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Multiagent Systems

• Multiple agents interact in
common environment

• Each agent with own
sensors, effectors, goals, ...

• Agents have to coordinate
actions to achieve goals
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Multiagent Systems

Environment defined by:
• state space
• available actions
• effects of actions on states
• what agents can observe

Agents defined by:
• domain knowledge
• goal specification
• policies for selecting actions
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Multiagent Systems – Applications

Chess Poker Starcraft

Robot soccer Home assistance Autonomous cars
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Multiagent Systems – Applications

Negotiation Wireless networks Smart grid

User interfaces Multi-robot rescue
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Multiagent Learning

Multiagent learning
• Learning is process of improving performance via experience
• Can agents learn to coordinate actions with other agents?
• What to learn?

⇒ How to select own actions
⇒ How other agents select actions
⇒ Other agents’ goals, plans, beliefs, ...
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Multiagent Learning

Why learning?
• Domain too complex to solve by hand or with multiagent planning
e.g. computing equilibrium solutions in games

• Elements of domain unknown
e.g. observation probabilities, behaviours of other agents, ...
⇒ Multiagent planning requires complete model

• Other agents may learn too
⇒ Have to adapt continually!
“Moving target problem” central issue in multiagent learning
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Research in Multiagent Learning

Multiagent learning studied in different communities

• AI, game theory, robotics, psychology, ...

• Some conferences & journals: AAMAS, AAAI, IJCAI, NIPS, UAI, ICML,
ICRA, IROS, RSS, PRIMA, JAAMAS, AIJ, JAIR, MLJ, JMLR, ...
⇒ Very large + growing body of work!

• Many algorithms proposed to address different assumptions
(constraints), learning goals, performance criteria, ...
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Tutorial

This tutorial:
• Introduction to basics of multiagent learning:

• Interaction models & assumptions
• Learning goals
• Selection of learning algorithms

• Plus some recent trends

Further reading:
• AIJ Special Issue “Foundations of Multi-Agent Learning”
Rakesh Vohra, Michael Wellman (eds.), 2007

• Surveys: Tuyls and Weiss (2012); Busoniu et al. (2008); Panait and
Luke (2005); Shoham et al. (2003); Alonso et al. (2001); Stone and
Veloso (2000); Sen and Weiss (1999)

• Our own upcoming survey on agents modelling other agents!
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Multiagent Models & Assumptions

Standard multiagent models:

• Normal-form game
• Repeated game
• Stochastic game

Assumptions and other models

S. Albrecht, P. Stone 12



Normal-Form Game

Normal-form game consists of:
• Finite set of agents N = {1, ...,n}
• For each agent i ∈ N:

• Finite set of actions Ai
• Utility function ui : A→ R, where A = A1 × ...× An

Each agent i selects policy πi : Ai → [0, 1], takes action ai ∈ Ai with
probability πi(ai), and receives utility ui(a1, ...,an)

Given policy profile (π1, ..., πn), expected utility to i is

Ui(π1, ..., πn) =
∑
a∈ A

π1(a1) ∗ ... ∗ πn(an) ∗ ui(a)

⇒ Agents want to maximise their expected utilities
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Normal-Form Game: Prisoner’s Dilemma

Example: Prisoner’s Dilemma
• Two prisoners questioned in isolated cells
• Each prisoner can Cooperate or Defect
• Utilities (row = agent 1, column = agent 2):

C D
C -1,-1 -5,0
D 0,-5 -3,-3
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Normal-Form Game: Chicken

Example: Chicken
• Two opposite drivers on same lane
• Each driver can Stay on lane or Leave lane
• Utilities:

S L
S 0,0 7,2
L 2,7 6,6
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Normal-Form Game: Rock-Paper-Scissors

Example: Rock-Paper-Scissors
• Two players, three actions
• Rock beats Scissors beats Paper beats Rock
• Utilities:

R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0

S. Albrecht, P. Stone 16



Repeated Game

Learning requires experience

• Normal-form game is single interaction
⇒ No experience!

• Experience comes from repeated interactions

Repeated game:
• Repeat same normal-form game: at each time t, each agent i
chooses action ati and gets utility ui(at1, ...,atn)

• Policy πi : H× Ai → [0, 1] assigns action probabilities based on
history of interaction

H = ∪t∈N0Ht, Ht =
{
Ht = (a0,a1, ...,at−1) | aτ ∈ A

}
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Repeated Game

What is expected utility to i for policy profile (π1, ..., πn)?

• Repeating game t ∈ N times:

Ui(π1, ..., πn) =
∑
Ht∈Ht

P(Ht|π1, ..., πn)
t−1∑
τ=0

ui(aτ )

P(Ht|π1, ..., πn) =
t−1∏
τ=0

∏
j∈N

πj(Hτ ,aτj )
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Repeated Game

What is expected utility to i for policy profile (π1, ..., πn)?

• Repeating game∞ times:

Ui(π1, ..., πn) = lim
t→∞

∑
Ht

P(Ht|π1, ..., πn)
∑
τ

γτui(aτ )

Discount factor 0 ≤ γ < 1 makes expectation finite

Interpretation: low γ is “myopic”, high γ is “farsighted”
(Or: probability that game will end at each time is 1− γ)

Can also define expected utility as limit average
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Repeated Game: Prisoner’s Dilemma

Example: Repeated Prisoner’s Dilemma

C D
C -1,-1 -5,0
D 0,-5 -3,-3

Example policies:

• At time t, choose C with probability (t+ 1)−1

• Grim: chose C until opponent’s first D, then choose D forever
• Tit-for-Tat: begin C, then repeat opponent’s last action

S. Albrecht, P. Stone 20



Repeated Game: Rock-Paper-Scissors

Example: Repeated Rock-Paper-Scissors

R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0

Example policy:
• Compute empirical frequency of opponent actions over past 5
moves

P(aj) =
1
5

t−1∑
τ=t−5

[aτj = aj]1

and take best-response action maxai
∑

aj P(aj)ui(ai,aj)

S. Albrecht, P. Stone 21



Stochastic Game

Agents interact in common environment

• Environment has states, actions have effect on state
• Agents choose actions based on state-action history

Example: Pursuit (e.g. Barrett et al., 2011)
• Predator agents must capture prey
• State: agent positions
• Actions: move to neighbouring cell

S. Albrecht, P. Stone 22



Stochastic Game

Stochastic game consists of:
• Finite set of agents N = {1, ...,n}
• Finite set of states S
• For each agent i ∈ N:

• Finite set of actions Ai
• Utility function ui : S× A→ R, where A = A1 × ...× An

• State transition function T : S× A× S→ [0, 1]

Generalises Markov decision process (MDP) to multiple agents

S. Albrecht, P. Stone 23
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Stochastic Game

Game starts in initial state s0 ∈ S

At each time t:

• Each agent i...

• observes current state st and past joint action at−1 (if t > 0)
• chooses action ati ∈ Ai with probability πi(Ht,ati) where
Ht = (s0,a0, s1,a1, ..., st−1) is state-action history

• receives utility ui(at1, ...,atn)
• Game transitions into next state st+1 ∈ S with probability
T(st,at, st+1)

Process repeated finite or infinite number of times, or until terminal
state is reached (e.g. prey captured).

S. Albrecht, P. Stone 24
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Stochastic Game: Level-Based Foraging

Example: Level-Based Foraging (Albrecht and Ramamoorthy, 2013)
• Agents (circles) must collect all items (squares)
• State: agent positions, item positions, which items collected
• Actions: move to neighbouring cell, try to collect item

S. Albrecht, P. Stone 25



Stochastic Game: Soccer Keepaway

Example: Soccer Keepaway (Stone et al., 2005)
• “Keeper” agents must keep ball away from “Taker” agents
• State: player positions & orientations, ball position, ...
• Actions: go to ball, pass ball to player, ...

S. Albrecht, P. Stone 26



Stochastic Game: Soccer Keepaway

Video: 4 vs 3 Keepaway

Source: http://www.cs.utexas.edu/~AustinVilla/sim/keepaway

S. Albrecht, P. Stone 27
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Assumptions

Models and algorithms make assumptions, e.g.

• What do agents know about the game?
• What can agents observe during a game?

Usual assumptions:

• Game elements known (state/action space, utility function, ...)
• Game states & chosen actions are commonly observed
⇒ “full observability” or “perfect information”

Many learning algorithms designed for repeated/stochastic game
with full observability

• But assumptions may vary and other models exist!

S. Albrecht, P. Stone 28
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Other Models

Other assumptions & models:

• Assumption: elements of game unknown

• Bayesian game, stochastic Bayesian game
AAAI’16 tutorial “Type-based Methods for Interaction in
Multiagent Systems”
http://thinc.cs.uga.edu/tutorials/aaai-16.html

• Assumption: partial observability of states and actions

• Extensive-form game with imperfect information
• Partially observable stochastic game (POSG)
• Multiagent POMDPs: Dec-POMDP, I-POMDP, ...

S. Albrecht, P. Stone 29
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Learning Goals

Learning is to improve performance via experience

• But what is goal (end-result) of learning process?
• How to measure success of learning?

Many learning goals proposed:

• Minimax/Nash/correlated equilibrium
• Pareto-optimality
• Social welfare & fairness
• No-regret
• Targeted optimality & safety

... plus combinations & approximations

S. Albrecht, P. Stone 31
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Maximin/Minimax

Two-player zero-sum game: ui = −uj
• e.g. Rock-Paper-Scissors, Chess

Policy profile (πi, πj) is maximin/minimax profile if

Ui(πi, πj) = max
π′
i

min
π′
j

Ui(π′
i , π

′
j ) = min

π′
j

max
π′
j

Ui(π′
i , π

′
j ) = −Uj(πi, πj)

Utility that can be guaranteed against worst-case opponent

• Every two-player zero-sum normal-form game has minimax
profile (von Neumann and Morgenstern, 1944)

• Every finite or infinite+discounted zero-sum stochastic game has
minimax profile (Shapley, 1953)
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Nash Equilibrium

Policy profile π = (π1, ..., πn) is Nash equilibrium (NE) if

∀i ∀π′
i : Ui(π′

i , π−i) ≤ Ui(π)

No agent can improve utility by unilaterally deviating from profile
(every agent plays best-response to other agents)

Every finite normal-form game has at least one NE (Nash, 1950)
(also stochastic games, e.g. Fink (1964))

• Standard solution in game theory
• In two-player zero-sum game, minimax is same as NE

S. Albrecht, P. Stone 33
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Nash Equilibrium – Example

Example: Prisoner’s Dilemma
• Only NE in normal-form game is (D,D)
• Normal-form NE are also NE in infinite
repeated game

• Infinite repeated game has many
more NE⇒ Folk theorem

Example: Rock-Paper-Scissors
• Only NE in normal-form game is
πi = πj = ( 13 ,

1
3 ,

1
3 )

C D
C -1,-1 -5,0
D 0,-5 -3,-3

R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0
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Correlated Equilibrium

Each agent i observes signal xi with joint distribution ξ(x1, ..., xn)

• E.g. xi is action recommendation to agent i

(π1, ..., πn) is correlated equilibrium (CE) (Aumann, 1974) if no agent
can individually improve its expected utility by deviating from
recommended actions

• NE is subset of CE→ no correlation
• CE easier to compute than NE→ linear program

S. Albrecht, P. Stone 35
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Correlated Equilibrium – Example

Example: Chicken

Correlated equilibrium:
• ξ(L, L) = ξ(S, L) = ξ(L, S) = 1

3

• ξ(S, S) = 0

Expected utility to both:
7 ∗ 1

3 + 2 ∗ 1
3 + 6 ∗ 1

3 = 5

Nash equilibrium utilities:
• πi(S) = 1, πj(S) = 0 → (7, 2)
• πi(S) = 0, πj(S) = 1 → (2, 7)
• πi(S) = 1

3 , πj(S) =
1
3 → ≈ 4.66

S L
S 0,0 7,2
L 2,7 6,6
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Correlated Equilibrium – Example

Example: Chicken

Correlated equilibrium:
• ξ(L, L) = ξ(S, L) = ξ(L, S) = 1
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The Equilibrium Legacy

The “Equilibrium Legacy” in multiagent learning:

• Quickly adopted equilibrium as standard goal of learning
• But equilibrium (e.g. NE) has many limitations...

1. Non-uniqueness
Often multiple NE exist, how should agents choose same one?

2. Incompleteness
NE does not specify behaviours for off-equilibrium paths

3. Sup-optimality
NE not generally same as utility maximisation

4. Rationality
NE assumes all agents are rational (= perfect utility maximisers)
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Pareto Optimum

Policy profile π = (π1, ..., πn) is Pareto-optimal if there is no other
profile π′ such that

∀i : Ui(π′) ≥ Ui(π) and ∃i : Ui(π′) > Ui(π)

Can’t improve one agent without making other agent worse off
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Pareto-optimal utilities
(red line)
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Social Welfare & Fairness

Pareto-optimality says nothing about social welfare and fairness

Welfare and fairness of profile π = (π1, ..., πn) often defined as

Welfare(π) =
∑
i

Ui(π) Fairness(π) =
∏
i

Ui(π)

π welfare/fairness-optimal if maximum Welfare(π)/Fairness(π)

Any welfare/fairness-optimal π is also Pareto-optimal! (Why?)
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No-Regret

Given history Ht = (a0,a1, ...,at−1), agent i’s regret for not having
taken action ai is

Ri(ai|Ht) =
t−1∑
τ=0

ui(ai,aτ−i)− ui(aτi ,aτ−i)

Policy πi achieves no-regret if

∀ai : lim
t→∞

1
t Ri(ai|H

t) ≤ 0

(Other variants exist)
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No-Regret

Like Nash equilibrium, no-regret widely used in multiagent learning

But, like NE, definition of regret has conceptual issues

• Regret definition assumes other agents don’t change actions

Ri(ai|Ht) =
t−1∑
τ=0

ui(ai,aτ−i)− ui(aτi ,aτ−i)

⇒ But: entire history may change if different actions taken!

• Thus, minimising regret not generally same as maximising utility
(e.g. Crandall, 2014)
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Targeted Optimality & Safety

Many algorithms designed to achieve some version of targeted
optimality and safety:

• If other agent’s policy πj in certain class, agent i’s learning should
converge to best-response

Ui(πi, πj) ≈ max
π′
i

Ui(π′
i , πj)

• If not in class, learning should at least achieve safety (maximin)
utility

Ui(πi, πj) ≈ max
π′
i

min
π′
j

Ui(π′
i , π

′
j )

Policy classes: non-learning, memory-bounded, finite automata, ...
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Overview

Introduction

Multiagent Models & Assumptions

Learning Goals

Learning Algorithms

Recent Trends
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Learning Algorithms – The Internal View

How does learning take place in policy πi?

The internal view:
• πi continually modifies internal policy π̂ti based on Ht

• π̂ti has own representation and input format Ĥt

πi

Ht

ati
Modify π̂t−1i → π̂ti

Extract Ht → Ĥt
π̂tiĤt
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Learning Algorithms – The Internal View

Internal policy π̂ti :

• Representation: Q-learning, MCTS planner, neural network, ...
• Parameters: Q-table, opponent model, connection weights, ...
• Input format: most recent state/action, abstract feature vector, ...

πi

Ht

ati
Modify π̂t−1i → π̂ti

Extract Ht → Ĥt
π̂tiĤt
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Fictitious Play

Simple example: Fictitious Play (FP) (Brown, 1951)

At each time t:

1. Compute opponent’s action frequencies:

P(aj) =
1

t+ 1

t∑
τ=0

[aτj = aj]1

2. Compute best-response action:

ati ∈ argmax
ai

∑
aj

P(aj)ui(ai,aj)

Self-play: all agents use fictitious play
• If policies converge, policy profile is Nash equilibrium
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Learning Algorithms

Many multiagent learning algorithms exist, e.g.
• Minimax-Q (Littman, 1994)
• JAL (Claus and Boutilier, 1998)
• Regret Matching (Hart and Mas-Colell, 2001, 2000)
• FFQ (Littman, 2001)
• WoLF-PHC (Bowling and Veloso, 2002)
• Nash-Q (Hu and Wellman, 2003)
• CE-Q (Greenwald and Hall, 2003)
• OAL (Wang and Sandholm, 2003)
• ReDVaLeR (Banerjee and Peng, 2004)
• GIGA-WoLF (Bowling, 2005)
• CJAL (Banerjee and Sen, 2007)
• AWESOME (Conitzer and Sandholm, 2007)
• CMLeS (Chakraborty and Stone, 2014)
• HBA (Albrecht, Crandall, and Ramamoorthy, 2016)
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(Conditional) Joint Action Learning

Joint Action Learning (JAL) (Claus and Boutilier, 1998) and
Conditional Joint Action Learning (CJAL) (Banerjee and Sen, 2007)
learn Q-values for joint actions a ∈ A:

Qt+1(at) = (1− α)Qt(at) + αuti

• uti is utility received after joint action at

• α ∈ [0, 1] is learning rate

Use opponent model to compute expected utilities of actions:

JAL: E(ai) =
∑
aj

P(aj)Qt+1(ai,aj)

CJAL: E(ai) =
∑
aj

P(aj|ai)Qt+1(ai,aj)
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(Conditional) Joint Action Learning

Opponent models estimated from history Ht:

• JAL:

P(aj) =
1

t+ 1

t∑
τ=0

[aτj = aj]1

• CJAL:

P(aj|ai) =
∑t

τ=0[aτj = aj,aτi = ai]1∑t
τ=0[aτj = aj]1

Given expected utilities E(ai), use some action exploration scheme:

• E.g. ϵ-greedy: choose argmaxai E(ai) with probability 1− ϵ, else
choose random action
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(Conditional) Joint Action Learning

JAL and CJAL can converge to Nash equilibrium in self-play

CJAL in variant of Prisoner’s Dilemma (from Banerjee and Sen, 2007):

Converging to Pareto-optimal NE (C,C)
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Opponent Modelling

FP, JAL, CJAL are simple examples of opponent modelling:

• Use model of other agent to predict its actions, goals, beliefs, ...

Many forms of opponent modelling exist:
• Policy reconstruction
• Type-based methods
• Classification
• Plan recognition

• Recursive reasoning
• Graphical methods
• Group modelling
• ...

Upcoming survey by S. Albrecht & P. Stone!
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Minimax/Nash/Correlated Q-Learning

Minimax Q-Learning (Minimax-Q) (Littman, 1994) and
Nash Q-Learning (Nash-Q) (Hu and Wellman, 2003) and
Correlated Q-Learning (CE-Q) (Greenwald and Hall, 2003)
learn joint-action Q-values for each agent j ∈ N:

Qt+1j (st,at) = (1− α)Qtj(st,at) + α
[
utj + γEQj(st+1)

]

• Assumes utilities utj are commonly observed
• EQ(st+1) is expected utility to agent j under equilibrium profile for
normal-form game with utility functions uj(a) = Qtj(st+1,a)
⇒ Minimax-Q: use minimax profile (assumes zero-sum game)
⇒ Nash-Q: use Nash equilibrium
⇒ CE-Q: use correlated equilibrium
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Minimax/Nash/Correlated Q-Learning

Minimax-Q, Nash-Q, CE-Q can converge to equilibrium in self-play

• E.g. Nash-Q formal proof of convergence to NE
• But based on strong restrictions on Qtj !

HU AND WELLMAN

Assumption 3 One of the following conditions holds during learning.3
Condition A. Every stage game (Q1t (s), . . . ,Qn

t (s)), for all t and s, has a global optimal point,
and agents’ payoffs in this equilibrium are used to update their Q-functions.
Condition B. Every stage game (Q1t (s), . . . ,Qn

t (s)), for all t and s, has a saddle point, and
agents’ payoffs in this equilibrium are used to update their Q-functions.

We further define the distance between two Q-functions.

Definition 15 For Q, Q̂ 2Q, define

k Q� Q̂ k ⌘ max
j
max
s
k Qj(s)� Q̂ j(s) k( j,s)

⌘ max
j
max
s
max
a1,...,an

|Qj(s,a1, . . . ,an)� Q̂ j(s,a1, . . . ,an)|.

Given Assumption 3, we can establish that Pt is a contraction mapping operator.

Lemma 16 k PtQ�PtQ̂ k β k Q� Q̂ k for all Q, Q̂ 2Q.

Proof.

k PtQ�PtQ̂ k = max
j
k PtQj�PtQ̂ j k( j)

= max
j
max
s

| βπ1(s) · · ·πn(s)Qj(s)�βπ̂1(s) · · · π̂n(s)Q̂ j(s) |

= max
j
β | π1(s) · · ·πn(s)Qj(s)� π̂1(s) · · · π̂n(s)Q̂ j(s) |

We proceed to prove that

|π1(s) · · ·πn(s)Qj(s)� π̂1(s) · · · π̂n(s)Q̂ j(s)|k Qj(s)� Q̂ j(s) k .

To simplify notation, we use σ j to represent π j(s), and σ̂ j to represent π̂ j(s). The proposition we
want to prove is

|σ jσ� jQ j(s)� σ̂ jσ̂� jQ̂ j(s)|k Qj(s)� Q̂ j(s) k .

Case 1: Suppose both (σ1, . . . ,σn) and (σ̂1, . . . , σ̂n) satisfy Condition A in Assumption 3, which
means they are global optimal points.

If σ jσ� jQ j(s)� σ̂ jσ̂� jQ̂ j(s), we have

σ jσ� jQ j(s)� σ̂ jσ̂� jQ̂ j(s)
 σ jσ� jQ j(s)�σ jσ� jQ̂ j(s)
= ∑

a1,...,an
σ1(a1) · · ·σn(an)

�

Qj(s,a1, . . . ,an)� Q̂ j(s,a1, . . . ,an)
�

 ∑
a1,...,an

σ1(a1) · · ·σn(an) k Qj(s)� Q̂ j(s) k (15)

= k Qj(s)� Q̂ j(s) k,
3. In our statement of this assumption in previous writings (Hu and Wellman, 1998, Hu, 1999), we neglected to include
the qualification that the same condition be satisfied by all stage games. We have made the qualification more explicit
subsequently (Hu and Wellman, 2000). As Bowling (2000) has observed, the distinction is essential.

1050

(Hu and Wellman, 2003)
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Model-Free Learning

JAL, CJAL, Nash-Q, ... learn models of other agents

• Model-based learning

Can also learn without modelling other agents

• Model-free learning
• e.g. WoLF-PHC, Regret Matching

S. Albrecht, P. Stone 54
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Win or Learn Fast Policy Hill Climbing

Win or Learn Fast Policy Hill Climbing (WoLF-PHC) (Bowling and
Veloso, 2002) uses policy hill climbing in policy space:

π̂t+1i (st,ati) = π̂ti (st,ati) +
{

δ if ati = argmaxa′i Q(s
t,a′i)

− δ
|Ai|−1 else

• Q is standard Q-learning

Variable learning rate δ:

δ =

{
δw if

∑
ai π̂

t
i (st,ai)Q(st,ai) >

∑
ai π̄i(s

t,ai)Q(st,ai)
δl else

• adapt slowly when “winning”, fast when “losing” (δw < δl)
• π̄i is average policy over past policies π̂i
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Win or Learn Fast Policy Hill Climbing

WoLF gradient ascent in self-play converges to Nash equilibrium in
two-player, two-action repeated game (Bowling and Veloso, 2002)
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Figure 2: (a) Results for matching pennies: the policy for one of the players as a probability distribution while learning with
PHC and WoLF-PHC. The other player’s policy looks similar. (b) Results for rock-paper-scissors: trajectories of one player’s
policy. The bottom-left shows PHC in self-play, and the upper-right shows WoLF-PHC in self-play.

and the other trying to move North. Hence the game requires
that the players coordinate their behaviors.
WoLF policy hill-climbing successfully converges to one

of these equilibria. Figure 3(a) shows an example trajectory
of the players’ strategies for the initial state while learning
over 100,000 steps. In this example the players converged
to the equilibrium where player one moves East and player
two moves North from the initial state. This is evidence that
WoLF policy hill-climbing can learn an equilibrium even in a
general-sum game with multiple equilibria.

5.3 Soccer
The final domain is a comparatively large zero-sum soccer
game introduced by Littman [1994] to demonstrate Minimax-
Q. An example of an initial state in this game is shown in Fig-
ure 3(b), where player ’B’ has possession of the ball. The goal
is for the players to carry the ball into the goal on the opposite
side of the field. The actions available are the four compass
directions and the option to not move. The players select ac-
tions simultaneously but they are executed in a random order,
which adds non-determinism to their actions. If a player at-
tempts to move to the square occupied by its opponent, the
stationary player gets possession of the ball, and the move
fails. Unlike the grid world domain, the Nash equilibrium for
this game requires a mixed policy. In fact any deterministic
policy (therefore anything learned by an single-agent learner
or JAL) can always be defeated [Littman, 1994].
Our experimental setup resembles that used by Littman

in order to compare with his results for Minimax-Q. Each
player was trained for one million steps. After training,
its policy was fixed and a challenger using Q-learning was
trained against the player. This determines the learned pol-
icy’s worst-case performance, and gives an idea of how close
the player was to the equilibrium policy, which would per-
form no worse than losing half its games to its challenger.
Unlike Minimax-Q, WoLF-PHC and PHC generally oscillate
around the target solution. In order to account for this in the
results, training was continued for another 250,000 steps and

evaluated after every 50,000 steps. The worst performing pol-
icy was then used for the value of that learning run.
Figure 3(b) shows the percentage of games won by the

different players when playing their challengers. “Minimax-
Q” represents Minimax-Q when learning against itself (the
results were taken from Littman’s original paper.) “WoLF”
represents WoLF policy hill-climbing learning against itself.
“PHC(L)” and “PHC(W)” represents policy hill-climbing
with � = �l and � = �w, respectively. “WoLF(2x)” represents
WoLF policy hill-climbing learning with twice the training
(i.e. two million steps). The performance of the policies were
averaged over fifty training runs and the standard deviations
are shown by the lines beside the bars. The relative ordering
by performance is statistically significant.
WoLF-PHC does extremely well, performing equivalently

to Minimax-Q with the same amount of training2 and contin-
ues to improve with more training. The exact effect of the
WoLF principle can be seen by its out-performance of PHC,
using either the larger or smaller learning rate. This shows
that the success of WoLF-PHC is not simply due to changing
learning rates, but rather to changing the learning rate at the
appropriate time to encourage convergence.

6 Conclusion
In this paper we present two properties, rationality and con-
vergence, that are desirable for a multiagent learning algo-
rithm. We present a new algorithm that uses a variable learn-
ing rate based on the WoLF (“Win or Learn Fast”) princi-
ple. We then showed how this algorithm takes large steps
towards achieving these properties on a number and variety
of stochastic games. The algorithm is rational and is shown
empirically to converge in self-play to an equilibrium even in
games with multiple or mixed policy equilibria, which previ-
ous multiagent reinforcement learners have not achieved.

2The results are not directly comparable due to the use of a dif-
ferent decay of the learning rate. Minimax-Q uses an exponential
decay that decreases too quickly for use with WoLF-PHC.

Targeted optimality: if opponent policy converges, WoLF-PHC
converges to best-response against opponent
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Regret Matching

Regret Matching (RegMat) (Hart and Mas-Colell, 2000) computes
conditional regret for not choosing a′i whenever ai was chosen:

R(ai,a′i) =
1

t+ 1
∑

τ :aτi = ai

ui(a′i ,aτj )− ui(aτ )

Used to modify policy:

π̂t+1i (ai) =


1
µ max[R(aτi ,ai), 0] ai ̸= ati

1−
∑

a′i ̸=a
τ
i
π̂t+1i (a′i) ai = ati

• µ > 0 is “inertia” parameter
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Regret Matching

RegMat converges to correlated equilibrium in self-play

Assumes actions commonly observed and utility functions known

• Modified RegMat (Hart and Mas-Colell, 2001) removes
assumptions — only observe own action and utilities

R(ai,a′i) =
1

t+ 1
∑

τ :aτi = a′i

π̂τ
i (ai)

π̂τ
i (a′i)

uτi −
1

t+ 1
∑

τ :aτi = ai

uτi

(plus modified policy normalisation)

• Also converges to correlated equilibrium in self-play!
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Learning in Mixed Groups

Bonus question: How do algorithms perform in mixed groups?

Empirical study by Albrecht and Ramamoorthy (2012):

• Tested 5 algorithms in mixed groups:
JAL, CJAL, Nash-Q, WoLF-PHC, Modified RegMat

• Tested in all (78) structurally distinct, strictly ordinal 2× 2
repeated games (Rapoport and Guyer, 1966), e.g.

1,2 2,4
4,1 3,3

• Also tested in 500 random strictly ordinal 2× 2× 2 (3 agents)
repeated games
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Learning in Mixed Groups

Test criteria:
• Convergence rate
• Final expected utilities
• Social welfare/fairness
• Solution rates:

• Nash equilibrium (NE)
• Pareto-optimality (PO)
• Welfare-optimality (WO)
• Fairness-optimality (FO)

Which algorithm is best?
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Learning in Mixed Groups

Conv. Exp. Util. NE PO WO FO

70%

75%

80%

85%

90%

95%

100%
Overall results

JAL
CJAL
WoLF−PHC 
RegMat 
Nash-Q

100% is maximum possible utility/rate
Difficulty: NE < PO < WO < FO
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Learning in Mixed Groups

Conv. Exp. Util. NE PO WO FO

70%

75%

80%

85%

90%

95%

100%
Overall results

JAL
CJAL
WoLF−PHC 
RegMat 
Nash-Q

Answer:
No clear winner!
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Overview

Introduction

Multiagent Models & Assumptions

Learning Goals

Learning Algorithms

Recent Trends
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Teamwork

Typical approach:

• Whole team designed and trained by single organisation
• Agents share coordination protocols, communication languages,
domain knowledge, algorithms, ...

⇒ Pre-coordination!
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Ad Hoc Teamwork

What if pre-coordination not possible?

• Forming temporary teams “on the fly”
• Agents designed by different organisations
• Don’t speak same language, no knowledge of other agents’
capabilities, different beliefs, ...

Challenge: Ad Hoc Teamwork (Stone et al., 2010)
“Create an autonomous agent that is able to efficiently and robustly
collaborate with previously unknown teammates on tasks to which
they are all individually capable of contributing as team members.”
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RoboCup Drop-In Competition

RoboCup SPL Drop-In Competition ’13, ’14, ’15 (Genter et al., 2017)

• Mixed players from different teams
• No prior coordination between players

Video: Drop-In Competition
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Learning in Ad Hoc Teamwork

Many learning algorithms not suitable for ad hoc teamwork:

• RL-based algorithms (JAL, CJAL, Nash-Q, ...) need 1000’s of
iterations in simple games
Ad hoc teamwork: not much time for learning, trial & error, ...

• Many algorithms designed for self-play (all agents use same
algorithm)
Ad hoc teamwork: no control over other agents

Need method which can learn quickly to interact effectively with
unknown other agents!

S. Albrecht, P. Stone 66



Learning in Ad Hoc Teamwork

Many learning algorithms not suitable for ad hoc teamwork:

• RL-based algorithms (JAL, CJAL, Nash-Q, ...) need 1000’s of
iterations in simple games
Ad hoc teamwork: not much time for learning, trial & error, ...

• Many algorithms designed for self-play (all agents use same
algorithm)
Ad hoc teamwork: no control over other agents

Need method which can learn quickly to interact effectively with
unknown other agents!

S. Albrecht, P. Stone 66



Learning in Ad Hoc Teamwork

Many learning algorithms not suitable for ad hoc teamwork:

• RL-based algorithms (JAL, CJAL, Nash-Q, ...) need 1000’s of
iterations in simple games
Ad hoc teamwork: not much time for learning, trial & error, ...

• Many algorithms designed for self-play (all agents use same
algorithm)
Ad hoc teamwork: no control over other agents

Need method which can learn quickly to interact effectively with
unknown other agents!

S. Albrecht, P. Stone 66



Learning in Ad Hoc Teamwork

Many learning algorithms not suitable for ad hoc teamwork:

• RL-based algorithms (JAL, CJAL, Nash-Q, ...) need 1000’s of
iterations in simple games
Ad hoc teamwork: not much time for learning, trial & error, ...

• Many algorithms designed for self-play (all agents use same
algorithm)
Ad hoc teamwork: no control over other agents

Need method which can learn quickly to interact effectively with
unknown other agents!

S. Albrecht, P. Stone 66



Type-Based Method

Hypothesise possible types of other agents:

• Each type θj is blackbox behaviour specification:

P(aj|Ht, θj)

• Generate types from e.g.
• experience from past interactions
• domain and task knowledge
• learn new types online (opponent modelling)
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Type-Based Method

During the interaction:
• Compute belief over types based on interaction history Ht:

P(θj|Ht) ∝ P(Ht|θj)P(θj)

• Plan own action based on beliefs
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Type-Based Method – Planning

Harsanyi-Bellman Ad Hoc Coordination (HBA) (Albrecht et al., 2016)

πi(Ht,ai) ∼ argmax
ai

Eaist (H
t)

Eais (Ĥ) =
∑
θj

P(θj|Ĥ)
∑
aj

P(aj|Ĥ, θj)Q
(ai,aj)
s (Ĥ)

Qas (Ĥ) =
∑
s′
T(s,a, s′)

[
ui(s,a) + γmax

ai
Eais′

(
⟨Ĥ,a, s′⟩

)]

Optimal planning with built-in exploration: Value of Information
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Type-Based Method – Planning

Can compute Eais with finite tree-expansion:
• Unfold tree of future trajectories with fixed depth
• Associate each trajectory with probability and utility
• Calculate expected utility of action by traversing to root

Inefficient: exponential in states, actions, agents
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Type-Based Method – Planning

Use Monte-Carlo Tree Search (MCTS) for efficient approximation:

Repeat x times:
1. Sample type θj ∈ Θj with
probabilities P(θj|Ht)

2. Sample interaction trajectory
using θj and domain model T

3. Update utility estimates via
backprop on trajectory

E.g. Albrecht and Stone (2017), Barrett et al. (2011)

But: loses value of information! (no belief change during planning)
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Ad Hoc Teamwork: Predator Pursuit

4 predators must capture 1 prey in grid world (Barrett et al., 2011)
• We control one agent in predator team
• Policies of other predators unknown (prey moves randomly)
• 4 types provided to our agent; online planning using MCTS

Video: 4 types, true type inside
Video: 4 types, true type outside (students)
Source: http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_Pursuit
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Ad Hoc Teamwork: Half Field Offense

4 offense players vs. 5 defense players (Barrett and Stone, 2015)

• We control one agent (green) in
offensive team (yellow)

• Policies of teammates unknown
(defense uses fixed policies)

• 7 team types provided to our agent;
for each team type, plan own policy
offline using RL

Video: 4v5 Half Field Offense
Source:
http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO
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Learning Parameters in Types

We can learn more: parameters in types! (Albrecht and Stone, 2017)

P(ai|Ht, θj,p)

• p = (p1, ...,pk) continuous parameter vector
• Complex types can have several parameters
⇒ learning rate, exploration rate, discount factor, ...

Goal: simultaneously learn type and parameters in type
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Learning Parameters in Types

For each type θj ∈ Θj, maintain parameter estimate p ∈ [pmin,pmax]

S. Albrecht, P. Stone 75

Observe action atj of agent j

Select types Φ ⊂ Θj for updating

For each θj ∈ Φ, update estimate pt → pt+1

Update beliefs:

P(θj|Ht+1) ∝ P(atj |Ht, θj,pt+1)P(θj|Ht)

Plan own action



Updating Parameter Estimates

S. Albrecht, P. Stone 76

Given type θj, update
parameter estimate

pt → pt+1

Type defines
action likelihoods

P(atj |Ht, θj,p) P (a0j |H
0, θj , p1, p2)

P (a1j |H
1, θj , p1, p2)

-5

P (a2j |H
2, θj , p1, p2)

5

p1

0

p2

0
5 -5



Updating Parameter Estimates

S. Albrecht, P. Stone 77

Bayesian updating:
• Approximate P(atj |Ht, θj,p) as
polynomial with variables p

• Perform conjugate updates
through successive layers

Global optimisation:

argmax
p

t+1∏
τ=1

P(aτ−1j |Hτ−1, θj,p)

Solve with Bayesian optimisation

(Albrecht and Stone, 2017)
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Ad Hoc Teamwork: Level-Based Foraging

Blue = our agent, red = other agents
Goal: collect all items in minimal time
Agents can collect item if
sum of agent levels ≥ item level

4 possible types for red, e.g.
• search for item, try to load
• search for agent, load item
closest to agent

Each type uses 3 parameters:
• skill level, view radius, view angle

Blue doesn’t know true type of red nor
parameter values of type

0.15

0.58

0.83

0.53

0.23

0.48

0.55
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Ad Hoc Teamwork: Level-Based Foraging

Video: 10x10 world, 2 agents
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Video: 15x15 world, 3 agents
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Type-Based Method & Ad Hoc Teamwork

• AAAI’16 Tutorial on Type-Based Methods:
http://thinc.cs.uga.edu/tutorials/aaai-16.html

• Special Issue on Multiagent Interaction without Prior Coordination
(MIPC): http://mipc.inf.ed.ac.uk/journal

• MIPC Workshops:
• AAMAS’17, Sao Paulo, Brazil
• AAAI’16, Phoenix, Arizona, USA
• AAAI’15, Austin, Texas, USA
• AAAI’14, Quebec City, Canada

http://mipc.inf.ed.ac.uk

S. Albrecht, P. Stone 80

http://thinc.cs.uga.edu/tutorials/aaai-16.html
http://mipc.inf.ed.ac.uk/journal
http://mipc.inf.ed.ac.uk


Deep Reinforcement Learning

Standard Q-learning assumes tabular representation:

• One entry in Q for each (s,a)

⇒ Does not scale to complex domains!
⇒ Does not generalise values!

Needs extra engineering to work, including:

• State abstraction to reduce state space
(usually hand-coded & domain-specific)

• Function approximation to store and generalise Q
(e.g. linear function approximation in state features)
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Deep Reinforcement Learning

New problem: extra engineering may limit performance!
• State abstraction may be wrong (e.g. too coarse)
• Function approximator may be inaccurate

Idea: deep reinforcement learning
• Use “deep” neural network to represent Q
• Learn on raw data (no state abstraction)
⇒ Let network learn good abstraction on its own!
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Deep Reinforcement Learning

Deep learning: neural network with many layers
• Input layer takes raw data→ s
• Hidden layers transform data
• Output layer returns target scalars→ Q(s, ·)
• Train network with back-propagation on labelled data
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Deep Q-Learning

Deep Q-Learning (Mnih et al., 2013)
Initialise network parameters Ψ with random weights

1. Observe current state st

2. With probability ϵ, select random action at
Else, select action at ∈ argmaxa Q(st,a; Ψ)

3. Get reward rt and new state st+1

4. Store experience (st,at, rt, st+1) in D

5. Sample random minibatch D+ ⊂ D

6. For each (sτ ,aτ , rτ , sτ+1) ∈ D+, perform gradient descent step on

(yτ − Q(sτ ,aτ ; Ψ))2

yτ = rτ + γmax
a′

Q(sτ ,a′; Ψfixed)
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Multiagent Deep Reinforcement Learning

Deep RL very successful at many singe-agent games

• e.g. Atari games, Go, 3D maze navigation, ...

Can we use Deep RL for multiagent learning?

• Problem: learning of other agents makes environment
non-stationary (breaks Markov property)
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Independent Deep Q-Learners

Video: Cooperative Pong
Video: Competitive Pong
(Tampuu et al., 2017)

https://www.youtube.com/watch?v=Gb9DprIgdGw
https://www.youtube.com/watch?v=nn6_GUVDnVw

Video: Gathering game
Video: Wolfpack game
(Leibo et al., 2017)

https://www.youtube.com/watch?v=F97lqqpcqsM
https://www.youtube.com/watch?v=kXudpMfecs4

Video: Starcraft
(Foerster et al., 2017)

https://www.youtube.com/watch?v=RK7y_uQmwhw
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Multiagent Deep Reinforcement Learning

Some recent works on multiagent deep RL:
• Emergence of cooperative/competitive behaviours
(Tampuu et al., 2017; Leibo et al., 2017)

• Learning communication protocols
(Sukhbaatar et al., 2016; Foerster et al., 2016)

• Opponent modelling
(He et al., 2016)

• Improved minibatch selection
(Palmer et al., 2017; Foerster et al., 2017)

• Multi-task learning
(Omidshafiei et al., 2017)

• Learning value decomposition
(Sunehag et al., 2017)

S. Albrecht, P. Stone 87



Concluding Remarks

We covered...

• Multiagent models: normal-form games, repeated games,
stochastic games, ...

• Learning goals: equilibria, no-regret, targeted optimality, ...
• Learning algorithms: internal view, model-based, model-free
• Recent trends: ad hoc teamwork, deep RL

Download tutorial slides at:
http://www.cs.utexas.edu/~larg/ijcai17_tutorial

Watch out for our upcoming survey on agents modelling other
agents!
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