
SNP: An Interface for Secure Network Programming
�

Thomas Y.C. Woo, Raghuram Bindignavle, Shaowen Su and Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

Abstract

SNP provides a high-level abstraction for secure end-to-
end network communications. It supports both stream and
datagram semantics with security guarantees (e.g., data
origin authenticity, data integrity and data confidentiality).
It is designed to resemble the Berkeley sockets interface so
that security can be easily retrofitted into existing socket
programs with only minor modifications. SNP is built on
top of GSS-API, thus making it relatively portable across
different authentication mechanisms conforming to GSS-
API. SNP hides the details of GSS-API (e.g., credentials
and contexts management), the communication sublayer
as well as the cryptographic sublayer from the application
programmers. It also encapsulates security sensitive infor-
mation, thus preventing accidental or intentional disclo-
sure by an application program.

1 Introduction

The explosive growth of network connectivity has signif-
icantly aggravated the problem of security. Most existing
network programming paradigms adopt a trust-based ap-
proach to security (e.g., trusting network packets, trusting
hosts). This is no longer adequate, especially for malicious
attacks. Indeed, with easy access to networks and avail-
ability of sophisticated network tools, the effort to mount
attacks such as spoofing network packets or sniffing illicit
information from network traffic is substantially reduced.
To effectively counter these attacks, a coherent security
infrastructure is needed. An important element of such a
infrastructure is a convenient abstraction for secure appli-
cation network programming.

In recent years, distributed systems security has re-
ceived a great deal of attention. For example, a num-
ber of authentication systems (e.g., Kerberos from MIT
[15], SPX from DEC [17] and KryptoKnight from IBM

�
Research supported in part by NSA INFOSEC University Re-

search Program under contract no. MDA 904-91-C7046 and MDA
904-93-C4089, and in part by National Science Foundation grant no.
NCR-9004464. Published in Proceedings USENIX Summer Techni-
cal Conference, Boston, MA, June 1994. Postscript files of this and
other papers of the Networking Research Laboratory are available from
http://www.cs.utexas.edu/ � lam/NRL.

[9]) have been designed and implemented. Although
these systems do provide an adequate solution for typical
network security concerns, they suffer a major common
drawback, namely, it is difficult to integrate them into an
application. More specifically, they do not export a clean
and easy-to-use interface that can be readily used in imple-
menting a distributed service. For example, it often takes
a considerable amount of effort to “kerberize” an existing
distributed service. Besides, the interface provided is not
portable, making the switch from one authentication sys-
tem to another a non-trivial task.

The recently published Internet draft standard Generic
Security Service Application Program Interface (GSS-
API) [8] alleviates the problem somewhat. In fact, both
SPX and KryptoKnight

�
have already implemented a

small subset of GSS-API.
�

However, the GSS-API inter-
face is still too low-level to be practical for typical network
application programming. Its proper use requires inti-
mate understanding of the underlying GSS-API concepts,
which can cause significant distraction from the main task
of a program. It is valid to say that GSS-API is more suited
for use in system software than in regular application pro-
gramming. Indeed, it is intended that a typical caller of
GSS-API be a communication protocol, e.g., telnet, ftp [8,
p. 2].

We believe that what is needed is an abstraction for
secure network programming that can hide most of the
details of GSS-API while retaining the same ease of
use as most existing abstractions for network program-
ming. As an analogy, the raw interface to a protocol (e.g.,
tcp input()/tcp output() for TCP) is often diffi-
cult to use, whereas programming using a higher-level ab-
straction (e.g., sockets, TLI) is significantly easier.

�

In this paper, we discuss the design and implementa-
tion of SNP (Secure Network Programming), a high-level
abstraction for secure network programming that we have

�
KryptoKnight is not public-domain. The use of GSS-API is men-

tioned in [9]. But it is not clear to what extent the interface has been
implemented.�

A recent article in comp.protocols.kerberos states that implementa-
tions of GSS-API for Kerberos will also be available.�

In fact, Berkeleysockets haveoften been toutedas a major contribut-
ing factor to the popularity of TCP/IP. Although Berkeley sockets can
support a variety of protocols, it was designed mainly with TCP/IP in
mind.

developed. SNP is like sockets or TLI in that it is an inter-
face that provides applications access to network commu-
nications. However, it differs from sockets or TLI in many
significant ways:

� SNP provides secure network communication. For
example, it provides data origin authenticity, data
integrity and data confidentiality services on top of
the usual stream and datagram services provided by
sockets or TLI. The precise services provided by SNP
are detailed in Section 4.

� SNP provides an end-to-end communication abstrac-
tion at the application level, whereas sockets and TLI
are transport level abstractions.

�

More specifically,
a socket represents a transport level endpoint (e.g., a
TCP port), while an SNP endpoint represents an ap-
plication layer entity (e.g., a server). This distinction
is important and is further explained in Section 3.

SNP is implemented on top of GSS-API. It is currently
in the form of a library. It adopts the same basic design as
sockets (thoughseveral new calls have been added), which
allows easy transitions from socket-based programs.

The balance of this paper is organized as follows. In
the next section, we present an overview of SNP. This pro-
vides a quick introduction to SNP before delving into de-
tails in later sections. In Section 3, we elaborate on a list
of design requirements and decisions we have made in the
design of SNP. In Section 4, we provide a high-level de-
scription of the services offered by SNP. In Section 5, we
give a specification of the SNP interface. In Section 6, we
discuss various considerations that arise in implementing
SNP. In Section 7, we provide some figures on the perfor-
mance of our implementation. In Section 8, we compare
SNP to some related systems. In Section 9, we discuss the
lessons learned and directions for future work.

2 Overview of SNP

2.1 A Quick First Look

To give a quick introduction of what SNP is, we begin by
looking at actual SNP code fragments. Figures 1 and 2
show respectively the typical client and server SNP code.

As can be easily seen, the SNP interface closely resem-
bles that of sockets. This resemblance is not a coincidence.
Rather, it was a design decision (see Section 3 for the ra-
tionale). In fact, most of the calls even retain their familiar
semantics from their socket counterparts, though their im-
plementations are quite different. In the following,we will
focus only on the calls that are new in SNP.

�

This is not strictly true as sockets also provide access to protocols
in other layers in the communication hierarchy, cf., raw sockets etc.
However, sockets and TLI are typically considered to be transport layer
interfaces.

There are two main new calls, namely snp() and
snp attach(). snp() replaces the socket() call
in the socket interface. It is similar in functionality to
socket() in that it creates a communication endpoint.
It differs from socket(), however, in that an SNP end-
point corresponds to an application layer entity rather than
a transport layer entity.

In addition to SOCK STREAM and SOCK DGRAM,
snp() supports two new kinds of communication
semantics: SNP STREAM and SNP DGRAM. Both
extend the semantics of their respective socket coun-
terparts by adding security guarantees. Specifically, an
SNP STREAM connection is authenticated. That is, a
connection would be made only if it is accepted by the
intended peer (specified by the initiator); and conversely,
the identity of the initiator can be uniquely determined by
the intended peer once a connection is made. Additional
security services (e.g., data integrity, data confidentiality)
can be activated on an SNP STREAM connection by set-
ting the appropriate options using snp setopt() (see
Section 4). Essentially, an SNP STREAM connection can
be understood as a connection that supports the semantics
of a SOCK STREAM connection even in an environment
with intruders.

�

The case for SNP DGRAM is similar.
snp attach() is a completely new call; it does not

have a socket counterpart. The main function of this call
is to attach an identity to an SNP endpoint. The attached
identity is the one that would be authenticated to a peer.
An identity is not just a name, it is a supported claim of
a particular name.

�

In other words, an identity can be un-
ambiguously verified to another party. In terms of imple-
mentation, an identity consists of a name together with
a set of credentials that corroborate the authenticity of
the name. Typically, the operation of snp attach()
involves collecting the appropriate credentials (locally
and/or remotely) for supporting the specified name. It
should be noted that the identity attached to an SNP end-
point needs not be the identity of the caller per se. For
example, a delegate may want to attach its identityas a del-
egate rather than its own identity. Operationally, a caller
is allowed to attach any identity to an endpoint as long as
it is able to gather the required credentials to support that
identity.

2.2 Components of SNP

SNP is designed and implemented in a modular fashion.
Each major functionality of SNP is encapsulated in a sep-
arate layer that exports a well-defined interface. Figure 3
shows the conceptual layering and major components of
SNP.

�

Assuming proper options are set corresponding to the types of
threats anticipated.

�

A better term for this is principal. But we intend to keep it informal
in this paper and refrain from introducing too many terms.

#include <snp.h>
...
if ((snp_ep = snp(AF_INET, SNP_STREAM, SNP_PROTO_DEFAULT)) < 0) {

snp_perror("snp() error :"); exit(1);
}
/* Initialize local and peer addr structs - just as in sockets */
...
/* Initialize local & peer name structs as shown below */
local_name.np.np_val = (char *) malloc(sizeof(client_name));
local_name.np.np_len = strlen(client_name);
strcpy(local_name.np.np_val, client_name);
peer_name.np.np_val = (char *) malloc(sizeof(server_name));
peer_name.np.np_len = strlen(server_name);
strcpy(peer_name.np.np_val, server_name);

if (snp_attach(snp_ep, &local_name, &peer_name) < 0) {
snp_perror("snp_attach() error :"); exit(1);

}
if (snp_connect(snp_ep, sizeof(struct sockaddr_in),

(struct sockaddr *) (&peer_addr)) < 0) {
snp_perror("snp_connect() error :"); exit(1);

}
if ((numbytes = snp_write(snp_ep, buf, buf_size)) < 0) {

snp_perror("snp_write() error :"); exit(1);
}
...
if (snp_close(snp_ep) < 0) {

snp_perror("snp_close() error :"); exit(1);
}
...

Figure 1: Sample SNP Client Program Fragment

#include <snp.h>
...
if ((snp_ep = snp(AF_INET, SNP_STREAM, SNP_PROTO_DEFAULT)) < 0) {

snp_perror("snp() error :"); exit(1);
}
/* Initialize local and peer addr structs - just as in sockets */
...
/* Initialize local name structs as shown below */
local_name.np.np_val = (char *) malloc(sizeof(server_name));
local_name.np.np_len = strlen(server_name);
strcpy(local_name.np.np_val, server_name);
if (snp_attach(snp_ep, &local_name, &peer_name) < 0) {

snp_perror("snp_attach() error :"); exit(1);
}
if (snp_bind(snp_ep, &server_addr, sizeof(server_addr)) < 0) {

snp_perror("snp_bind() error :"); exit(1);
}
if (snp_listen(snp_ep, 5) < 0) {

snp_perror("snp_listen() error :"); exit(1);
}
if ((new_snp_ep = snp_accept(snp_ep, (struct sockaddr *) &peer_addr,

&addr_len)) < 0) {
snp_perror("snp_accept() error :"); exit(1);

}
if (snp_getpeerid (snp_ep, &client_name) < 0) {

snp_perror("snp_getpeerid() error :"); exit(1);
}
if ((numbytes = snp_read(new_snp_ep, buf, buf_size)) < 0) {

snp_perror("snp_read() error"); exit(1);
}
...
if (snp_close(new_snp_ep) < 0) {

snp_perror("snp_close() error :"); exit(1);
}
...
if (snp_close(snp_ep) < 0) {

snp_perror("snp_close() error :"); exit(1);
}
...

Figure 2: Sample SNP Sequential Server Program Fragment

SNP-API defines the upper (external) interface avail-
able to an application. Internally, SNP makes use of two

lower interfaces: GSS-API and a (insecure) network com-
munication API. GSS-API encapsulates the details of the

-

SNP-API

GSS-API

Credential
Manager

Context
Manager

Credential

Structure

Context

Structure

Communication
Interface

Communication

Manager

Berkeley

Sockets

Generic
Cryptographic
Interface
(RSAREF)

(Creation,
Deletion,
Renegotiation)

(Acquisition,
Expiry,
Release)

Figure 3: Organization of SNP

particular authenticationprotocol used, thus enhancing the
independence of the SNP layer from the underlying au-
thentication mechanism. Similarly, the communication
API isolates the details of network communication from
the SNP layer. We have chosen sockets as the communi-
cation API, mainly due to its wide availability.

GSS-API in turns makes use of a lower generic cryp-
tographic interface. This interface provides access to all
cryptographic functions and is generic in the sense that
it can support any (symmetric or asymmetric) cryptosys-
tem. This provides “cryptosystem independence” and fa-
cilitates easy substitution when new (implementations of)
cryptosystems are available. Further discussion of our
GSS-API implementation and the underlying authentica-
tion protocol is beyond the scope of this paper; interested
readers can consult [23, 20] for more details.

The main function of the SNP layer is context and cre-
dential management. It initiates the acquisition of creden-
tials, monitors the status of contexts and credentials, and
initiates renegotiation (of contexts) and/or reacquisition
(of credentials), if necessary. It should be noted, however,
that the actual storage of contexts and credentials is inter-
nal to GSS-API.

2.3 SNP in Context

SNP is part of a larger project of ours that concerns the de-
sign and implementation of an authentication framework
for distributed systems [21]. The framework addresses a
range of authentication needs that includes bootstrapping,
user logins and peer communications. SNP is designed as
an interface for accessing the peer authentication protocol
in our framework.

Because of its modular design, detailed understanding
of the other components in the framework is not required
in order to use or understand SNP. Indeed, SNP is rela-
tively independent of the original framework it was de-
signed for, and should be easily portable for use in other

authentication frameworks (see Section 3). Therefore, we
will only briefly describe the other components in our
framework, to the extent they are required for the under-
standing of SNP.

At present, our framework has three protocols: a secure
bootstrap protocol that creates a bootstrapcertificate upon
successful bootstrapping; a user-host mutual authentica-
tion protocol that creates a login certificate when a user
successful logs in; and a peer-peer mutual authentication
protocol that is the basis for SNP. The login certificate is
retrieved when a user attaches its identity to an SNP end-
point. This certificate is stored in an SNP (GSS-API) cre-
dential structure and is used to authenticate the user’s iden-
tity to its peer.

The peer-peer authentication protocol in our framework
assumes the use of a commonly trusted authentication
server (AS). Apart from its authentication duty, AS is also
responsible for generating the session key used in an au-
thentication exchange. Thus, in order for SNP to function
correctly, AS needs to be properly set up. For example, it
must be properly secured and be given a correct database.
The discussion of the associated administrative issues is
beyond the scope of this paper.

Lastly, a name service is required for translating appli-
cation layer entities to their transport layer addresses. This
name service, however, need not be trusted, as SNP per-
forms the proper authentication during connection estab-
lishment.

3 Design Requirements and Deci-
sions

In designing SNP, we first set out a number of require-
ments. Based on these requirements, we made several key
design decisions. We briefly discuss the rationale for these
requirements and decisions below:

� SNP should provide end-to-end communication at
the application layer rather than the transport layer.
Although the transport layer is the first end-to-end
layer, we believe the concept of identity is only mean-
ingful at or above the session layer. For example, in
Unix and TCP/IP, ports are ephemeral and the associ-
ation of ports with processes is dynamic.

�

We believe
it is more appropriate to base our semantics on appli-
cation level entities than to assume a secure mapping
between ports and processes.

� SNP should be independent of any particular authen-
tication protocol or framework. This allows SNP to
be portable across different authentication systems.
We achieve such independence by using GSS-API
to encapsulate the details of the underlying protocol,
and sockets as the communication interface.

� It should be easy to convert existing network appli-
cation programs to use SNP. To achieve this, we de-
signed SNP to retain as much as possible the general
structure of a socket program. Hence: (1) only a min-
imal number of new concepts needs to be learned in
order to acquaint oneself with SNP; (2) only minor
(mostly syntactic) modifications need to be done to
convert a socket program to an SNP program, thus
significantly facilitating retrofitting.

We could have emulated the TLI interface instead.
But we believe that sockets and TLI are sufficiently
similar to each other that little extra effort is required
to convert TLI programs into SNP programs. Be-
sides, there are far more existing socket programs
than TLI programs, though TLI is quickly gaining
popularity.

� SNP should work in a heterogeneous environment.
This entails careful considerations of message encod-
ing and processing. We have chosen XDR [16] for
this purpose, mainly for its simplicity. ASN.1 [1] is
used in other authentication systems (e.g., Kerberos,
SPX); we find it to be overly complicated and not
suitable as a prototyping tool. From our experience,
XDR has been adequate, though not as flexible as we
would like.

� SNP should be independent of particular cryptosys-
tems. We achieve this by encapsulating all crypto-
graphic functions usinga generic cryptographic inter-
face. In our current implementation, we use the de
facto standard cryptosystem trio, i.e., DES [10] for
symmetric encryption, RSA [13] for asymmetric en-
cryption and MD5 [12] for message digest.

�

Reservedports are a matter of conventiononly, there is no permanent
binding.

SOCK_STREAM

SNP_STREAM

SNP_OPTIONS_SEQUENCED

SNP_OPTIONS_ENCRYPTEDSNP_OPTIONS_SIGNED

PD

PD, CA

PD, CA, SD

PD, CA, DI, PD, CA, DC, DI,
DOA, DDA

PD, CA,
DC, DI,
DOA,
DDA,
SD

DOA, DDA

PD, CA,
DI,
DOA,
DDA,
SD

Figure 4: Services Provided

4 Services Provided

Security is only well-defined with respect to a threat
model. In this paper, we assume the standard threat model.
That is, a saboteur can read, insert, delete and modify any
network traffic. It should be noted that a saboteur is not
necessarily a totally external intruder, s/he can also be a
legitimate user. Thus, s/he can use information available
to a legitimate user in mounting an attack.

We stress that our model does not include denial of ser-
vice and traffic analysis threats. It is always possible for
a saboteur to corrupt all packets passing through. Even
an infinitely persistent sender cannot overcome such cor-
ruption if the saboteur is equally persistent. Indeed, most
network programming abstractions guarantee only safety
but not progress.

In the following, we present in high-level terms the ser-
vices provided by SNP. We first define below the typical
types of services offered by a secure communication con-
nection:

� Persistent Delivery (PD) — A sender will persis-
tently try to retransmit data if it has not been received
yet. Thus, PD implicitlyassumes the use of acknowl-
edgments.

� Best Effort Delivery (BED) — Data sent may or may
not arrive at the receiver. Each of the intermediate
nodes can either forward or drop the data.

� Sequenced Delivery (SD) — If data arrives at a re-
ceiver, it must appear in the same order it was sent.
That is, no reordering or duplication is allowed.

� Data Confidentiality (DC) — Data is only legible to
the intended receiver.

� Data Integrity (DI) — Data, if accepted by a receiver,
must bear the same content as that sent.

� Data Origin Authenticity (DOA) — Data, if accepted
by a receiver, must have come from a known specific
sender.

� Data Destination Authenticity (DDA) — When data
arrives, a receiver can unambiguously determine that
it is the intended receiver.

� Connection Authenticity (CA) — A connection, if
made, must be between the intended peers.

SNP can provide different combinations of the
above services. The precise combinations provided
is summarized in Figure 4. Each of the two boxes
is labeled by a constant denoting the communica-
tion semantics, while each of the circles is labeled
by an SNP option constant. The combination of ser-
vices provided under a particular communication
semantics and set of options is labeled in the inter-
section of the corresponding regions. For example,
under SNP STREAM, if both SNP OPTIONS SIGNED
and SNP OPTIONS SEQUENCED are set, the ser-
vices provided are PD, CA, DI, DOA, DDA and
SD. We note that SNP OPTIONS SIGNED and
SNP OPTIONS ENCRYPTED cannot both be set at
the same time. The case for SNP DGRAM is similar, and
is omitted.

5 The SNP Interface

As with the socket interface, SNP-API functions can be
divided into five classes: initialization, connection estab-
lishment, data transfer, connection release, and utility. We
describe the functions in each class below. A complete list
of all functions is given in Figure 5. Parameter names ap-
pearing in the following subsections refer to those shown
there.

Most functions have semantics similar to their socket
counterpart. (In fact, they are given the same names mod-
ulo the prefix “snp .”) We have not emulated all the data
transfer functions of sockets (e.g., sendmsg, recvmsg)
due to their intricate semantics. Nonblocking I/O is sup-
ported, but asynchronous I/O (i.e., interrupt driven) is not.

We also note that most functions below (notable excep-
tions being the data transfer functions) return 0 on suc-
cess and �

�
on failure. In addition, a global variable

snp errno will contain the appropriate error number on
failure.

5.1 Initialization

Functions in this class are used for creating and initializing
an SNP endpoint. They include snp(), snp bind(),
snp listen() and snp attach().

5.1.1 snp()

snp() creates an endpoint of communication. Its param-
eters have the same types as socket() and have sim-
ilar semantics. Currently, the only supported value for

family is AF INET, corresponding to the internet ad-
dress family. The possible values of type are shown in
the following table:

SNP STREAM Secure Stream
SNP DGRAM Secure Datagram
SOCK STREAM Normal (Insecure) Stream
SOCK DGRAM Normal (Insecure) Datagram

For protocol, the currently supported values are as
follows:

SNP PROTO DEFAULT Default Authentication Protocol
SNP PROTO PUSH MODEL Push Model Authentication Protocol
SNP PROTO REVERSE Reverse Authentication Protocol
IPPROTO TCP Normal TCP
IPPROTO UDP Normal UDP

A combination of SNP STREAM and any one of the
first three protocol values results in a secure equivalent of
TCP. Similarly, SNP DGRAM in combination with one of
the first three protocol constants provides a secure UDP
protocol. The first three protocol constants can be used
only when the family argument value has been set to
either SNP STREAM or SNP DGRAM. The use of either
IPPROTO UDP or IPPROTO TCP results in the normal
(i.e., insecure) UDP or TCP protocols, respectively. These
are equivalent to the semantics provided by the socket in-
terface.
snp() returns an SNP handle, of type int. The han-

dle is an index into an internal table of SNP structures
maintained by SNP. Thus, unlike socket(), an SNP
handle is not a file descriptor. Hence, some of the standard
functions that apply to a socket descriptor will not apply to
an SNP handle.

The snp ep parameter in each of the other functions
in Figure 5 refer to an SNP handle obtained from a call to
snp().

5.1.2 snp bind()

After creation, an address may be bound to an SNP
endpoint using snp bind(). The local addr and
addr len are of the same types as in the bind() func-
tion. They specify the address to be bound.

5.1.3 snp attach()

snp attach() is used for specifying the identity a
caller wishes to be authenticated as to its peer and the name
of the intended peer. The name structure name s is of the
following form: (This structure is automatically generated
by rpcgen from a XDR structure.)

struct name_s {
struct {

u_int np_len; /* Length of the name */
char *np_val; /* The actual name */

} np;
};

Initialization Calls

int snp (int family, int type, int protocol);
int snp_bind (int snp_ep, struct sockaddr *local_addr, int addr_len);
int snp_listen (int snp_ep, int backlog);
int snp_attach (int snp_ep, struct name_s *local_name, struct name_s *peer_name);

Connection Establishment Calls

int snp_connect (int snp_ep, struct sockaddr *peer_addr, int peer_addr_len);
int snp_accept (int snp_ep, struct sockaddr *peer_addr, int peer_addr_len);

Data Transfer Calls

int snp_write (int snp_ep, char *buf, int nbytes);
int snp_read (int snp_ep, char *buf, int nbytes);
int snp_send (int snp_ep, char *buf, int nbytes, int flags);
int snp_recv (int snp_ep, char *buf, int nbytes, int flags);
int snp_sendto (int snp_ep, char *buf, int nbytes, int flags,

struct sockaddr *to, int tolen);
int snp_recvfrom (int snp_ep, char *buf, int nbytes, int flags,

struct sockaddr *from, int *fromlen);

Connection Release Calls

int snp_close (int snp_ep);
int snp_shutdown (int snp_ep, int how);

Utility Calls

int snp_setopt (int snp_ep, int level, int optname, char *optval, int optlen);
int snp_getpeerid (int snp_ep, struct name_s *peer_name);

Figure 5: SNP Interface Specification

If invoked by a server, peer name may be set
to NULL, in which case connection from any client
would be accepted. Once a connection is established,
the identity of the client can be discovered by calling
snp getpeerid() (see below). snp attach()
must be invoked before connection establishment, if
secure communication is desired.

5.1.4 snp listen()

The function allows its caller to specify the maximum al-
lowed backlog of connection requests. It has identical
semantics as listen(), except it takes an SNP han-
dle. Typically, a caller of snp listen() is a server.
This function can only be used on an SNP STREAM or
SOCK STREAM connection.

5.2 Connection Establishment

The second class of functions consists of
snp connect() and snp accept(); they are
mostly used for stream connections.

5.2.1 snp connect()

For an SNP STREAM endpoint, this function results in the
establishment of a connection with a peer if a correspond-
ingsnp accept() is performed by the peer. A success-
ful connection also indicates a successful authentication
exchange using the underlying authentication protocol.

In the case of SNP DGRAM, snp connect() only
saves the supplied peer address in an internal SNP struc-
ture. This address would be assumed to be the destination
address in all subsequent data transfer unless an explicit
address is given. No authentication is performed at the
time of the call; instead, it is performed at the time of the
first data transfer call.

5.2.2 snp accept()

snp accept() can be used only on an SNP STREAM
or SOCK STREAM endpoint. It accepts connection re-
quests and completes them if the authenticated peer
identity matches the one specified by a previous
snp attach(). � Successful completion also im-
plies that the peer identity has been authenticated, and can
be discovered using snp getpeerid(). Furthermore,
it implies the establishment of a pair of security contexts
(one at each peer) and the distribution of a session key.

The return value is a new SNP handle which can be used
for further communication with the peer. Further connec-
tion requests can continue to come in on the original SNP
endpoint. If peer addr and peer addr len are non-
NULL, they will be filled in appropriately.

5.3 Data Transfer

All of the followingdata transfer functions return the num-
ber of bytes actually sent or received on success and -1 on
failure.

�
If the peer name specified is NULL, connections from any client is

accepted.

5.3.1 snp sendto()

snp sendto() sends nbytes of data pointed to by
buf to the peer address specified by the to parameter.
This function may be used on both stream and datagram
endpoints. In case of a datagram endpoint, both to and
to lenmust be specified. The data will be sent encrypted
or signed if the appropriate SNP options have been set (see
snp setopt() below). The possible values and seman-
tics of flags are the same as those in sendto().

5.3.2 snp recvfrom()

snp recvfrom() attempts to receive nbytes of data
and stores them in a buffer pointed to bybuf. The address
and address length of the peer are filled into from and
from len respectively, if both of them are non-NULL.
flags has the same semantics as in the recvfrom().
The incoming data is decrypted or verified, depending
upon the SNP options specified.

5.3.3 snp read(), snp write(), snp send()
and snp recv()

These calls can only be used on stream endpoints. Their
semantics are essentially similar to their socket counter-
parts. snp send() and snp recv() provides addi-
tional features (e.g., such as expedited data) that are not
available with snp write() and snp read(). The
nature of data sent or received depends on the current SNP
options.

5.4 Connection Release

5.4.1 snp shutdown() and snp close()

These functions have similar semantics as their socket
counterparts, except they perform the release only after
they have verified that the release request did originate
from the correct peer.

5.5 Utility Routines

These functions are used for manipulatingor retrieving the
characteristics of an SNP endpoint.

5.5.1 snp setopt()

snp setopt() is used to set options available for a reg-
ular socket as well as those specific to SNP. A new con-
stant, SNP, has been introduced for the level parameter.
The options available at the SNP level are:

SNP OPTIONS DEFAULT Reset all option settings to default
SNP OPTIONS ENCRYPTED Encrypt all subsequent data
SNP OPTIONS SIGNED Sign all subsequent data
SNP OPTIONS SEQUENCED Enforce sequencing on data
SNP OPTIONS NOTIFY Notify caller on context expiry — do

not reinitiate authentication
SNP OPTIONS CONTEXT TIME Set context expiration time

Setting SNP OPTIONS DEFAULT results in resetting
all options to their default settings; that is, no encryption,
no signing and no sequencing.

Setting SNP OPTIONS ENCRYPTED causes subse-
quent outgoing data to be encrypted. Setting
SNP OPTIONS SIGNED causes subsequent outgoing
data to be signed. The key to be used for encryption
and signing is the session key maintained in the current
security context. Options SNP OPTIONS ENCRYPTED
and SNP OPTIONS SIGNED cannot be set at the
same time. To enforce sequencing of data, option
SNP OPTIONS SEQUENCED should be set. This may be
used in conjunction with either
SNP OPTIONS ENCRYPTED or
SNP OPTIONS SIGNED.

When the current security context expires, the SNP
layer automatically renegotiates a new context. This can
be disabled by settingSNP OPTIONS NOTIFY; in which
case, the SNP user will be notified of context expiry when
it performs an SNP call. The duration of a context can be
set using the SNP OPTIONS CONTEXT TIME option.

Note that the first five options are toggle flags, while
the last one requires the context duration to be specified
in optval.

5.5.2 snp perror() and snp getpeerid()

snp perror() performs the same function as the stan-
dard perror() function, except that it accounts for
SNP-API error codes as well. snp getpeerid() re-
trieves the authenticated identity of the peer.

�

6 Overview of Implementation

To facilitate discussion of SNP’s implementation, it is
helpful to first briefly describe our implementation of
GSS-API. The authentication protocol underlying our
GSS-API implementation is shown in Figure 6 (

�
denotes

the initiator, � the responder and ��� the authentication
server). The protocol was initially published in [22], and
later verified in [20, 23]. The mapping of this protocol to
GSS-API is quite straightforward, and is described in [23].
The key point to note is that the communications with ���
(steps (CE4)–(CE6)) are completely encapsulated within
GSS-API, and are not observable by the SNP layer.

Typically, an SNP-API call is translated into a number
of GSS-API calls together with calls to the communication
layer. GSS-API is responsible for generating tokens that
are to be shipped using the communication layer. In sim-
ple terms, the main responsibility of the SNP layer is to
request the right tokens to be generated (according to user
request and current state) and to ensure they are properly
�
In fact, the unauthenticated identity of the peer is available as soon

as the underlyingauthentication protocol has proceededbeyond a certain
point, even if the authentication exchange fails at the end.

Connection Establishment
(CE1) � : generate nonce ���
(CE2) ����� : �	�
���
(CE3) � : generate nonce ���
(CE4) ������ : �	�
�����
����� �
(CE5) ��� : generate key �
(CE6) ������� : �����	�
� � �
���
�����
������ �!"�# � �%$
(CE7) ���� : �����	�
�����
���
� � �
��� �� �!"�# � �%& , �����'�
� � � �
(CE8) ����� : ��� � � �

Connection Release
(CR1) �(��� : ���	�
�����
���
� � � �
(CR2) �)��� : �������
� � � �

Figure 6: Underlying Authentication Protocol

Initiator

gss_acquire_cred()

gss_init_sec_context()

gss_init_sec_context()

GSS Per-Message

Calls

gss_delete_sec_context()

gss_delete_sec_context()

Responder

gss_acquire_cred()

gss_accept_sec_context()

gss_accept_sec_context()

Context Established

GSS Per-Message

Calls

gss_process_context_token()

snp_attach()

snp_connect()

snp_close() snp_close()

SNP Data
Transfer
Calls

snp_attach()

snp_accept()

Control Folw

Data Flow

(CE1)

(CE7)

(CE8)

(CR1)

(CR2)

SNP Data
Transfer
Calls

Figure 7: Control and Data Flow

transferred to the peer SNP layer. Figure 7 shows the rela-
tionship between SNP-API calls and GSS-API calls. (The
bold arrows in Figure 7 correspond to the protocol steps
in Figure 6.) For example, a call to snp connect() re-
sults in two calls togss init sec context() as well
as three calls to the communication layer.

There are several major considerations in implementing
SNP. We describe them below:

� Two types of messages, namely, data and control, are
transferred between SNP peers. Data messages con-
tain user data and correspond to SNP data transfer
calls, while control messages contain information re-
lated to the operation of the SNP layer (e.g., connec-
tion establishment request/response) and correspond
to SNP control calls (e.g., snp connect()) and
functions (e.g., context renegotiation).

There are two ways these messages can be trans-
ferred. One is to multiplex them onto a single con-
nection, and the other is to create dedicated connec-
tions for each type of messages. We opted for the
latter because control messages should generally be
given priorityover data messages. Thus, if they are to
be transferred on the same connection, the underlying
communication mechanism must support some form
of priority message facility. Most existing communi-
cation mechanisms (sockets in particular) do not sup-
port such priority message processing well.

���
The

two-connections solution avoids the dependence on
such a mechanism.

� �

� The two-connections solution also simplifies buffer-
ing concerns. Specifically, by always reading from
the control connection (and responding to it) first, we
no longer need to buffer all the user data preceding
a control message if a control action is needed. The
elimination of extra buffering also improves perfor-
mance.

� The use of two connections raises the question of
the address to which the second connection should
be bound. Our current implementation always estab-
lishes the second (i.e., control) connection at a fixed
offset from the user supplied (i.e., data) connection
address. If adopted as a convention, this should not
create any collision problem.

The main data structure in the SNP layer is the
snp struct structure. Its definition is shown in Fig-
ure 9. The control sockfd and data sockfd fields
contain, respectively, the socket descriptors for the control
and data connections. The fields cred list ptr and
ctx list ptr contain pointers to GSS layer structures
(see Figure 8). The meanings of most other fields are
given in the comments. Each call to snp() creates an
snp struct structure; the SNP handle returned is an
index into an internal table of pointers to snp struct
maintained by the SNP layer.

We have only touched upon the main ideas in our imple-
mentation. Most of the details concerning context expira-
tion, context renegotiation, etc., have been omitted due to
length limitation. This paper is intended only as a prelimi-
nary overview. We hope to provide a full account in a final
report.

���
TCP does not support out-of-band data. It does support some ele-

mentary form of urgent data with the urgent bit and the urgent pointer.
Berkeley socket supports out-of-band data, though the precise semantic
guarantee is highly implementation-dependent.� �

In some sense, this is arguable because typically, there is no guaran-
tee on the relative arrival times of messagessent on different connections.
However, in practice, for connections with the same source and destina-
tion, the times of arrival closely follow the times of the respective sends.

7 Performance

In this section, we present some performance results of
our SNP implementation. The measurements were done
on a network of Sun SPARCstations 10/30 running SunOS
4.1.3. The resolution of the system clock is in the order of
microseconds.

� �

We first calibrate the performance of our cryptographic
packages. Our DES package is a generic public do-
main one, while our RSA/MD5 package is from RSAREF
[4]. Both packages are relatively portable, and are not
optimized. The calibration allows us to determine the
overhead introduced by the SNP layer, excluding crypto-
graphic cost. This provides a better measure of the per-
formance of our SNP implementation, because as more
highly optimized cryptographic packages and hardware
become available, the cryptographic cost will diminish,
while the SNP overhead remains constant.

Referring to Table 1, the following observations can be
made: (1) The performance of both DES (CBC mode) and
MD5 is linear with respect to data size. (2) The perfor-
mance of RSA is also linear except for small data sizes.
This is due to the fact that for large data sizes, the RSA
implementation does not perform “true” RSA encryption.
Instead, it first generates a random DES key, then encrypts
the data with the DES key, and finally encrypts the DES
key using RSA.

Our measurements of SNP performance are given in Ta-
bles 2 and 3. All measurements are for SNP STREAM;
similar measurements apply toSNP DGRAM, and are omit-
ted. Note also that these measurements are based on the
use of 512-bit RSA keys (i.e., modulus).

� �

Table 2 shows the timing results for connection estab-
lishment (i.e., snp connect()/snp accept()) and
release (i.e., snp close()). The Total Time row gives
the amount of time accounted for by cryptographic and
XDR operations. The Measured Time row gives the ob-
served times in establishing and closing an SNP connec-
tion. The difference between Measured Time and Total
Time (the SNP Overhead row) gives the overhead intro-
duced by SNP. The Regular Socket row gives the time it
takes for the correspondingsocket calls to complete. Thus,
for connection establishment, SNP introduced around 0.2s
overhead. A major component of this overhead is the extra
round-trip delay for the communication with the authen-
tication server and the associated message processing at
the authentication server. For connection release, the SNP
overhead is around 16ms.

Table 3 shows the timing results for data transfer calls
(specifically for snp write()). The first two rows give
the times for a SNP STREAM connection with the encrypt

� �
The measurement error, however, is much worse because of context

switching, function call overhead, etc.� �
Our implementation is parametric with respect to key length. We

can easily switch over to 1024-bit keys. That, however, will slow things
down significantly. The increase in cost is not linear in key length.

Credential StructureContext Structure

SNP-API

data_sockfd

control_sockfd

cred_list_ptr

ctx_list_ptr

Snp structure (sap_struct)

(gss_ctx_id_desc) (gss_cred_desc)
Underlying BSD

Socket Structure

.

.

.

public_key

private_key

auth_srvr_public_key

login_cert

session_key

local_nonce

peer_nonce

peer_name

.

.

.

.

.

.

Snp Structure Array

.

.

.

.

.

.

.

.

Application’s

SNP Handle

GSS-API
Communication Interface

Figure 8: Data Structures

struct snp_struct {
int control_sockfd; /* Control socket desc */
int data_sockfd; /* Data socket desc */
int family; /* Params specified in call */
int type;
int protocol;
struct sockaddr *local_addr; /* Obtained from snp_bind() */
int local_addr_len;
struct sockaddr *peer_addr; /* Obtained from snp_connect */
int peer_addr_len; /* or first data xfer calls */
struct name_s *local_name; /* Obtained from snp_attach() */
struct name_s *peer_name;
gss_cred_id_t cred_list_ptr; /* Credentials pointer */
gss_ctx_id_t ctx_list_ptr; /* Context pointer */
int secure_options; /* Obtained from snp_setopt() */
int no_send; /* Options for snp_shutdown() */
int no_recv;
struct msg_s *remaining_data; /* Data recd but not requested */
a_uint16 seq_number; /* For the GSS sequencing */
a_uint16 recd_seq_number;

}

Figure 9: SNP Structure

Data Length 16B 512B 1KB 2KB 4KB 8KB 16KB 32KB

DES Encryption 0.42 2.85 5.25 9.97 19.15 37.47 75.19 152.58
DES Decryption 0.41 2.94 5.40 10.19 19.54 38.20 77.24 158.78
DES Sign 0.36 0.54 0.73 1.14 1.89 3.46 6.61 12.72
DES Verify 0.33 0.54 0.73 1.11 1.89 3.42 6.57 12.75
RSA 512 Encryption 541.24 542.21 546.00 551.92 560.44 577.69 618.54 689.76
RSA 512 Decryption 53.93 56.85 59.11 63.83 73.14 91.29 127.49 198.42
RSA 512 Sign 540.25 540.10 540.45 540.64 544.82 544.01 550.25 551.17
RSA 512 Verify 53.86 53.82 54.20 54.49 55.48 57.06 60.10 66.21
MD5 0.056 0.25 0.43 0.79 1.52 3.00 6.00 12.11

Table 1: Cryptographic Performance (in milliseconds)

and sign options set, respectively. The third row gives
the time for a regular SNP STREAM with no option set,

whereas the fourth row gives the time using plain sockets.

Connect Close
Number of
Operations Subtotal

Number of
Operations Subtotal

RSA Encryption 2@1kB 1092.00
Decryption 2@1kB 118.22
Sign 1@1kB 540.45
Verify 2@1kB 108.40

DES Encryption 2@200B 2.85 2@200B 2.85
Decryption 1@200B 1.45 2@200B 2.90
Key Gen. 1 0.38

XDR Encode 21@600B 29.82 2@200B 2.84
Decode 20@600B 2.00 2@200B 0.20

Total Time 1895.57 8.79
Measured Time 2148.40 24.90
SNP Overhead 252.83 16.11
Socket Time 2.40 0.40

Table 2: Connect and Close Calls (in milliseconds)

Buffer Length 1kB 2kB 4kB 8kB 16kB

Socket
SOCK STREAM 0.6 1.0 1.3 2.8 5.2

SNP
SOCK STREAM 0.7 1.1 1.5 3.4 6.7

SNP
Overhead 0.1 0.1 0.2 0.6 1.5

SNP STREAM
Plain 2.2 3.2 4.4 7.1 12.6

SNP STREAM
Signed 4.2 5.8 8.8 14.6 27.1

SNP STREAM
Encrypted 13.0 22.9 42.7 82.8 163.6

Table 3: Data Transfer Calls (in milliseconds)

The SNP Overhead row gives the overhead introduced by
SNP. It can be observed that the SNP overhead is minimal.

Two conclusions can be drawn from these measure-
ments: (1) The cost of cryptographic operations dominates
the total cost of SNP. We believe this can be generalized to
any cryptographic security mechanism. (2) It is possible to
provide security at the application layer without incurring
undue overhead, even with an unoptimized implementa-
tion. We expect a streamlined implementation to perform
even better.

8 Related Work

Most existing work on secure network communication is
focused on the protocol or architecture aspects [3, 9, 15,
17]; not much has been done concerning a general secure
application network programming interface.

The work most relevant to ours includes several secure
RPC systems: the secure RPC package in [2], Sun se-
cure RPC [18] and DCE secure RPC [14]. The goals of
these systems are similar to ours: to provide applications
transparent access to secure communication. However,
the models of communication adopted are different. RPC
assumes an implicit communication model. That is, its
users do not directly manage communications, but instead
they deal with high-level abstractions in terms of proce-
dures. SNP assumes an explicit communication model;
SNP users are directly responsible for initiating connec-
tions, sending and receiving data, and closing connections.
The same difference exists between sockets/TLI and RPC
styles of network programming.

Apart from this, the implementation of these RPC sys-
tems is totally different from ours. For example, they tend
to be tightly coupled to the underlying protocol (e.g., a
modified Needham-Schroeder protocol [11] is used in [2],
Kerberos is used in DCE). Our use of GSS-API provides
protocol independence.

A recent paper by Wobber et al. [19] describes an oper-
ating system interface for supporting authentication. The
interface is based on a formal theory of a speaks for re-
lation [7]. Its concrete implementation contains several

interesting abstract datatypes, e.g., a Prin type that repre-
sents principals, and an Auth type that represents princi-
pals a process can speak for. In relating to our work, their
interface can be used as an alternate lower interface for
SNP. In other words, instead of translating SNP-API calls
to GSS-API calls, they can be translated to calls to the in-
terface in [19]. Such a translation should be quite straight-
forward because of the high level of abstraction supported.
A major disadvantage of their interface, though, is the
lack of compatibilitywith other security mechanisms, e.g.,
Kerberos. Moreover, their interface has only been imple-
mented on the Taos operating system, and is currently not
available on Unix.

9 Discussion and Future Work

We believe SNP represents an important first step toward
secure network programming for the masses. It is clear
that many important issues need to be resolved before this
could be a reality. Some of these issues are: the devel-
opment of a security infrastructure that provides uniform
management and distribution of credentials (particularly
for interdomainauthentication), and operating system sup-
port for basic security concepts such as identity (see [19]).

One of the other impediments is performance. With
rapidly improving cryptographic software and hardware,
this should be a diminishing problem. As demonstrated in
[5], the speed of a modern RISC-based workstation is al-
ready quite adequate for most cryptographic computation,
provided the right algorithms and optimizations are used.

We are also considering several interesting exten-
sions to the SNP interface. First, delegation can be
added. This would involve the addition of two new
calls: snp delegate() for the delegating process and
snp assume() for the delegate. Delegation allows a
delegate to act with the same authority as the delegating
process. Second, the snp attach() call can be ex-
tended to accept identity expressions instead of just simple
identity specifications. An identity expression can specify
a combination of identities that would be communicated
to the peer.

In terms of implementation, we may try to port SNP
to other authentication systems conforming to GSS-API.
Also, the essential ideas of SNP can be adapted to provide
security at other layers (e.g., transport). The lessons we
learned in designing and implementing SNP provide use-
ful references in such an effort.

Concerning the design of our interface, we have made
the compatibility with sockets as one of our top design
requirements. With our present design, a typical socket
program can be converted into an SNP program by sim-
ply adding an snp attach() call,

� �

without signifi-
cantly modifying any of the existing code. Alternate de-
signs with less compatibility are possible. For example,
the concept of identity can be promoted to “first class cit-
izen” status, replacing completely the use of socket ad-
dresses. For example, the functions snp connect()
and snp accept() would then become

int snp_connect (int snp_ep,
struct name_s *peer_name);

int snp_accept (int snp_ep,
struct name_s *peer_name);

Another concern in the interface design is user control.
How much control should a user be given and how should
it be done? For example, users (with the help of an oper-
ating system) may wish to explicitly manage credentials
themselves, or to use their own encryption keys or algo-
rithms. Our present design allows very limited user con-
trol (mainly through snp setopt()); this could be ap-
propriately extended.

Finally, there is the question of what the best layer for
providing security support for network communication is.
It can be argued that there is no single best layer for this
purpose. The question then becomes: what is the best
placement of security functionalities into different layers
so that the resulting architecture is most general and ad-
mits least duplication? Much more research is needed to
obtain an answer.

Acknowledgments

We wish to thank our shepherd Adam Moskowtiz and the
anonymous referees for their constructive comments and
suggestions. We are also grateful to Dinesh Das and mem-
bers of the Network Research Seminar of the University of
Texas at Austin for listening to our ideas.

References

[1] CCITT Recommendation X.208 Specification of Abstract
Syntax Notation one (ASN.1), 1988. See also ISO/IEC
8824, 1989.

� �

And also prefixing socket calls with “snp ”.

[2] A.D. Birrell. Secure communication using remote pro-
cedure calls. ACM Transactions on Computer Systems,
3(1):1–14, February 1985.

[3] J. Ioannidis and M. Blaze. The architecture and implemen-
tation of network-layer security under unix. In Proceedings
of 4th Usenix Unix Security Workshop, Santa Clara, Cali-
fornia, October 4–6 1993.

[4] RSA Laboratories. RSAREF: A cryptographic toolkit for
privacy-enhanced mail. January 5 1993.

[5] J.B. Lacy, D.P. Mitchell, and W.M. Schell. Cryptolib:
Cryptography in software. In Proceedings of Usenix Unix
Security Workshop IV, pages 1–17, Santa Clara, California,
October 4–6 1993.

[6] B. Lampson, M. Abadi, M. Burrows, and T. Wobber. Au-
thentication in distributed systems: Theory and practice.
In Proceedings of 13th ACM Symposium on Operating
Systems Principles, pages 165–182, Asilomar Conference
Center, Pacific Grove, California, October 13–16 1991.

[7] B. Lampson, M. Abadi, M. Burrows, and T. Wobber. Au-
thentication in distributed systems: Theory and practice.
ACM Transactions on Computer Systems, 10(4):265–310,
November 1992. A preliminary version of this paper ap-
peared as [6].

[8] J. Linn. Generic Security Service Application Program In-
terface, September 1993. RFC 1508.

[9] R. Molva, G. Tsudik, E. Van Herreweghen, and S. Zatti.
KryptoKnight authentication and key distribution system.
In Proceedings of 2nd European Symposium on Research
in Computer Security, pages 155–174, Toulouse, France,
November 23–25 1992. Springer Verlag.

[10] National Bureau of Standards, Washingtion, D.C. Data En-
cryption Standarad FIPS Pub 46, January 15 1977.

[11] R.M. Needham and M.D. Schroeder. Using encryption for
authentication in large networks of computers. Communi-
cations of the ACM, 21(12):993–999, December 1978.

[12] R. Rivest. The MD5 Message-Digest Algorithm, April
1992. RFC 1321.

[13] R.L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key cryptosys-
tems. Communications of the ACM, 21(2):120–126, Febru-
ary 1978.

[14] W. Rosenberry, D. Kenny, and G. Fisher. Understanding
DCE. O’Reilley & Associates, Inc., 1992.

[15] J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos: An
authentication service for open network systems. In Pro-
ceedings of USENIX Winter Conference, pages 191–202,
Dallas, TX, February 1988.

[16] Sun Microsystems, Inc. XDR: External Data Representa-
tion Standard, June 1987. RFC 1057.

[17] J.J. Tardo and K. Alagappan. SPX: Global authentication
using public key certificates. In Proceedings of 12th IEEE
Symposium on Research in Security and Privacy, pages
232–244, Oakland, California, May 20–22 1991.

[18] B. Taylor and D. Goldberg. Secure networking in the Sun
environment. In Proceedings of Summer Usenix Confer-
ence, pages 28–37, Atlanta, Georgia, June 1986.

[19] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Au-
thentication in the Taos operating system. In Proceedings
of 14th ACM Symposium on Operating Systems Principles,
Ashville, North Carolina, 1993.

[20] T.Y.C. Woo. Authentication and Authorization in Dis-
tributed Systems. PhD thesis, Department of Computer Sci-
ences, The University of Texas at Austin, May 1994.

[21] T.Y.C. Woo and S.S. Lam. Authentication for distributed
systems. Computer, 25(1):39–52, January 1992.

[22] T.Y.C. Woo and S.S. Lam. “Authentication” revisited.
Computer, 25(3):10, March 1992.

[23] T.Y.C. Woo and S.S. Lam. Design, verification, and imple-
mentation of an authentication protocol. Technical Report
TR 93-31, Department of Computer Sciences, The Univer-
sity of Texas at Austin, November 1993.

Thomas Y.C. Woo is a Ph.D. candidate at the Department
of Computer Sciences at the University of Texas at Austin.
His research interests include computer networking, dis-
tributed systems, security and multimedia.

Thomas received a BS (First-Class Honors) degree in
computer science from the University of Hong Kong and
an MS degree in computer science from the University of
Texas at Austin.

Raghuram Bindignavle is a Masters candidate at the De-
partment of Computer Sciences at the University of Texas
at Austin. He received his BE in computer science at the
Regional Engineering College of the University of Alla-
habad, India.

Shaowen Su is a graduate student at the Department of
Computer Sciences at the University of Texas at Austin.
He received his MS in Engineering Physics from the Uni-
versity of Oklahoma and his BS in Physics from Beijing
University, Beijing, P.R.China.

Simon S. Lam is chairman of the Department of Com-
puter Sciences, University of Texas at Austin, and holds
two endowed professorships. Prior to joining the Univer-
sity of Texas at Austin faculty in 1977, he was a research
staff member at the IBM T.J. Watson Research Center,
Yorktown Heights, New York from 1974 to 1977. His
research interests are in the areas of computer networks,
communication protocols, performance evaluation, for-
mal verification, and network security.

Simon received the BSEE degree with Distinction from
Washington State University in 1969, and the MS and
Ph.D. degrees in engineering from the University of Cali-
fornia at Los Angeles in 1970 and 1974, respectively. He
was a recipient of the 1975 Leonard G. Abraham Prize
Paper Award from the IEEE Communications Society.
He organized and was program chair of the first ACM
SIGCOMM Symposium held at the University of Texas

at Austin in 1983. He presently serves on the editorial
boards of IEEE Transactions on Software Engineering and
IEEE/ACM Transactions on Networking.

