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Abstr act

SNP provides a high-level abstraction for secure end-to-
end network communications. It supportsboth stream and
datagram semantics with security guarantees (e.g., data
originauthenticity, dataintegrity and data confidentiality).
Itisdesigned to resemblethe Berkel ey socketsinterface so
that security can be easily retrofitted into existing socket
programs with only minor modifications. SNP is built on
top of GSS-API, thus making it relatively portable across
different authentication mechanisms conforming to GSS-
API. SNP hides the details of GSS-API (eg., credentias
and contexts management), the communication sublayer
aswell asthe cryptographic sublayer from the application
programmers. 1t a so encapsul ates security sensitiveinfor-
mation, thus preventing accidental or intentiona disclo-
sure by an application program.

1 Introduction

The explosive growth of network connectivity has signif-
icantly aggravated the problem of security. Most existing
network programming paradigms adopt a trust-based ap-
proach to security (e.g., trusting network packets, trusting
hosts). Thisisnolonger adequate, especially for malicious
attacks. Indeed, with easy access to networks and avail-
ability of sophisticated network tools, the effort to mount
attacks such as spoofing network packets or sniffing illicit
information from network traffic is substantially reduced.
To effectively counter these attacks, a coherent security
infrastructureis needed. An important element of such a
infrastructureis a convenient abstraction for secure appli-
cation network programming.

In recent years, distributed systems security has re-
ceived a great ded of attention. For example, a num-
ber of authentication systems (e.g., Kerberos from MIT
[15], SPX from DEC [17] and KryptoKnight from IBM
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[9]) have been designed and implemented. Although
these systems do provide an adequate solution for typical
network security concerns, they suffer a maor common
drawback, namely, it is difficult to integrate them into an
application. More specifically, they do not export a clean
and easy-to-useinterfacethat can bereadily used inimple-
menting a distributed service. For example, it often takes
a considerable amount of effort to “kerberize” an existing
distributed service. Besides, the interface provided is not
portable, making the switch from one authentication sys-
tem to another anon-trivial task.

The recently published Internet draft standard Generic
Security Service Application Program Interface (GSS
API) [8] dleviates the problem somewhat. In fact, both
SPX and KryptoKnight! have already implemented a
small subset of GSS-API.2 However, the GSS-API inter-
faceisstill toolow-level to bepractical for typical network
application programming. Its proper use requires inti-
mate understanding of the underlying GSS-API concepts,
which can cause significant distraction from the main task
of aprogram. Itisvalidtosay that GSS-API ismoresuited
for usein system software than in regul ar application pro-
gramming. Indeed, it is intended that a typica caller of
GSS-API beacommunication protocol, e.g., telnet, ftp [8,
p. 2].

We believe that what is needed is an abstraction for
secure network programming that can hide most of the
details of GSS-API while retaining the same ease of
use as most existing abstractions for network program-
ming. Asan analogy, theraw interface to aprotocol (e.g.,
t cp.i nput () /t cp_out put () for TCP) is often diffi-
cult to use, whereas programming using a higher-level ab-
straction (e.g., sockets, TLI) issignificantly easier.?

In this paper, we discuss the design and implementa-
tion of SNP (Secure Network Programming), a high-level
abstraction for secure network programming that we have

I KryptoKnight is not public-domain. The use of GSS-API is men-
tioned in [9]. But it is not clear to what extent the interface has been
implemented.

2A recent article in comp.protocols.kerberos states that implementa-
tions of GSS-API for Kerberoswill also be available.

3Infact, Berkeley socketshaveoften been touted asamajor contribut-
ing factor to the popularity of TCP/IP. Although Berkeley sockets can
support a variety of protocols, it was designed mainly with TCP/IP in
mind.



developed. SNPislikesocketsor TLI inthat itisan inter-
face that provides applications access to network commu-
nications. However, it differsfrom socketsor TLI in many
significant ways:

o SNP provides secure network communication. For
example, it provides data origin authenticity, data
integrity and data confidentiality services on top of
the usua stream and datagram services provided by
socketsor TLI. The precise services provided by SNP
are detailed in Section 4.

o SNP providesan end-to-end communi cation abstrac-
tion at theapplicationlevel, whereas socketsand TLI
are transport level abstractions.* More specifically,
asocket represents atransport level endpoint (e.g., a
TCP port), while an SNP endpoint represents an ap-
plicationlayer entity (e.g., aserver). Thisdigtinction
isimportant and is further explained in Section 3.

SNP isimplemented on top of GSS-API. It is currently
intheform of alibrary. It adoptsthe same basic design as
sockets (though several new callshave been added), which
allows easy transitions from socket-based programs.

The balance of this paper is organized as follows. In
the next section, we present an overview of SNP. Thispro-
vides a quick introduction to SNP before delving into de-
tailsin later sections. In Section 3, we elaborate on a list
of design requirements and decisionswe have made inthe
design of SNP. In Section 4, we provide a high-level de-
scription of the services offered by SNP. In Section 5, we
givea specification of the SNP interface. In Section 6, we
discuss various considerations that arise in implementing
SNP In Section 7, we provide some figures on the perfor-
mance of our implementation. In Section 8, we compare
SNPto somereated systems. In Section 9, we discussthe
lessons learned and directionsfor futurework.

2 Overview of SNP

2.1 A Quick First Look

To give aquick introduction of what SNPis, we begin by
looking at actual SNP code fragments. Figures 1 and 2
show respectively the typical client and server SNP code.

As can be easily seen, the SNP interface closely resem-
blesthat of sockets. Thisresemblanceisnot acoincidence.
Rather, it was a design decision (see Section 3 for the ra
tionale). Infact, most of thecallseven retain their familiar
semanticsfrom their socket counterparts, though their im-
plementationsare quitedifferent. Inthefollowing, wewill
focus only on the callsthat are new in SNP.

4This is not strictly true as sockets also provide access to protocols
in other layers in the communication hierarchy, cf., raw sockets etc.
However, socketsand TLI aretypically considered to be transport layer
interfaces.

There are two main new cals, namely snp() and
snp_attach(). snp() replaces the socket () call
in the socket interface. It is similar in functionality to
socket () inthat it creates a communication endpoint.
It differsfrom socket () , however, in that an SNP end-
point correspondsto an application layer entity rather than
atransport layer entity.

In addition to SOCK_STREAM and SOCK_DGRAM
snp() supports two new kinds of communication
semantics.  SNP_STREAM and SNP_DGRAM Both
extend the semantics of their respective socket coun-
terparts by adding security guarantees. Specificaly, an
SNP_STREAM connection is authenticated. That is, a
connection would be made only if it is accepted by the
intended peer (specified by the initiator); and conversely,
the identity of theinitiator can be uniquely determined by
the intended peer once a connection is made. Additiona
security services (e.g., dataintegrity, data confidentiality)
can be activated on an SNP_STREAM connection by set-
ting the appropriate optionsusing snp_set opt () (see
Section 4). Essentidly, an SNP_STREAMconnection can
be understood as a connection that supportsthe semantics
of a SOCK_STREAM connection even in an environment
with intruders.®> The case for SNP_DGRAMis similar.

snp_attach() isacompletely new cal; it does not
have a socket counterpart. The main function of this call
isto attach an identity to an SNP endpoint. The attached
identity is the one that would be authenticated to a peer.
An identity is not just a name, it is a supported claim of
aparticular name.® In other words, an identity can be un-
ambiguously verified to another party. In terms of imple-
mentation, an identity consists of a name together with
a set of credentials that corroborate the authenticity of
the name. Typically, the operation of snp_att ach()
involves collecting the appropriate credentials (locally
and/or remotely) for supporting the specified name. It
should be noted that the identity attached to an SNP end-
point needs not be the identity of the caller per se. For
example, adelegate may want to attach itsidentity asadel -
egate rather than its own identity. Operationaly, a caller
is alowed to attach any identity to an endpoint as long as
itis ableto gather the required credentials to support that
identity.

2.2 Componentsof SNP

SNP is designed and implemented in a modular fashion.
Each major functionality of SNP isencapsulated in a sep-
arate layer that exports a well-defined interface. Figure 3
shows the conceptua layering and major components of
SNP.

5 Assuming proper options are set corresponding to the types of
threats anticipated.

6 A better term for thisis principal. But we intend to keep it informal
in this paper and refrain from introducing too many terms.



#i ncl ude <snp. h>

if ((snp_ep = snp(AF_I NET, SNP_STREAM SNP_PROTO DEFAULT)) < 0) {
snp_perror ("snp() error :"); exit(1);

/* Initialize local and peer addr structs - just as in sockets */

/* Initialize local & peer nane structs as shown bel ow */

| ocal _nane. np. np_val = (char *) nalloc(sizeof(client_nane));
| ocal _nane. np.np_l en = strlen(client_nane);

strcpy(l ocal _nane. np.np_val, client_nane);

peer _nane. np. np_val = (char *) nalloc(sizeof(server_nane));
peer _nane. np. np_l en = strlen(server_nane);

strcpy(peer_nane.np.np_val, server_nane);

if (snp_attach(snp_ep, & ocal _nanme, &peer_nane) < 0) {
snp_perror ("snp_attach() error :"); exit(1);

if (snp_connect(snp_ep, sizeof(struct sockaddr_in),
(struct sockaddr *) (&peer_addr) ) < 0) {
snp_perror ("snp_connect () error :"); exit(1);

}
if ((nunbytes = snp_wite(snp_ep, buf, buf_size)) < 0) {

snp_perror ("snp_wite() error :"); exit(1);
}
if'(snp_close(snp_ep) <0) {

snp_perror ("snp_close() error :"); exit(1);

}

Figure 1: Sample SNP Client Program Fragment

#i ncl ude <snp. h>

|f ((snp_ep = snp(AF_I NET, SNP_STREAM SNP_PROTO DEFAULT)) < 0) {
snp_perror ("snp() error :"); exit(1);

/* Initialize local and peer addr structs - just as in sockets */

/* Initialize local name structs as shown bel ow */

| ocal _nane. np. np_val = (char *) nalloc(sizeof(server_nane));
| ocal _nane. np.np_l en = strlen(server_nane);

strcpy(l ocal _nane. np.np_val , server_nane);

if (snp_attach(snp_ep, & ocal _nanme, &peer_nane) < 0) {

snp_perror ("snp_attach() error :"); exit(1);

}

if (snp_bind(snp_ep, &server_addr, sizeof(server_addr)) < 0) {
snp_perror ("snp_bind() error :"); exit(1);

}

if (snp_listen(snp_ep, 5) < 0) {
snp_perror ("snp_listen() error :"); exit(1);

}

if ((new_snp_ep = snp_accept(snp_ep, (struct sockaddr *) &peer_addr,
&addr _len)) < 0) {
snp_perror ("snp_accept() error :"); exit(1);

if (snp_getpeerid (snp_ep, &client_nane) < 0) {
snp_perror ("snp_getpeerid() error :"); exit(1);

}

if ((nunbytes = snp_read(new snp_ep, buf, buf_size)) < 0) {
snp_perror ("snp_read() error"); exit(1);

}

|f (snp_cl ose(new snp_ep) < 0) {
snp_perror ("snp_close() error :"); exit(1);

}

|f (snp_cl ose(snp_ep) < 0) {
snp_perror ("snp_close() error :"); exit(1);

Figure 2: Sample SNP Sequential Server Program Fragment

SNP-API defines the upper (external) interface avail- lower interfaces: GSS-API and a (insecure) network com-
ableto an application. Internally, SNP makes use of two munication APl. GSS-API encapsulates the details of the
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Figure 3: Organization of SNP

particular authentication protocol used, thusenhancing the
independence of the SNP layer from the underlying au-
thentication mechanism. Similarly, the communication
API isolates the details of network communication from
the SNP layer. We have chosen sockets as the communi-
cation API, mainly dueto itswide avail ability.

GSS-API in turns makes use of a lower generic cryp-
tographic interface. This interface provides access to all
cryptographic functions and is generic in the sense that
it can support any (symmetric or asymmetric) cryptosys-
tem. This provides “cryptosystem independence” and fa-
cilitates easy substitutionwhen new (implementations of)
cryptosystems are available. Further discussion of our
GSS-API implementation and the underlying authentica-
tion protocol is beyond the scope of this paper; interested
readers can consult [23, 20] for more details.

The main function of the SNP layer is context and cre-
dential management. It initiatesthe acquisition of creden-
tials, monitors the status of contexts and credentials, and
initiates renegotiation (of contexts) and/or reacquisition
(of credentials), if necessary. It should be noted, however,
that the actua storage of contextsand credentialsisinter-
nal to GSS-API.

2.3 SNPin Context

SNPispart of alarger project of oursthat concerns the de-
sign and implementation of an authentication framework
for distributed systems [21]. The framework addresses a
range of authentication needs that includes bootstrapping,
user logins and peer communications. SNPisdesigned as
an interface for accessing the peer authentication protocol
in our framework.

Because of its modular design, detailed understanding
of the other components in the framework is not required
in order to use or understand SNP. Indeed, SNP is rela
tively independent of the origina framework it was de-
signed for, and should be easily portable for use in other

authentication frameworks (see Section 3). Therefore, we
will only briefly describe the other components in our
framework, to the extent they are required for the under-
standing of SNP.

At present, our framework hasthree protocols: asecure
bootstrap protocol that creates abootstrap certificateupon
successful bootstrapping; a user-host mutual authentica-
tion protocol that creates a login certificate when a user
successful logsin; and a peer-peer mutual authentication
protocol that isthe basis for SNP. The login certificate is
retrieved when a user attachesitsidentity to an SNP end-
point. This certificateisstored in an SNP (GSS-API) cre-
dential structureand i sused to authenticatetheuser’siden-
tity to its peer.

The peer-peer authentication protocol in our framework
assumes the use of a commonly trusted authentication
server (AS). Apart from itsauthentication duty, ASisaso
responsible for generating the session key used in an au-
thentication exchange. Thus, in order for SNP to function
correctly, AS needs to be properly set up. For example, it
must be properly secured and be given a correct database.
The discussion of the associated administrative issues is
beyond the scope of this paper.

Lastly, a name service isrequired for trand ating appli-
cation layer entitiesto their transport layer addresses. This
name service, however, need not be trusted, as SNP per-
forms the proper authentication during connection estab-
[ishment.

3 Desgn Requirements and Deci-
sions

In designing SNP, we first set out a number of require-
ments. Based on these requirements, we made severa key
design decisions. We briefly discusstherationa efor these
requirements and decisions below:



e SNP should provide end-to-end communication at
the application layer rather than the transport layer.
Although the transport layer is the first end-to-end
layer, we believetheconcept of identity isonly mean-
ingful a or above the session layer. For example, in
Unix and TCP/IPR, ports are egphemeral and the associ-
ation of portswith processesisdynamic.” Webelieve
itismore appropriateto base our semantics on appli-
cation level entitiesthan to assume a secure mapping
between ports and processes.

¢ SNP should beindependent of any particular authen-
tication protocol or framework. This allows SNP to
be portable across different authentication systems.
We achieve such independence by using GSS-API
to encapsul ate the detail s of the underlying protocol,
and sockets as the communication interface.

¢ It should be easy to convert existing network appli-
cation programs to use SNP. To achieve this, we de-
signed SNP to retain as much as possible the genera
structureof asocket program. Hence: (1) only amin-
imal number of new concepts needs to be learned in
order to acquaint onesalf with SNP; (2) only minor
(mostly syntactic) modifications need to be done to
convert a socket program to an SNP program, thus
significantly facilitating retrofitting.

We could have emulated the TLI interface instead.
But we believe that sockets and TLI are sufficiently
similar to each other that little extraeffort isrequired
to convert TLI programs into SNP programs. Be-
sides, there are far more existing socket programs
than TLI programs, though TLI is quickly gaining
popularity.

e SNP should work in a heterogeneous environment.
Thisentailscareful considerationsof message encod-
ing and processing. We have chosen XDR [16] for
this purpose, mainly for itssimplicity. ASN.1[1] is
used in other authentication systems (e.g., Kerberos,
SPX); we find it to be overly complicated and not
suitable as a prototyping tool. From our experience,
XDR has been adequate, though not asflexible aswe
would like.

o SNP should be independent of particular cryptosys-
tems. We achieve this by encapsulating al crypto-
graphicfunctionsusingageneric cryptographicinter-
face. In our current implementation, we use the de
facto standard cryptosystem trio, i.e., DES [10Q] for
symmetric encryption, RSA [13] for asymmetric en-
cryption and MD5 [12] for message digest.

7 Reserved portsare amatter of conventiononly, thereis no permanent
binding.
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4 ServicesProvided

Security is only well-defined with respect to a threat
model. Inthispaper, we assume the standard threat mode!.
That is, a saboteur can read, insert, delete and modify any
network traffic. It should be noted that a saboteur is not
necessarily atotally external intruder, ’he can aso be a
legitimate user. Thus, he can use information available
to alegitimate user in mounting an attack.

We stress that our model does not include denial of ser-
vice and traffic analysis threats. It is always possible for
a saboteur to corrupt all packets passing through. Even
an infinitely persistent sender cannot overcome such cor-
ruption if the saboteur is equally persistent. Indeed, most
network programming abstractions guarantee only safety
but not progress.

Inthe following, we present in high-level termsthe ser-
vices provided by SNP. We first define below the typical
types of services offered by a secure communication con-
nection:

o Persistent Ddlivery (PD) — A sender will persis-
tently try to retransmit dataif it has not been received
yet. Thus, PD implicitly assumes the use of acknowl-
edgments.

¢ Best Effort Delivery (BED) — Data sent may or may
not arrive at the receiver. Each of the intermediate
nodes can either forward or drop the data.

e Sequenced Ddivery (SD) — If data arrives at are-
ceiver, it must appear in the same order it was sent.
That is, no reordering or duplicationis alowed.

¢ Data Confidentiality (DC) — Dataisonly legibleto
theintended receiver.

o Datalntegrity (DI)— Data, if accepted by areceiver,
must bear the same content as that sent.

o Data Origin Authenticity (DOA) — Data, if accepted
by areceiver, must have come from a known specific
sender.



o Data Destination Authenticity (DDA) — When data
arrives, areceiver can unambiguously determinethat
it istheintended receiver.

e Connection Authenticity (CA) — A connection, if
made, must be between the intended peers.

SNP can provide different combinations of the
above services. The precise combinations provided
is summarized in Figure 4. Each of the two boxes
is labeled by a constant denoting the communica
tion semantics, while each of the circles is labeled
by an SNP option constant. The combination of ser-
vices provided under a particular communication
semantics and set of options is labeled in the inter-
section of the corresponding regions. For example,
under SNP_STREAM if both SNP_OPTI ONS_SI GNED
and SNP_OPTI ONS_.SEQUENCED are set, the ser-
vices provided are PD, CA, DI, DOA, DDA and
SD. We note that SNP_OPTI ONS_SI GNED and
SNP_OPTI ONS_ENCRYPTED cannot both be set a
the same time. The case for SNP_DGRAMis similar, and
is omitted.

5 The SNP Interface

As with the socket interface, SNP-API functions can be
divided into five classes: initialization, connection estab-
lishment, datatransfer, connection release, and utility. We
describethefunctionsin each classbelow. A completelist
of dl functionsisgivenin Figure 5. Parameter names ap-
pearing in the foll owing subsections refer to those shown
there.

Most functions have semantics similar to their socket
counterpart. (In fact, they are given the same names mod-
ulo the prefix “snp_.") We have not emulated all the data
transfer functionsof sockets (e.g., sendnsg, r ecvinsg)
due to their intricate semantics. Nonblocking I/O is sup-
ported, but asynchronous|/O (i.e., interrupt driven) isnot.

We a so note that most functions below (notabl e excep-
tions being the data transfer functions) return 0 on suc-
cess and —1 on failure. In addition, a global variable
snp_er r no will contain the appropriate error number on
failure.

5.1

Functionsinthisclass are used for creating and initializing
an SNP endpoint. They include snp(), snp_bi nd(),
snplisten() andsnp_attach().

Initialization

511 snp()

snp() createsan endpoint of communication. Itsparam-
eters have the same types as socket () and have sim-
ilar semantics. Currently, the only supported vaue for

fam |y is AF_I NET, corresponding to the internet ad-
dress family. The possible values of t ype are shown in
the following table:

SNP_STREAM Secure Stream

SNP_DGRAM Secure Datagram
SOCK_STREAM Normal (Insecure) Stream
SOCK_DGRAM Normal (Insecure) Datagram

For pr ot ocol , the currently supported values are as
follows:

SNP_PROTO.DEFAULT
SNP_PROTO_PUSH_MCDEL
SNP_PROTO.REVERSE

| PPROTO.TCP

| PPROTO_UDP

Default Authentication Protocol
Push Model Authentication Protocol
Reverse Authentication Protocol
Normal TCP

Normal UDP

A combination of SNP_STREAM and any one of the
first three protocol values resultsin a secure equivalent of
TCP. Similarly, SNP_DGRAMIin combination with one of
the first three protocol constants provides a secure UDP
protocol. The first three protocol constants can be used
only when the f ani | y argument value has been set to
either SNP_STREAM or SNP_DGRAM The use of either
| PPROTO.UDP or | PPROTO.TCRP results in the normal
(i.e., insecure) UDPor TCP protocols, respectively. These
are equiva ent to the semantics provided by the socket in-
terface.

snp() returnsan SNP handle, of typei nt . The han-
dleis an index into an interna table of SNP structures
maintained by SNP. Thus, unlike socket (), an SNP
handleisnot afile descriptor. Hence, some of the standard
functionsthat apply to asocket descriptor will not apply to
an SNP handle.

The snp_ep parameter in each of the other functions
in Figure5 refer to an SNP handle obtained from acall to

snp() .

512 snp_bind()

After creation, an address may be bound to an SNP
endpoint using snp_bi nd(). Thel ocal _addr and
addr _| en are of the same typesasinthebi nd() func-
tion. They specify the address to be bound.

5.13 snp.attach()

snp_attach() is used for specifying the identity a
caller wishesto beauthenticated asto itspeer and thename
of theintended peer. The name structurenane _s isof the
followingform: (Thisstructureisautomatically generated
by r pcgen from a XDR structure.)

struct nane_s {

struct {
u_int np_len; /* Length of the nanme */
char *np_val; [/* The actual nane */
} onp;

b



Initialization Calls

Connection Establishment Calls

Connection Release Calls
int snp_close ( int snp_ep );

int snp_shutdown (int snp_ep, int how);
Utility Calls
int snp_setopt ( int snp_ep, int |evel,

int snp_getpeerid ( int snp_ep,

int snp (int famly, int type, int protocol );
int snp_bind ( int snp_ep, struct sockaddr *|ocal _addr,
int snp_listen ( int snp_ep, int backlog );

int snp_attach ( int snp_ep, struct name_s *|ocal _nane,

int snp_connect ( int snp_ep, struct sockaddr *peer_addr, int peer_addr_len );
int snp_accept ( int snp_ep, struct sockaddr *peer_addr, int peer_addr_len );
Data Transfer Calls
int snp_wite ( int snp_ep, char *buf, int nbytes );
int snp_read ( int snp_ep, char *buf, int nbytes );
int snp_send ( int snp_ep, char *buf, int nbytes, int flags );
int snp_recv ( int snp_ep, char *buf, int nbytes, int flags );
int snp_sendto ( int snp_ep, char *buf, int nbytes, int flags,
struct sockaddr *to, int tolen );
int snp_recvfrom (int snp_ep, char *buf, int nbytes, int flags,
struct sockaddr *from int *fromen );

int optnane,
struct nane_s *peer_nane );

int addr_len );

struct name_s *peer_nane );

char *optval, int optlen );

Figure5: SNP Interface Specification

If invoked by a server, peer _name may be set
to NULL, in which case connection from any client
would be accepted. Once a connection is established,
the identity of the client can be discovered by calling
snp_get peerid() (see beow). snp.attach()
must be invoked before connection establishment, if
secure communication is desired.

514 snp.listen()

The function alowsits caller to specify the maximum & -
lowed backlog of connection requests. It has identical
semantics as | i st en(), except it takes an SNP han-
dle. Typically, a cdler of snplisten() isa server.
This function can only be used on an SNP_STREAM or
SCOCK_STREAMconnection.

5.2 Connection Establishment

The second class of functions consists of
snp_connect () and snp.accept(); they ae
mostly used for stream connections.

521 snp_connect ()

For an SNP_STREAMendpoint, thisfunction resultsinthe
establishment of aconnection with a peer if acorrespond-
ingsnp_accept () isperformed by the peer. A success-
ful connection aso indicates a successful authentication
exchange using the underlying authentication protocol .

In the case of SNP_DGRAM snp_connect () only
saves the supplied peer address in an internal SNP struc-
ture. Thisaddresswould be assumed to be the destination
address in all subsequent data transfer unless an explicit
address is given. No authentication is performed at the
time of the call; instead, it is performed at the time of the
first datatransfer call.

5.2.2 snp_accept ()

snp_accept () can be used only on an SNP_STREAM
or SOCK_STREAM endpoint. It accepts connection re-
guests and completes them if the authenticated peer
identity matches the one specified by a previous
snp_attach().®2  Successful completion also im-
pliesthat the peer identity has been authenticated, and can
be discovered using snp_get peeri d() . Furthermore,
it implies the establishment of a pair of security contexts
(one at each peer) and the distribution of a session key.

Thereturnvalueisanew SNP handlewhich can beused
for further communication with the peer. Further connec-
tion requests can continueto come in on the original SNP
endpoint. If peer _addr and peer _addr | en are non-
NULL, they will befilled in appropriately.

5.3 DataTransfer

All of thefollowing datatransfer functionsreturnthe num-
ber of bytesactually sent or received on success and -1 on
failure.

81f the peer name specified is NULL, connectionsfrom any client is
accepted.



531 snp_sendto()

snp_sendt o() sends nbyt es of data pointed to by
buf to the peer address specified by the t o parameter.
This function may be used on both stream and datagram
endpoints. In case of a datagram endpoint, both t o and
t o_| en must bespecified. Thedatawill be sent encrypted
or signed if the appropriate SNP optionshave been set (see
snp_set opt () below). The possibleva uesand seman-
ticsof f | ags arethe same asthoseinsendt o() .

532 snp_recvfrom))

snp_recvfronm() atemptsto receive nbyt es of data
and storesthem in abuffer pointedtoby buf . Theaddress
and address length of the peer are filled into f r omand
f roml en respectively, if both of them are non-NULL.
f | ags has the same semantics asinther ecvfron().
The incoming data is decrypted or verified, depending
upon the SNP options specified.

533 snpread(), snpwite(), snpsend()
andsnp_recv()

These calls can only be used on stream endpoints. Their
semantics are essentially similar to their socket counter-
parts. snp_send() and snp_recv() provides addi-
tional features (e.g., such as expedited data) that are not
available with snp.write() and snpread(). The
nature of data sent or received depends on the current SNP
options.

5.4 Connection Release

54.1 snp_shutdown() and snp_cl ose()

These functions have similar semantics as their socket
counterparts, except they perform the release only after
they have verified that the release request did originate
from the correct peer.

5.5 Utility Routines

Thesefunctionsare used for manipulatingor retrievingthe
characteristics of an SNP endpoint.

55.1 snp_setopt ()

snp_set opt () isusedto set optionsavailablefor areg-
ular socket as well as those specific to SNP. A new con-
stant, SNP, has been introduced for thel evel parameter.
The options available a the SNP level are:

SNP_COPTI ONS_DEFAULT
SNP_COPTI ONS_ENCRYPTED
SNP_CPTI ONS_SI GNED
SNP_COPTI ONS_SEQUENCED
SNP_COPTI ONS_NOTI FY

Reset all option settings to default
Encrypt all subsequent data

Sign all subsequent data

Enforce sequencing on data

Notify caller on context expiry — do
not reinitiate authentication

SNP_OPTI ONS_CONTEXT_TI MVE | Set context expirationtime

Setting SNP_OPTI ONS_DEFAULT results in resetting
all optionsto their default settings; that is, no encryption,
no signing and no sequencing.

Setting SNP_OPTI ONS_ENCRYPTED causes subse-
guent outgoing datato be encrypted. Setting
SNP_OPTI ONS_SI GNED causes subsequent outgoing
data to be signed. The key to be used for encryption
and signing is the session key maintained in the current
security context. Options SNP_OPTI ONS_ENCRYPTED
and SNP_OPTI ONS_SI GNED cannot be set a the
same time. To enforce sequencing of data, option
SNP_OPTI ONS_SEQUENCED should be set. Thismay be
used in conjunction with either
SNP_OPTI ONS_ENCRYPTED or
SNP_OPTI ONS_SI GNED.

When the current security context expires, the SNP
layer automatically renegotiates a new context. This can
be disabled by setting SNP_OPTI ONS_NOTI FY; inwhich
case, the SNP user will be notified of context expiry when
it performsan SNP call. The duration of a context can be
set using the SNP_OPTI ONS_CONTEXT _TI ME option.

Note that the first five options are toggle flags, while
the last one requires the context duration to be specified
inopt val .

552 snp_perror() andsnp_get peerid()

snp_perror () performsthe same function as the stan-
dard perror () function, except that it accounts for
SNP-API error codes as well. snp_get peeri d() re
trieves the authenticated identity of the peer.®

6 Overview of Implementation

To facilitate discussion of SNP's implementation, it is
helpful to first briefly describe our implementation of
GSS-API. The authentication protocol underlying our
GSS-API implementationisshown in Figure 6 (I denotes
the initiator, R the responder and AS the authentication
server). The protocol was initialy published in [22], and
later verified in [20, 23]. The mapping of this protocol to
GSS-API isquitestraightforward, and isdescribed in[23].
The key point to noteisthat the communicationswith AS
(steps (CE4)—CES6)) are completely encapsulated within
GSS-API, and are not observable by the SNP layer.
Typicdly, an SNP-API call istrandated into a humber
of GSS-API callstogether with call sto the communication
layer. GSS-API isresponsible for generating tokens that
are to be shipped using the communication layer. In sim-
ple terms, the main responsibility of the SNP layer is to
request the right tokensto be generated (according to user
request and current state) and to ensure they are properly

91n fact, the unauthenticated identity of the peer is available as soon
asthe underlying authentication protocol has proceeded beyond acertain
point, even if the authentication exchangefails at the end.
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Figure 6: Underlying Authentication Protocol
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gss_delete_sec_context()
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Figure 7: Control and Data Flow

transferred to the peer SNP layer. Figure7 showstherela o Two typesof messages, namely, data and control, are

tionship between SNP-API callsand GSS-API cdls. (The transferred between SNP peers. Data messages con-
bold arrows in Figure 7 correspond to the protocol steps tain user data and correspond to SNP data transfer
inFigure6.) For example, acal tosnp_connect () re- cals, while control messages contain information re-
sultsintwocalstogss_i nit sec_cont ext () aswel lated to the operation of the SNP layer (e.g., connec-
asthree callsto the communication layer. tion establishment request/response) and correspond

to SNP control cdls (e.g., snp_connect ()) and

functions (e.g., context renegotiation).
There are severa major considerationsinimplementing

SNP. We describe them below:



There are two ways these messages can be trans-
ferred. One isto multiplex them onto a single con-
nection, and the other is to create dedicated connec-
tions for each type of messages. We opted for the
latter because control messages should generaly be
givenpriority over datamessages. Thus, if they areto
betransferred on the same connection, theunderlying
communi cation mechanism must support some form
of priority message facility. Most existing communi-
cation mechanisms (socketsin particular) do not sup-
port such priority message processing well.!° The
two-connections solution avoids the dependence on
such amechanism.!!

¢ The two-connections solution also simplifies buffer-
ing concerns. Specifically, by always reading from
the control connection (and respondingtoit) first, we
no longer need to buffer al the user data preceding
a control message if a control action is needed. The
elimination of extra buffering also improves perfor-
mance.

e The use of two connections raises the question of
the address to which the second connection should
be bound. Our current implementation always estab-
lishes the second (i.e., control) connection at a fixed
offset from the user supplied (i.e., data) connection
address. If adopted as a convention, this should not
create any collision problem.

The main data structure in the SNP layer is the
snp_struct structure. Its definition is shown in Fig-
ure9. Thecont r ol _sockf d anddat a_sockf d fields
contain, respectively, the socket descriptorsfor the control
and data connections. The fieldscred_l i st ptr and
ctx i st _ptr contain pointersto GSS layer structures
(see Figure 8). The meanings of most other fields are
given in the comments. Each cdl to snp() creates an
snp_struct structure; the SNP handle returned is an
index into an internal table of pointersto snp_st r uct
maintained by the SNP layer.

We have only touched uponthemainideasin our imple-
mentation. Most of the details concerning context expira
tion, context renegotiation, etc., have been omitted due to
length limitation. Thispaper isintended only asaprelimi-
nary overview. We hopeto provideafull account in afina
report.

10TCP does not support out-of-band data. It does support some ele-
mentary form of urgent data with the urgent bit and the urgent pointer.
Berkeley socket supports out-of-band data, though the precise semantic
guaranteeis highly implementation-dependent.

11n some sensg, thisis arguable becausetypically, thereis no guaran-
teeontherelative arrival times of messagessent on different connections.
However, in practice, for connectionswith the same source and destina-
tion, thetimes of arrival closely follow the times of the respective sends.

7 Performance

In this section, we present some performance results of
our SNP implementation. The measurements were done
on anetwork of Sun SPARCstations10/30 running SUunOS
4.1.3. Theresolution of the system clock isin the order of
microseconds.!?

We first calibrate the performance of our cryptographic
packages. Our DES package is a generic public do-
main one, while our RSA/MD5 package isfrom RSAREF
[4]. Both packages are relatively portable, and are not
optimized. The calibration allows us to determine the
overhead introduced by the SNP layer, excluding crypto-
graphic cost. This provides a better measure of the per-
formance of our SNP implementation, because as more
highly optimized cryptographic packages and hardware
become available, the cryptographic cost will diminish,
while the SNP overhead remains constant.

Referring to Table 1, the following observations can be
made: (1) The performance of both DES (CBC mode) and
MDS5 is linear with respect to data size. (2) The perfor-
mance of RSA is also linear except for small data sizes.
This is due to the fact that for large data sizes, the RSA
implementation does not perform “true” RSA encryption.
Instead, it first generates arandom DES key, then encrypts
the data with the DES key, and finaly encrypts the DES
key using RSA.

Our measurements of SNP performance aregivenin Ta-
bles 2 and 3. All measurements are for SNP_STREAM
similar measurements apply to SNP_DGRAM and are omit-
ted. Note also that these measurements are based on the
use of 512-hit RSA keys (i.e., modulus).'3

Table 2 shows the timing results for connection estab-
lishment (i.e, snp_connect () /snp_accept ()) and
release (i.e, snp_cl ose() ). The Tota Time row gives
the amount of time accounted for by cryptographic and
XDR operations. The Measured Time row gives the ob-
served times in establishing and closing an SNP connec-
tion. The difference between Measured Time and Total
Time (the SNP Overhead row) gives the overhead intro-
duced by SNP. The Regular Socket row gives the time it
takesfor the corresponding socket callsto complete. Thus,
for connection establishment, SNPintroduced around 0.2s
overhead. A major component of thisoverheadisthe extra
round-trip delay for the communication with the authen-
tication server and the associated message processing at
the authentication server. For connection release, the SNP
overhead isaround 16ms.

Table 3 shows the timing results for data transfer calls
(specifically forsnp wri t e() ). Thefirst two rowsgive
the timesfor a SNP_STREAMconnection with the encrypt

12 The measurement error, however, is much worse because of context
switching, function call overhead, etc.

130ur implementation is parametric with respect to key length. We
can easily switch over to 1024-bit keys. That, however, will slow things
down significantly. Theincreasein cost is not linear in key length.
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Figure 8: Data Structures
struct snp_struct {
int control _sockfd; /* Control socket desc */
int dat a_sockf d; /* Data socket desc */
int famly; /* Params specified in call */
int type;
int protocol ;
struct sockaddr *| ocal _addr; /* btained from snp_bind() */
int | ocal _addr _| en;
struct sockaddr *peer _addr; /* Obtained from snp_connect */
int peer _addr _| en; /* or first data xfer calls */
struct nane_s *| ocal _nane; /* btained from snp_attach() */
struct name_s *peer _nane;
gss_cred_id_t cred_list_ptr; /* Oredential s pointer */
gss_ctx_id_t ctx_list_ptr; /* Context pointer */
int secure_options; /* btained from snp_setopt() */
int no_send,; /* Options for snp_shutdown() */
int no_recv;
struct msg_s *remai ni ng_dat a; /* Data recd but not requested */
a_uint16 seq_nunber ; /* For the GSS sequencing */
a_uint16 recd_seq_nunber;
}
Figure9: SNP Structure
[[ DataLength [ 16B | 512B [ 1KB | 2KB [ 4KB | 8KB [ 16KB [ 32KB ||
DES Encryption 0.42 2.85 5.25 9.97 19.15 37.47 7519 | 152.58
DES Decryption 0.41 294 5.40 10.19 19.54 38.20 7724 | 158.78
DES Sign 0.36 054 0.73 114 1.89 3.46 6.61 12.72
DES Verify 0.33 0.54 0.73 111 1.89 3.42 6.57 12.75

RSA 512 Encryption | 541.24 | 54221 | 546.00 | 551.92 | 560.44 | 577.69 | 61854 | 689.76
RSA 512 Decryption 53.93 56.85 59.11 63.83 73.14 91.29 | 12749 | 19842

RSA 512 Sign 540.25 | 540.10 | 54045 | 540.64 | 544.82 | 544.01 | 550.25 | 551.17
RSA 512 Verify 53.86 53.82 54.20 54.49 55.48 57.06 60.10 66.21
MD5 0.056 0.25 0.43 0.79 152 3.00 6.00 1211

Table 1: Cryptographic Performance (in milliseconds)

and sign options set, respectively. The third row gives whereas thefourthrow givesthetime using plain sockets.
the time for a regular SNP_STREAMwith no option set,



Connect Close
Number of Number of
Operations Subtotal Operations Subtotal
RSA Encryption 2@1kB 1092.00 [[ BufferLength T 1kB [ 2kB [ 4kB [ 8kB [ 16kB ]|
Decryption 2@1kB 118.22 Socket
Sqn TOIKE | 54045 SocK.STREAM| 06 | 10| 13| 28 52
Verify 2@I1KB | 10840 NP
DES Encryption | 2@200B 285 || 2@200B 285 SOCK STREAM| @7 | 11| 15| 34 6.7
Decryption | 1@200B 145 || 2@2008 2.90 SNP
Key Gen. - 58 overhead 01| o1 | 02| 06 15
XDR Encode 21@6008 2082 || 2@2008 284 SNP.STREAM
Decode 20@6008 2.00 || 2@2008 0.20 Plain 22| 32| 44| 11| 126
Total Time 189557 8.79 SNP_STREAM
Measured Time 2148.40 2490 Signed 42 | 58| 88 146 | 271
SNP Overhead 25283 16.11 SNP.STREAM
Socket Time 240 040 Encrypted 130 | 229 | 427 | 828 | 1636

Table 2: Connect and Close Calls (in milliseconds)

The SNP Overhead row gives the overhead introduced by
SNP It can be observed that the SNP overhead isminimal.

Two conclusions can be drawn from these measure-
ments: (1) The cost of cryptographi c operationsdominates
thetotal cost of SNP. We believethiscan be generalized to
any cryptographicsecurity mechanism. (2) Itispossibleto
provide security at the application layer without incurring
undue overhead, even with an unoptimized implementa
tion. We expect a streamlined implementation to perform
even better.

8 Related Work

Most existing work on secure network communication is
focused on the protocol or architecture aspects [3, 9, 15,
17]; not much has been done concerning a general secure
application network programming interface.

The work most relevant to oursincludes several secure
RPC systems: the secure RPC package in [2], Sun se-
cure RPC [18] and DCE secure RPC [14]. The goals of
these systems are similar to ours: to provide applications
transparent access to secure communication. However,
the models of communication adopted are different. RPC
assumes an implicit communication model. That is, its
users do not directly manage communications, but instead
they deal with high-level abstractions in terms of proce-
dures. SNP assumes an explicit communication model;
SNP users are directly responsible for initiating connec-
tions, sending and receiving data, and cl osing connections.
The same difference exists between sockets/TLI and RPC
styles of network programming.

Apart from this, the implementation of these RPC sys-
temsistotaly different from ours. For example, they tend
to be tightly coupled to the underlying protocol (eg., a
modified Needham-Schroeder protocol [11] isused in[2],
Kerberosis used in DCE). Our use of GSS-API provides
protocol independence.

A recent paper by Wobber et al. [19] describes an oper-
ating system interface for supporting authentication. The
interface is based on a forma theory of a speaks for re-
lation [7]. Its concrete implementation contains severa

Table 3: DataTransfer Calls(inmilliseconds)

interesting abstract datatypes, e.g., aPr i n typethat repre-
sents principals, and an Aut h type that represents princi-
pals a process can speak for. In relating to our work, their
interface can be used as an aternate lower interface for
SNP In other words, instead of trandating SNP-API calls
to GSS-API cals, they can betrandated to callsto thein-
terfacein[19]. Such atrand ation should be quitestraight-
forward because of the highlevel of abstraction supported.
A magor disadvantage of their interface, though, is the
lack of compatibility with other security mechanisms, e.g.,
Kerberos. Moreover, their interface has only been imple-
mented on the Taos operating system, and is currently not
available on Unix.

9 Discussion and Future Work

We believe SNP represents an important first step toward
secure network programming for the masses. It is clear
that many important i ssues need to be resolved before this
could be a redlity. Some of these issues are: the devel-
opment of a security infrastructure that provides uniform
management and distribution of credentials (particularly
for interdomai nauthentication), and operating system sup-
port for basic security concepts such asidentity (see[19]).

One of the other impediments is performance. With
rapidly improving cryptographic software and hardware,
thisshould be adiminishing problem. Asdemonstrated in
[5], the speed of a modern RISC-based workstation is al-
ready quite adequate for most cryptographic computation,
provided the right algorithms and optimizations are used.

We are also considering several interesting exten-
sions to the SNP interface. First, delegation can be
added. This would involve the addition of two new
cals: snp_del egat e() for the delegating process and
snp_assune() for the delegate. Delegation alows a
delegate to act with the same authority as the delegating
process. Second, the snp_attach() cal can be ex-
tended to accept identity expressionsinstead of just smple
identity specifications. Anidentity expression can specify
a combination of identities that would be communicated
to the peer.



In terms of implementation, we may try to port SNP
to other authentication systems conforming to GSS-API.
Also, theessentid ideas of SNP can be adapted to provide
security at other layers (e.g., transport). The lessons we
learned in designing and implementing SNP provide use-
ful references in such an effort.

Concerning the design of our interface, we have made
the compatibility with sockets as one of our top design
requirements. With our present design, a typical socket
program can be converted into an SNP program by sim-
ply adding an snp_attach() cal,'* without signifi-
cantly modifying any of the existing code. Alternate de-
signs with less compatibility are possible. For example,
the concept of identity can be promoted to “first class cit-
izen” status, replacing completely the use of socket ad-
dresses. For example, the functions snp_connect ()
and snp_accept () would then become

int snp_connect ( int
struct nane_s
int snp_accept ( int
struct nane_s

*peer _nane );
*peer _nane );

Another concern in the interface design isuser control.
How much control should a user be given and how should
it be done? For example, users (with the help of an oper-
ating system) may wish to explicitly manage credentials
themselves, or to use their own encryption keys or ago-
rithms. Our present design alows very limited user con-
trol (mainly through snp_set opt () ); this could be ap-
propriately extended.

Finally, there is the question of what the best layer for
providing security support for network communication is.
It can be argued that there is no single best layer for this
purpose. The question then becomes: what is the best
placement of security functionalitiesinto different layers
so that the resulting architecture is most general and ad-
mits least duplication? Much more research is needed to
obtain an answer.
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