ2 ≤ −1. By Lemma 1,
one of the summands can therefore be at most −1. Even if the other summand attains the
maximum value of 5/3, the resulting sum will still be 5/3− 1 < 2.

To obtain a PTF from R(x) ≥ 2, it suffices to multiply through by the squared product of the denom-
inators. Namely, let Rf (x) = pf (x)/qf (x) and Rg(x) = pg(x)/qg(x), where pf (x), pg(x), qf (x), qg(x)
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are all polynomials of degree O(log W ), by construction of slog W . Then the corresponding PTF is
R(x) · q2

f (x)q2
g(x) ≥ 2q2

f (x)q2
g(x), or

pf (x)qf (x)q2
g(x) + pg(x)q2

f (x)qg(x) ≥ 2q2
f (x)q2

g(x).

This inequality computes f(x)∧g(x) because (i) R(x) ≥ 2 computes f(x)∧g(x), and (ii) multiplying
through by the positive quantity q2

f (x)q2
g(x) yields an equivalent inequality. The degree of the

resulting PTF is 4 ·O(log W ) = O(log W ).

6.6 Learning Intersections of t Halfspaces

The result of the previous section can be generalized to t halfspaces by using a more accurate
approximation of the sign function. Namely, consider t PTF’s h1, h2, · · · , ht. Let ĥ1, ĥ2, · · · , ĥt be
the corresponding linear functions s.t. hi = sign(ĥi) for 1 ≤ i ≤ t. Form R(x) =

∑t
i=1 slog t

log W (ĥi).
We will show that

∧t
i=1 hi ≡ R(x) ≥ t:

⇒: Suppose
∧t

i=1 hi. Then each ĥi ≥ 1 and thus 1 ≤ slog t
log W (ĥi) ≤ 1 + 1/t. This implies that

R(x) ≥ t.

⇐: Suppose
∨t

i=1 ¬hi. Then slog t
log W (ĥi) ≤ −1 for at least one ĥi. Even if the remaining summands

contribute the maximum value of 1+1/t each, the sum will be R(x) ≤ −1+ (1+1/t)(t− 1) =
−1 + t− 1 + (t− 1)/t < t.

To convert R(x) into a PTF, we clear the t denominators by multiplying through by the square
of their product. Since the numerator and denominator of each slog t

log W (ĥi) is a polynomial of de-
gree O(log t log W ), clearing the denominators will yield a PTF of degree 2t · O(log t log W ) =
O(t log t log W ).

6.7 Learning Arbitrary Boolean Functions of t Halfspaces

The above method for learning intersections of t halfspaces generalizes to arbitrary Boolean functions
on t halfspaces. Namely, let h be a Boolean function of halfspaces h1, h2, · · · , ht. Using the truth
table for h, we can write h as a degree-t polynomial d in h1, h2, . . . , ht via the standard conversion
procedure. Specifically, if 〈h1 = 1, h2 = −1, h3 = 1〉 is a satisfying assignment, we form the
elementary product h1 · h2+1

2 · h3; the polynomial representing h is the sum of all such elementary
products. By construction, each of the elementary products evaluates to 1 on its corresponding
assignment, and to 0 otherwise. As a result, d evaluates to 1 if h holds, and to 0 otherwise.

To obtain a representation of h in the original variable set, we construct the polynomial
d(h1, h2, . . . , ht) and make the replacement hi = slog 23t

log W (ĥi(x)), for all i. For simplicity, we adopt
the following notation for the resulting polynomial:

d
(
slog 23t

log W (ĥ1(x)), slog 23t

log W (ĥ2(x)), . . . , slog 23t

log W (ĥt(x)))
)

= d(x).
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It remains to show how to obtain from d(x) a PTF computing h. To this end, we need to understand
how the inaccuracies in the representation of the hi affect the output of d(x). In other words, we
need to bound |d(h1, . . . , ht)− d(x)|. We start with a basic algebraic fact.

Lemma 3 For all reals k ≥ 1 and for all integers t ≥ 1,

1 ≤
(

1 +
1
k

)t

≤ 1 +
2t

k
and 1− 2t

k
≤

(
1− 1

k

)t

≤ 1.

Proof: Consider first the quantity (1 + 1/k)t. Trivially, (1 + 1/k)t ≥ 1. The upper bound can be
shown as follows:(

1 +
1
k

)t

=
t∑

i=0

(
t

i

)
1
ki

= 1 +
t∑

i=1

(
t

i

)
1
ki
≤ 1 +

t∑
i=1

(
t

i

)
1
k
≤ 1 +

1
k

t∑
i=1

(
t

i

)
≤ 1 +

2t

k
.

Similarly, (1− 1/k)t ≤ 1. The lower bound can be shown as follows:(
1− 1

k

)t

=
t∑

i=0

(
t

i

)
(−1)i

ki
= 1 +

t∑
i=1

(
t

i

)
(−1)i

ki
≥ 1−

t∑
i=1

(
t

i

)
1
ki
≥ 1− 1

k

t∑
i=1

(
t

i

)
≥ 1− 2t

k
.

To bound the representation error in d(x), consider the contribution of each elementary product to
this error. Let k = 23t denote the sign-function accuracy parameter in the above representation
of d(x). Let P (x) be an arbitrary elementary product. If x is the satisfying assignment for P (x),
the output of P (x) is between (1 − 1/k)t and (1 + 1/k)t. In this case, the contribution to the
representation error is at most max{1 − (1 − 1/k)t, (1 + 1/k)t − 1} ≤ 2t/k (by Lemma 3). If x
is not the satisfying assignment for P (x), the output of P (x) is between (1/k)(1 + 1/k)t−1 and
−(1/k)(1 + 1/k)t−1. In this case, the contribution to the representation error is at most

1
k

(
1 +

1
k

)t−1

≤ 1
k

(
1 +

1
k

)t−1

+
(

1 +
1
k

)t−1

− 1 =
(

1 +
1
k

)t

− 1 ≤ 2t

k
(by Lemma 3).

In any event, the representation error due to a single elementary product is at most 2t/k = 2−2t.
Since there are at most 2t elementary products, the total representation error cannot exceed 2−t. It
immediately follows that d(x)− 1/2 ≥ 0 is a valid inequality for the problem (assuming t ≥ 2).

The degree of the PTF resulting from d(x) is easy to compute. Every rational function slog 23t

log W (ĥi(x))
in the definition of d(x) has a numerator and denominator of degree O(t log W ). Clearing the
denominators in d(x)− 1/2 ≥ 0 turns it into a PTF of degree O(t2 log W ).


