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Intelligent decision making is at the heart of AI.

Motivation
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Thesis Question
How can the power of Deep Neural Networks be 
leveraged to extend Reinforcement Learning towards 
domains featuring partial observability, continuous 
parameterized action spaces, and sparse rewards?
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How can Deep Reinforcement Learning agents     
learn to cooperate in a multiagent setting?



Contributions
• Half Field Offense Enivronment 

• Deep RL in parameterized action space 

• Multiagent Deep RL 

• Deep Recurrent Q-Network (DRQN) 

• Curriculum learning in HFO
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Outline
1. Background 

2. Deep Reinforcement Learning 

3. Multiagent Architectures 

4. Communication
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Markov Decision Process

Action at

State st

Reward rt

Formalizes the interaction between the agent and 
environment.
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Half Field Offense
Cooperative multiagent soccer domain built on the 
libraries used by the RoboCup competition 

Objective: Learn a goal scoring policy for the offense 
agents 

Features continuous actions, partial observability, and 
opportunities for multi agent coordination
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Half Field Offense
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State Action Spaces

58 continuous state features encoding 
distances and angles to points of interest 

Parameterized-Continuous Action Space:  
Dash(direction, power)  
Turn(direction) 
Tackle(direction)  
Kick(direction, power) 

Choose one discrete action + parameters 
every timestep
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Learning in HFO is difficult
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Reinforcement Learning
Reinforcement Learning provides a general 
framework for sequential decision making. 

Objective: Learn a policy that maximizes discounted 
sum of future rewards. 

Deterministic policy π is a mapping from states to 
actions. 

For each encountered state, what is the best action to 
perform.
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Q-Value Function
Estimates the expected return from a given state-
action: 

Answers the question: “How good is action a from 
state s.” 

Optimal Q-Value function yields an optimal policy.

Q⇡(s, a) = E
⇥
rt+1 + �rt+2 + �2rt+3 + . . . |s, a

⇤
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Deep Neural Network

Parametric model with stacked 
layers of representation. 

Powerful, general purpose function 
approximator. 

Parameters    optimized via 
backpropagation.

Input

Output

✓
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Deep Reinforcement 
Learning

Neural network used to approximate 
Q-Value function and policy π. 

Replay Memory: a queue of recent 
experience tuples (s,a,r,s’) seen by 
agent. 

Updates to network are done on 
experience sampled randomly from 
replay memory. 

State

Q-Value / Action
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Deep Deterministic 
Policy Gradients 

Model-free Deep Actor Critic 
architecture [Lillicrap ’15] 

Actor learns a policy π, Critic learns to 
estimate Q-values 

Actor outputs 4 actions + 6 parameters.  

at = max(4 actions) + associated 
parameter(s)

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

Critic
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Training
Critic trained using temporal 
difference: 

Given Experience  

Actor trained via Critic gradients:

State

ᵘθμ

4 Actions 6 Parameters

ᵘθQ

Q-Value

Actor

Critic

auQ
(s
,a
)

y = rt + �(Q(st+1, µ(st+1)|✓Q))

r✓µµ(s) = raQ(s, a|✓Q)r✓µµ(s|✓µ)
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Reward Signal

rt = -ᵂd(Agent, Ball) + Ikick + -3ᵂd(Ball, Goal) + 5IGoal

Go to Ball                      Kick to Goal

With only goal-scoring reward, agent never learns 
to approach the ball or dribble.
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Results
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Results
Scoring Avg. Steps
Percent to Goal

DDPG1 1.0 108.0
DDPG2 .99 107.1
DDPG3 .98 104.8
DDPG4 .96 112.3

Helios’ Champion .96 72.0
DDPG5 .94 119.1
DDPG6 .84 113.2
SARSA .81 70.7
DDPG7 .80 118.2

[Deep Reinforcement Learning in Parameterized Action 
Space, Hausknecht and Stone, in ICLR ‘16]
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Offense versus keeper

Automated Helios goal keeper is quite effective at 
stopping shots. 

Independently created by Helios RoboCup team. 

DDPG fails to reliably score against keeper.
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Better value estimates
Q-Learning is known to overestimate Q-Values [Hasselt ’16]. 

Several approaches have been found, but don’t always 
extend to an actor/critic framework. 

We will show that mixing off-policy updates with on-
policy Monte-Carlo updates yields quicker, more stable 
learning. 
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Q-Learning Spectrum
Q-Learning is a bootstrap off-policy method: 

N-step Q-learning [Watkins ’89]: 

On-Policy Monte-Carlo updates are on-policy, non-
bootstrap:

Q(st, at|✓) = rt+1 + �max

a
Q(st+1, a|✓)

Q(st, at|✓) = rt+1 + �rt+2 + · · ·+ �T rT

Q(st, at|✓) = rt+1 + �rt+2 + · · ·+ �n�1rt+n + �n
max

a
Q(st+n, a|✓)
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n-step-return
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Q-Learning
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High Variance

High Bias 
Low Variance
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On-Policy Monte Carlo
On-Policy Monte-Carlo updates make sense near the 
beginning of learning, since                             is 
nearly always wrong. 

After Q-Values are refined, off-policy, bootstrap 
updates more efficiently utilize experience samples. 

A middle path is to mix both update types:

max

a
Q(st+1, a|✓)

y = � y
on-policy-MC

+ (1� �) y
1-step-q-learning

27



Experiments
Trained on 1v1 task 

We evaluated 5 different β values: 0, .2, .5, .8, 1

y = � y
on-policy-MC

+ (1� �) y
1-step-q-learning
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β = 0
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β = 0.2
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β = 0.5

31



β = 0.8
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β = 1.0
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Off-Policy Monte Carlo
For 1v1 experiments, a middle ground between on-
policy and off-policy updates works best. 

Purely off-policy updates can’t learn; Purely on-policy 
updates take far too long to learn. 

[On-Policy vs. Off-Policy Updates for Deep 
Reinforcement Learning, Hausknecht and Stone, 

DeepRL ’16]

35



Thesis Question
How can the power of Deep Neural Networks be 
leveraged to extend Reinforcement Learning towards 
domains featuring partial observability, continuous 
parameterized action spaces, and sparse rewards? 

Novel extension of DDPG to parameterized-continuos 
action space. 

Method for efficiently mixing on-policy and off-policy 
update targets. 
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Outline
1. Background 

2. Deep Reinforcement Learning 

3. Multiagent Architectures 

4. Communication
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Deep Multiagent RL
Can multiple Deep RL agents cooperate to achieve a 
shared goal? 

Examine several architectures: 

Centralized: Single controller for multiple agents 

Parameter Sharing: Layers shared between agents 

Memory Sharing: Shared replay memory
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Centralized
Both agents are controlled 
by a single actor-critic 

State & Action spaces are 
concatenated 

Learning takes place in 
higher-dimensional joint 
state, action space

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Actor

Critic

State

6 Parameters4 Actions

State
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Parameter 
Sharing

Shared weights between layers in 
Actor networks. Separate sharing 
between Critic networks. 

Reduces total number of 
parameters 

Encourages both agents to 
participate even though 2v0 is 
solvable by a single agent.

State

4 Actions 6 Parameters

256

ReLU

128

ReLU

Q-Value

256

ReLU

128

ReLU

4 Actions 6 Parameters

256

ReLU

128

ReLU

Q-Value

256

ReLU

128

ReLU

State

1024

ReLU

512

ReLU

1024

ReLU

512

ReLU

Critics

Actors
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Both agents add experiences to a shared memory. 
Both agents perform updates from the shared memory. 
Parameters of agents are not shared.

Memory Sharing
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Shared 
Replay 
Queue

Agent-0 Agent-1



Memory Sharing agents add experience and 
update from a shared replay memory.

Memory Sharing
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Multiagent Architectures

Centralized controller utilizes only a single agent. 

Sharing parameters and memories encourages 
policy similarity, which can help all agents learn the 
task. 

Memory sharing results least performance gap 
between agents.
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Outline
1. Background 

2. Deep Reinforcement Learning 

3. Multiagent Architectures 

4. Communication
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Symbiosis in Nature

Crocodile and Egyptian Plover

Clownfish and anemone
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Communication

In human society, cooperation 
can be achieved far faster 
than in nature, through 
communication.

How can learning agents use communication to 
achieve cooperation?
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1. Identify task-relevant information 

2. Communicate meaningful information to the teammate 

3. Remain stable enough that teammate can trust the 
meaning of messages

Desire a learned communication 
protocol that can:
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Related Work
• Multiagent Cooperation and Competition with Deep 

Reinforcement Learning; Tampuu et. al, 2015 

• Learning to Communicate to Solve Riddles with 
Deep Distributed Recurrent Q-Networks; Foerster 
et al., 2016 

• Learning to Communicate with Deep Multi-Agent 
Reinforcement Learning; Foerster et al., 2016
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Baseline Communication 
Architecture

Continuous communication 
actions. Messages are real 
values. 

No meaning attached to 
messages; no pre-defined 
communication protocol. 

Incoming messages appended 
to state. 

Messages updated in direction 
of higher Q-Values.

Actions Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU
Actor

Critic

Comm

State Comm
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Teammate Comm Gradients

Same as baseline except Communication gradients 
exchanged with teammate. 

Allows teammate to directly alter communicated 
messages in the direction of higher reward. 
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Baseline Comm Arch

Actor Actor

Critic Critic

state comm statecommaction action

state state

T=1

T=0

Agent 0 Agent 1
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Teammate Comm Gradients

Actor Actor

Critic Critic

state comm statecommaction action

state state

T=1

T=0

Agent 0 Agent 1
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Guess My Number Task

Each agent assigned secret number  

Goal: teammate send a message              close to 
secret number h 

Reward:  

Max reward when teammate message equals your 
secret number.
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Baseline
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Teammate Comm Grad
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Blind Agent can hear but cannot see 

Sighted Agent can see but cannot 
move 

Goal: sighted agent must use 
communication to help blind agent 
locate and approach the ball 

Rewards: 

Agents communicate using 
messages

Blind Soccer
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Baseline

64

Baseline architecture begins to solve the task, but the 
protocol is not stable enough and performance crashes. 



Teammate Comm Gradients

65

Fails to ground messages in the state of the environment. 

Agents fabricate idealized messages that don’t reflect 
reality. 

Example: blind agent wants the ball to be directly ahead 

So it alters the sighted agents messages to say this, 
regardless of the actual location of the ball.



Teammate Comm Gradients
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GSN learns to extract information 
from the sighted agent’s 
observations that is useful for 
predicting the blind agent’s rewards. 

Intuition: We can use observed 
rewards to guide the learning of a 
communication protocol. 

Grounded Semantic 
Network

o(1)

r(2)

128

ReLU

256

ReLU

64

ReLU

64

ReLU

m(1) a(2)

θr

θm
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Maps sighted agent’s observation 
o(1) and blind teammate’s action a(2) 
to blind teammate reward r(2) 

          r(2) = GSN(o(1), a(2)) 

Grounded Semantic 
Network

o(1)

r(2)

128

ReLU

256

ReLU

64

ReLU

64

ReLU

m(1) a(2)

θr

θm
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Grounded Semantic 
Network

Message encoder M and a reward 
model R: 

Activations of layer m(1) form the 
message. 

Intuition: m(1) will contain any salient 
aspects of o(1) that are relevant for 
predicting reward.

o(1)

r(2)

128

ReLU

256

ReLU

64

ReLU

64

ReLU

m(1) a(2)

θr

θm
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Grounded Semantic 
Network

Training minimizes supervised loss: 

Evaluation requires only observation 
o(1) to generate message m(1) 

GSN is trained in parallel with agent. 
Uses learning rate 10x smaller than 
agent for stability. o(1)

r(2)

128

ReLU

256

ReLU

64

ReLU

64

ReLU

m(1) a(2)

θr

θm
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GSN
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Is communication 
really helping?
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t-SNE Analysis
2D t-SNE projection of 4D messages 
sent by the sighted agent 

Similar messages in 4D space are 
close in the 2D projection 

Each dot is colored according to 
whether the blind agent Dashed or 
Turned 

Content of messages strongly 
influences actions of blind agent
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1. Identify task-relevant information 

2. Communicate meaningful information to the teammate 

3.Remain stable enough that teammate can trust the 
meaning of messages

Desire a learned communication 
protocol that can:

77

GSN fulfills these criteria. For more info see: 
[Grounded Semantic Networks for Learning Shared 
Communication Protocols] NIPS DeepRL Workshop ‘16



Communication Conclusions
Communication can help cooperation. It is possible 
to learn stable and informative communication 
protocols. 

Teammate Communication Gradients is best in 
domains where reward is tied directly to the content 
of the messages. 

GSN is ideal in domains in which communication 
needs to be used as a way to achieve some other 
objectives in the environment.
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Thesis Question
How can Deep Reinforcement Learning agents 
learn to cooperate in a multiagent setting? 

Showed that sharing parameters and replay 
memories can help multiple agents learn to 
perform a task. 

Demonstrated communication can help agents 
cooperate in a domain featuring asymmetric 
information.
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Future Work

Teammate modeling: Could such a model be used for 
planning or better cooperation? 

Embodied Imitation Learning: How can an agent 
learn from a teacher without directly observing the 
states or actions of the teacher? 

Adversarial multiagent learning: How to communicate 
in the presence of an adversary?
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Contributions
• Extended Deep RL algorithms to parameterized-

continuous action space. 

• Demonstrated that mixing bootstrap and Monte Carlo 
returns yields better learning performance. 

• Introduced and analyzed parameter and memory sharing 
multiagent architectures. 

• Introduced communication architectures and 
demonstrated that learned communication could help 
cooperation. 

• Open source contributions: HFO, all learning agents
81



Thanks!

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

CriticConvolution 1

Convolution 2

Convolution 3

LSTM

Fully Connected

Q-Values
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Partially Observable MDP 
(POMDP)

Action at

Observation ot

Reward rt

Observations provide noisy or incomplete information 

Memory may help to learn a better policy
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Atari Environment

Action at

Observation ot

Reward rt

Resolution 160x210x3
18 discrete actions

Reward is change in game score
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Atari: MDP or POMDP?

Depends on the number 
game screens used in the 
state representation. 

Many games PO with a 
single frame. 
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Neural network estimates Q-Values 
Q(s,a) for all 18 actions: 

Learns via temporal difference: 

Accepts the last 4 screens as input.

Deep Q-Network (DQN)

Convolution 1

Convolution 2

Convolution 3

Fully Connected

Fully Connected

Q-Values

Q(s|✓) = (Qs,a1 . . . Qs,an)

Li(✓) = Es,a,r,s0⇠D

h�
Q(st|✓)� yi

�2i

yi = rt + �max(Q(st+1|✓))
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Flickering Atari
How well does DQN perform on POMDPs? 

Induce partial observability by stochastically 
obscuring the game screen 

Game state must be inferred from past observations

ot =

⇢
st with p =

1
2

< 0, . . . , 0 > otherwise
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DQN Pong

True Game Screen Observed Game Screen
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DQN Flickering Pong

True Game Screen Observed Game Screen
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Uses a Long Short Term Memory 
(LSTM) to selectively remember past 
game screens. 

Architecture identical to DQN except: 
1. Replaces FC layer with LSTM 
2. Single frame as input each 

timestep 

Trained end-to-end using BPTT for 
last 10 timesteps.

Deep Recurrent Q-Network 

Convolution 1

Convolution 2

Convolution 3

LSTM

Fully Connected

Q-Values
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DRQN Flickering Pong

True Game Screen Observed Game Screen
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LSTM infers velocity
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DRQN Frostbite

94



95



Extensions
DRQN has been extended in several ways: 

• Addressable Memory: Control of Memory, Active 
Perception, and Action in Minecraft; Oh et al. in 
ICML ’16 

• Continuous Action Space: Memory Based Control 
with Recurrent Neural Networks; Heess et al., 2016 

[Deep Recurrent Q-Learning for Partially Observable 
MDPs, Hausknecht et al, 2015; ArXiv]
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Bounded Action Space
HFO’s continuous parameters are bounded 

Dash(direction, power) 
Turn(direction) 
Tackle(direction) 
Kick(direction, power) 

Direction in [-180,180], Power in [0, 100] 

Exceeding these ranges results in no action 

If DDPG is unaware of the bounds, it will invariably 
exceed them
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We examine 3 approaches for bounding the DDPG’s 
action space: 

1. Squashing Function 

2. Zero Gradients 

3. Invert Gradients

Bounded DDPG
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Squashing Function
1. Use Tanh non-linearity to bound parameter output 

2. Rescale into desired range
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Squashing Function
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Each continuous parameter has a range: [pmin, pmax] 

Let p denote current value of parameter, and      the 
suggested gradient. 

Then:

Zeroing Gradients

rp =

(
rp if p

min

< p < p
max

0 otherwise

rp

101



Zeroing Gradients
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Inverting Gradients

rp = rp ·
(
(p

max

� p)/(p
max

� p
min

) if rp suggests increasing p

(p� p
min

)/(p
max

� p
min

) otherwise

For each parameter:

Allows parameters to approach the bounds of the ranges 
without exceeding them 

Parameters don’t get “stuck” or saturate
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Inverting Gradients
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2v1

• Can agents learn cooperative behaviors like 
passing and cross kicks? 

• Hypothesis: Cross kicks can help achieve more 
reliable scoring in 2v1 setting. Can sharing 
architectures learn such behaviors?
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2v1
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2v1
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2v1

• Both memory sharing and parameter sharing result 
in reasonably high goal percentage 

• Agents do not learn passes or cross kicks and 
instead rely on individual attacks
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Curriculum Learning
• Motivation: it’s difficult to design unbiased reward 

functions for complex tasks. 

• Easier to break a complex task into many subtasks, 
learn each subtask, and then use the skills to address 
the complex task.  

• Given: Complex target task with sparse reward 
function, curriculum of tasks with non-sparse reward. 

• Goal: Learn how to perform all tasks in curriculum 
including the target task.
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State Embed Architecture

Each task in curriculum is 
represented as an embedding 
vector. 

Task embedding vector is 
concatenated with agent’s 
observation.

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

i

Task Embedding

Wemb
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Weight Embed Architecture
Each task in curriculum is 
represented as an embedding 
vector. 

Weight embedding architecture 
conditions the activations of a 
particular layer on the task 
embedding. 

Allows a single network to learn 
many tasks and act uniquely in each 
task.

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

i

Task Embedding

128

Wemb

WWenc

Wdec
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Curriculum

• Target Task: Score on Goal 

• Curriculum: Move to Ball, Kick to Goal 

• Each task in curriculum corresponds to one skill in 
the target task. 

• Tasks are represented using an embedding vector.
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Curriculum Ordering
• The order of training tasks has an impact on 

ultimate performance. 

• Random curriculum: Presents a random task in the 
curriculum at each episode 

• Sequential curriculum: Easiest tasks presented 
first, then harder tasks. Each task trained until 
convergence.
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Random Curriculum, No 
Embedding
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Seq Curriculum, No 
Embedding
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Random Curriculum, State 
Embedding
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Seq Curriculum, State 
Embedding
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Random Curriculum, Weight 
Embedding
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Seq Curriculum, Weight 
Embedding
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Curriculum Learning

• Agents can reuse learned skills to perform the 
soccer task which features a sparse goal reward 

• Agents must continue to revisit all training tasks or 
they will forget previous skills 

• Ablation experiments show that all tasks are 
necessary for the soccer curriculum
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