
Multiagent Learning
Foundations and Recent Trends

Stefano Albrecht and Peter Stone

Tutorial at IJCAI 2017 conference:
http://www.cs.utexas.edu/~larg/ijcai17_tutorial

http://www.cs.utexas.edu/~larg/ijcai17_tutorial

Overview

Introduction

Multiagent Models & Assumptions

Learning Goals

Learning Algorithms

Recent Trends

S. Albrecht, P. Stone 1

Multiagent Systems

• Multiple agents interact in
common environment

• Each agent with own
sensors, effectors, goals, ...

• Agents have to coordinate
actions to achieve goals

Environment

effectors

sen
sors

knowledge

Domain

Agent

Goals

Goals

Agent

Actions

Actions

Domain

knowledge

S. Albrecht, P. Stone 2

Multiagent Systems

Environment defined by:
• state space
• available actions
• effects of actions on states
• what agents can observe

Agents defined by:
• domain knowledge
• goal specification
• policies for selecting actions

Environment

effectors

sen
sors

knowledge

Domain

Agent

Goals

Goals

Agent

Actions

Actions

Domain

knowledge

Many problems can be modelled as multiagent systems!

S. Albrecht, P. Stone 3

Multiagent Systems

Environment defined by:
• state space
• available actions
• effects of actions on states
• what agents can observe

Agents defined by:
• domain knowledge
• goal specification
• policies for selecting actions

Environment

effectors

sen
sors

knowledge

Domain

Agent

Goals

Goals

Agent

Actions

Actions

Domain

knowledge

Many problems can be modelled as multiagent systems!

S. Albrecht, P. Stone 3

Multiagent Systems – Applications

Chess Poker Starcraft

Robot soccer Home assistance Autonomous cars

S. Albrecht, P. Stone 4

Multiagent Systems – Applications

Chess Poker Starcraft

Robot soccer Home assistance Autonomous cars

S. Albrecht, P. Stone 4

Multiagent Systems – Applications

Negotiation Wireless networks Smart grid

User interfaces Multi-robot rescue

S. Albrecht, P. Stone 5

Multiagent Systems – Applications

Negotiation Wireless networks Smart grid

User interfaces Multi-robot rescue

S. Albrecht, P. Stone 5

Multiagent Learning

Multiagent learning
• Learning is process of improving performance via experience
• Can agents learn to coordinate actions with other agents?
• What to learn?

⇒ How to select own actions
⇒ How other agents select actions
⇒ Other agents’ goals, plans, beliefs, ...

S. Albrecht, P. Stone 6

Multiagent Learning

Multiagent learning
• Learning is process of improving performance via experience
• Can agents learn to coordinate actions with other agents?
• What to learn?
⇒ How to select own actions

⇒ How other agents select actions
⇒ Other agents’ goals, plans, beliefs, ...

S. Albrecht, P. Stone 6

Multiagent Learning

Multiagent learning
• Learning is process of improving performance via experience
• Can agents learn to coordinate actions with other agents?
• What to learn?
⇒ How to select own actions
⇒ How other agents select actions

⇒ Other agents’ goals, plans, beliefs, ...

S. Albrecht, P. Stone 6

Multiagent Learning

Multiagent learning
• Learning is process of improving performance via experience
• Can agents learn to coordinate actions with other agents?
• What to learn?
⇒ How to select own actions
⇒ How other agents select actions
⇒ Other agents’ goals, plans, beliefs, ...

S. Albrecht, P. Stone 6

Multiagent Learning

Why learning?
• Domain too complex to solve by hand or with multiagent planning
e.g. computing equilibrium solutions in games

• Elements of domain unknown
e.g. observation probabilities, behaviours of other agents, ...
⇒ Multiagent planning requires complete model

• Other agents may learn too
⇒ Have to adapt continually!
“Moving target problem” central issue in multiagent learning

S. Albrecht, P. Stone 7

Multiagent Learning

Why learning?
• Domain too complex to solve by hand or with multiagent planning
e.g. computing equilibrium solutions in games

• Elements of domain unknown
e.g. observation probabilities, behaviours of other agents, ...
⇒ Multiagent planning requires complete model

• Other agents may learn too
⇒ Have to adapt continually!
“Moving target problem” central issue in multiagent learning

S. Albrecht, P. Stone 7

Multiagent Learning

Why learning?
• Domain too complex to solve by hand or with multiagent planning
e.g. computing equilibrium solutions in games

• Elements of domain unknown
e.g. observation probabilities, behaviours of other agents, ...
⇒ Multiagent planning requires complete model

• Other agents may learn too
⇒ Have to adapt continually!
“Moving target problem” central issue in multiagent learning

S. Albrecht, P. Stone 7

Research in Multiagent Learning

Multiagent learning studied in different communities

• AI, game theory, robotics, psychology, ...

• Some conferences & journals: AAMAS, AAAI, IJCAI, NIPS, UAI, ICML,
ICRA, IROS, RSS, PRIMA, JAAMAS, AIJ, JAIR, MLJ, JMLR, ...
⇒ Very large + growing body of work!

• Many algorithms proposed to address different assumptions
(constraints), learning goals, performance criteria, ...

S. Albrecht, P. Stone 8

Research in Multiagent Learning

Multiagent learning studied in different communities

• AI, game theory, robotics, psychology, ...

• Some conferences & journals: AAMAS, AAAI, IJCAI, NIPS, UAI, ICML,
ICRA, IROS, RSS, PRIMA, JAAMAS, AIJ, JAIR, MLJ, JMLR, ...
⇒ Very large + growing body of work!

• Many algorithms proposed to address different assumptions
(constraints), learning goals, performance criteria, ...

S. Albrecht, P. Stone 8

Research in Multiagent Learning

Multiagent learning studied in different communities

• AI, game theory, robotics, psychology, ...

• Some conferences & journals: AAMAS, AAAI, IJCAI, NIPS, UAI, ICML,
ICRA, IROS, RSS, PRIMA, JAAMAS, AIJ, JAIR, MLJ, JMLR, ...
⇒ Very large + growing body of work!

• Many algorithms proposed to address different assumptions
(constraints), learning goals, performance criteria, ...

S. Albrecht, P. Stone 8

Tutorial

This tutorial:
• Introduction to basics of multiagent learning:

• Interaction models & assumptions
• Learning goals
• Selection of learning algorithms

• Plus some recent trends

Further reading:
• AIJ Special Issue “Foundations of Multi-Agent Learning”
Rakesh Vohra, Michael Wellman (eds.), 2007

• Surveys: Tuyls and Weiss (2012); Busoniu et al. (2008); Panait and
Luke (2005); Shoham et al. (2003); Alonso et al. (2001); Stone and
Veloso (2000); Sen and Weiss (1999)

• Our own upcoming survey on agents modelling other agents!

S. Albrecht, P. Stone 9

Tutorial

This tutorial:
• Introduction to basics of multiagent learning:

• Interaction models & assumptions
• Learning goals
• Selection of learning algorithms

• Plus some recent trends

Further reading:
• AIJ Special Issue “Foundations of Multi-Agent Learning”
Rakesh Vohra, Michael Wellman (eds.), 2007

• Surveys: Tuyls and Weiss (2012); Busoniu et al. (2008); Panait and
Luke (2005); Shoham et al. (2003); Alonso et al. (2001); Stone and
Veloso (2000); Sen and Weiss (1999)

• Our own upcoming survey on agents modelling other agents!

S. Albrecht, P. Stone 9

Overview

Introduction

Multiagent Models & Assumptions

Learning Goals

Learning Algorithms

Recent Trends

S. Albrecht, P. Stone 10

Overview

Introduction

Multiagent Models & Assumptions

Learning Goals

Learning Algorithms

Recent Trends

S. Albrecht, P. Stone 11

Multiagent Models & Assumptions

Standard multiagent models:

• Normal-form game
• Repeated game
• Stochastic game

Assumptions and other models

S. Albrecht, P. Stone 12

Normal-Form Game

Normal-form game consists of:
• Finite set of agents N = {1, ...,n}
• For each agent i ∈ N:

• Finite set of actions Ai
• Utility function ui : A→ R, where A = A1 × ...× An

Each agent i selects policy πi : Ai → [0, 1], takes action ai ∈ Ai with
probability πi(ai), and receives utility ui(a1, ...,an)

Given policy profile (π1, ..., πn), expected utility to i is

Ui(π1, ..., πn) =
∑
a∈ A

π1(a1) ∗ ... ∗ πn(an) ∗ ui(a)

⇒ Agents want to maximise their expected utilities

S. Albrecht, P. Stone 13

Normal-Form Game

Normal-form game consists of:
• Finite set of agents N = {1, ...,n}
• For each agent i ∈ N:

• Finite set of actions Ai
• Utility function ui : A→ R, where A = A1 × ...× An

Each agent i selects policy πi : Ai → [0, 1], takes action ai ∈ Ai with
probability πi(ai), and receives utility ui(a1, ...,an)

Given policy profile (π1, ..., πn), expected utility to i is

Ui(π1, ..., πn) =
∑
a∈ A

π1(a1) ∗ ... ∗ πn(an) ∗ ui(a)

⇒ Agents want to maximise their expected utilities

S. Albrecht, P. Stone 13

Normal-Form Game: Prisoner’s Dilemma

Example: Prisoner’s Dilemma
• Two prisoners questioned in isolated cells
• Each prisoner can Cooperate or Defect
• Utilities (row = agent 1, column = agent 2):

C D
C -1,-1 -5,0
D 0,-5 -3,-3

S. Albrecht, P. Stone 14

Normal-Form Game: Chicken

Example: Chicken
• Two opposite drivers on same lane
• Each driver can Stay on lane or Leave lane
• Utilities:

S L
S 0,0 7,2
L 2,7 6,6

S. Albrecht, P. Stone 15

Normal-Form Game: Rock-Paper-Scissors

Example: Rock-Paper-Scissors
• Two players, three actions
• Rock beats Scissors beats Paper beats Rock
• Utilities:

R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0

S. Albrecht, P. Stone 16

Repeated Game

Learning requires experience

• Normal-form game is single interaction
⇒ No experience!

• Experience comes from repeated interactions

Repeated game:
• Repeat same normal-form game: at each time t, each agent i
chooses action ati and gets utility ui(at1, ...,atn)

• Policy πi : H× Ai → [0, 1] assigns action probabilities based on
history of interaction

H = ∪t∈N0Ht, Ht =
{
Ht = (a0,a1, ...,at−1) | aτ ∈ A

}

S. Albrecht, P. Stone 17

Repeated Game

Learning requires experience

• Normal-form game is single interaction
⇒ No experience!

• Experience comes from repeated interactions

Repeated game:
• Repeat same normal-form game: at each time t, each agent i
chooses action ati and gets utility ui(at1, ...,atn)

• Policy πi : H× Ai → [0, 1] assigns action probabilities based on
history of interaction

H = ∪t∈N0Ht, Ht =
{
Ht = (a0,a1, ...,at−1) | aτ ∈ A

}

S. Albrecht, P. Stone 17

Repeated Game

What is expected utility to i for policy profile (π1, ..., πn)?

• Repeating game t ∈ N times:

Ui(π1, ..., πn) =
∑
Ht∈Ht

P(Ht|π1, ..., πn)
t−1∑
τ=0

ui(aτ)

P(Ht|π1, ..., πn) =
t−1∏
τ=0

∏
j∈N

πj(Hτ ,aτj)

S. Albrecht, P. Stone 18

Repeated Game

What is expected utility to i for policy profile (π1, ..., πn)?

• Repeating game∞ times:

Ui(π1, ..., πn) = lim
t→∞

∑
Ht

P(Ht|π1, ..., πn)
∑
τ

γτui(aτ)

Discount factor 0 ≤ γ < 1 makes expectation finite

Interpretation: low γ is “myopic”, high γ is “farsighted”
(Or: probability that game will end at each time is 1− γ)

Can also define expected utility as limit average

S. Albrecht, P. Stone 19

Repeated Game

What is expected utility to i for policy profile (π1, ..., πn)?

• Repeating game∞ times:

Ui(π1, ..., πn) = lim
t→∞

∑
Ht

P(Ht|π1, ..., πn)
∑
τ

γτui(aτ)

Discount factor 0 ≤ γ < 1 makes expectation finite

Interpretation: low γ is “myopic”, high γ is “farsighted”
(Or: probability that game will end at each time is 1− γ)

Can also define expected utility as limit average

S. Albrecht, P. Stone 19

Repeated Game: Prisoner’s Dilemma

Example: Repeated Prisoner’s Dilemma

C D
C -1,-1 -5,0
D 0,-5 -3,-3

Example policies:

• At time t, choose C with probability (t+ 1)−1

• Grim: chose C until opponent’s first D, then choose D forever
• Tit-for-Tat: begin C, then repeat opponent’s last action

S. Albrecht, P. Stone 20

Repeated Game: Rock-Paper-Scissors

Example: Repeated Rock-Paper-Scissors

R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0

Example policy:
• Compute empirical frequency of opponent actions over past 5
moves

P(aj) =
1
5

t−1∑
τ=t−5

[aτj = aj]1

and take best-response action maxai
∑

aj P(aj)ui(ai,aj)

S. Albrecht, P. Stone 21

Stochastic Game

Agents interact in common environment

• Environment has states, actions have effect on state
• Agents choose actions based on state-action history

Example: Pursuit (e.g. Barrett et al., 2011)
• Predator agents must capture prey
• State: agent positions
• Actions: move to neighbouring cell

S. Albrecht, P. Stone 22

Stochastic Game

Stochastic game consists of:
• Finite set of agents N = {1, ...,n}
• Finite set of states S
• For each agent i ∈ N:

• Finite set of actions Ai
• Utility function ui : S× A→ R, where A = A1 × ...× An

• State transition function T : S× A× S→ [0, 1]

Generalises Markov decision process (MDP) to multiple agents

S. Albrecht, P. Stone 23

Stochastic Game

Stochastic game consists of:
• Finite set of agents N = {1, ...,n}
• Finite set of states S
• For each agent i ∈ N:

• Finite set of actions Ai
• Utility function ui : S× A→ R, where A = A1 × ...× An

• State transition function T : S× A× S→ [0, 1]

Generalises Markov decision process (MDP) to multiple agents

S. Albrecht, P. Stone 23

Stochastic Game

Game starts in initial state s0 ∈ S

At each time t:

• Each agent i...

• observes current state st and past joint action at−1 (if t > 0)
• chooses action ati ∈ Ai with probability πi(Ht,ati) where
Ht = (s0,a0, s1,a1, ..., st−1) is state-action history

• receives utility ui(at1, ...,atn)
• Game transitions into next state st+1 ∈ S with probability
T(st,at, st+1)

Process repeated finite or infinite number of times, or until terminal
state is reached (e.g. prey captured).

S. Albrecht, P. Stone 24

Stochastic Game

Game starts in initial state s0 ∈ S

At each time t:

• Each agent i...
• observes current state st and past joint action at−1 (if t > 0)

• chooses action ati ∈ Ai with probability πi(Ht,ati) where
Ht = (s0,a0, s1,a1, ..., st−1) is state-action history

• receives utility ui(at1, ...,atn)
• Game transitions into next state st+1 ∈ S with probability
T(st,at, st+1)

Process repeated finite or infinite number of times, or until terminal
state is reached (e.g. prey captured).

S. Albrecht, P. Stone 24

Stochastic Game

Game starts in initial state s0 ∈ S

At each time t:

• Each agent i...
• observes current state st and past joint action at−1 (if t > 0)
• chooses action ati ∈ Ai with probability πi(Ht,ati) where
Ht = (s0,a0, s1,a1, ..., st−1) is state-action history

• receives utility ui(at1, ...,atn)
• Game transitions into next state st+1 ∈ S with probability
T(st,at, st+1)

Process repeated finite or infinite number of times, or until terminal
state is reached (e.g. prey captured).

S. Albrecht, P. Stone 24

Stochastic Game

Game starts in initial state s0 ∈ S

At each time t:

• Each agent i...
• observes current state st and past joint action at−1 (if t > 0)
• chooses action ati ∈ Ai with probability πi(Ht,ati) where
Ht = (s0,a0, s1,a1, ..., st−1) is state-action history

• receives utility ui(at1, ...,atn)

• Game transitions into next state st+1 ∈ S with probability
T(st,at, st+1)

Process repeated finite or infinite number of times, or until terminal
state is reached (e.g. prey captured).

S. Albrecht, P. Stone 24

Stochastic Game

Game starts in initial state s0 ∈ S

At each time t:

• Each agent i...
• observes current state st and past joint action at−1 (if t > 0)
• chooses action ati ∈ Ai with probability πi(Ht,ati) where
Ht = (s0,a0, s1,a1, ..., st−1) is state-action history

• receives utility ui(at1, ...,atn)
• Game transitions into next state st+1 ∈ S with probability
T(st,at, st+1)

Process repeated finite or infinite number of times, or until terminal
state is reached (e.g. prey captured).

S. Albrecht, P. Stone 24

Stochastic Game

Game starts in initial state s0 ∈ S

At each time t:

• Each agent i...
• observes current state st and past joint action at−1 (if t > 0)
• chooses action ati ∈ Ai with probability πi(Ht,ati) where
Ht = (s0,a0, s1,a1, ..., st−1) is state-action history

• receives utility ui(at1, ...,atn)
• Game transitions into next state st+1 ∈ S with probability
T(st,at, st+1)

Process repeated finite or infinite number of times, or until terminal
state is reached (e.g. prey captured).

S. Albrecht, P. Stone 24

Stochastic Game: Level-Based Foraging

Example: Level-Based Foraging (Albrecht and Ramamoorthy, 2013)
• Agents (circles) must collect all items (squares)
• State: agent positions, item positions, which items collected
• Actions: move to neighbouring cell, try to collect item

S. Albrecht, P. Stone 25

Stochastic Game: Soccer Keepaway

Example: Soccer Keepaway (Stone et al., 2005)
• “Keeper” agents must keep ball away from “Taker” agents
• State: player positions & orientations, ball position, ...
• Actions: go to ball, pass ball to player, ...

S. Albrecht, P. Stone 26

Stochastic Game: Soccer Keepaway

Video: 4 vs 3 Keepaway

Source: http://www.cs.utexas.edu/~AustinVilla/sim/keepaway

S. Albrecht, P. Stone 27

http://www.cs.utexas.edu/~AustinVilla/sim/keepaway

Assumptions

Models and algorithms make assumptions, e.g.

• What do agents know about the game?
• What can agents observe during a game?

Usual assumptions:

• Game elements known (state/action space, utility function, ...)
• Game states & chosen actions are commonly observed
⇒ “full observability” or “perfect information”

Many learning algorithms designed for repeated/stochastic game
with full observability

• But assumptions may vary and other models exist!

S. Albrecht, P. Stone 28

Assumptions

Models and algorithms make assumptions, e.g.

• What do agents know about the game?
• What can agents observe during a game?

Usual assumptions:

• Game elements known (state/action space, utility function, ...)
• Game states & chosen actions are commonly observed
⇒ “full observability” or “perfect information”

Many learning algorithms designed for repeated/stochastic game
with full observability

• But assumptions may vary and other models exist!

S. Albrecht, P. Stone 28

Assumptions

Models and algorithms make assumptions, e.g.

• What do agents know about the game?
• What can agents observe during a game?

Usual assumptions:

• Game elements known (state/action space, utility function, ...)
• Game states & chosen actions are commonly observed
⇒ “full observability” or “perfect information”

Many learning algorithms designed for repeated/stochastic game
with full observability

• But assumptions may vary and other models exist!

S. Albrecht, P. Stone 28

Other Models

Other assumptions & models:

• Assumption: elements of game unknown

• Bayesian game, stochastic Bayesian game
AAAI’16 tutorial “Type-based Methods for Interaction in
Multiagent Systems”
http://thinc.cs.uga.edu/tutorials/aaai-16.html

• Assumption: partial observability of states and actions

• Extensive-form game with imperfect information
• Partially observable stochastic game (POSG)
• Multiagent POMDPs: Dec-POMDP, I-POMDP, ...

S. Albrecht, P. Stone 29

http://thinc.cs.uga.edu/tutorials/aaai-16.html

Overview

Introduction

Multiagent Models & Assumptions

Learning Goals

Learning Algorithms

Recent Trends

S. Albrecht, P. Stone 30

Learning Goals

Learning is to improve performance via experience

• But what is goal (end-result) of learning process?
• How to measure success of learning?

Many learning goals proposed:

• Minimax/Nash/correlated equilibrium
• Pareto-optimality
• Social welfare & fairness
• No-regret
• Targeted optimality & safety

... plus combinations & approximations

S. Albrecht, P. Stone 31

Learning Goals

Learning is to improve performance via experience

• But what is goal (end-result) of learning process?
• How to measure success of learning?

Many learning goals proposed:

• Minimax/Nash/correlated equilibrium
• Pareto-optimality
• Social welfare & fairness
• No-regret
• Targeted optimality & safety

... plus combinations & approximations

S. Albrecht, P. Stone 31

Maximin/Minimax

Two-player zero-sum game: ui = −uj
• e.g. Rock-Paper-Scissors, Chess

Policy profile (πi, πj) is maximin/minimax profile if

Ui(πi, πj) = max
π′
i

min
π′
j

Ui(π′
i , π

′
j) = min

π′
j

max
π′
j

Ui(π′
i , π

′
j) = −Uj(πi, πj)

Utility that can be guaranteed against worst-case opponent

• Every two-player zero-sum normal-form game has minimax
profile (von Neumann and Morgenstern, 1944)

• Every finite or infinite+discounted zero-sum stochastic game has
minimax profile (Shapley, 1953)

S. Albrecht, P. Stone 32

Maximin/Minimax

Two-player zero-sum game: ui = −uj
• e.g. Rock-Paper-Scissors, Chess

Policy profile (πi, πj) is maximin/minimax profile if

Ui(πi, πj) = max
π′
i

min
π′
j

Ui(π′
i , π

′
j) = min

π′
j

max
π′
j

Ui(π′
i , π

′
j) = −Uj(πi, πj)

Utility that can be guaranteed against worst-case opponent

• Every two-player zero-sum normal-form game has minimax
profile (von Neumann and Morgenstern, 1944)

• Every finite or infinite+discounted zero-sum stochastic game has
minimax profile (Shapley, 1953)

S. Albrecht, P. Stone 32

Maximin/Minimax

Two-player zero-sum game: ui = −uj
• e.g. Rock-Paper-Scissors, Chess

Policy profile (πi, πj) is maximin/minimax profile if

Ui(πi, πj) = max
π′
i

min
π′
j

Ui(π′
i , π

′
j) = min

π′
j

max
π′
j

Ui(π′
i , π

′
j) = −Uj(πi, πj)

Utility that can be guaranteed against worst-case opponent

• Every two-player zero-sum normal-form game has minimax
profile (von Neumann and Morgenstern, 1944)

• Every finite or infinite+discounted zero-sum stochastic game has
minimax profile (Shapley, 1953)

S. Albrecht, P. Stone 32

Nash Equilibrium

Policy profile π = (π1, ..., πn) is Nash equilibrium (NE) if

∀i ∀π′
i : Ui(π′

i , π−i) ≤ Ui(π)

No agent can improve utility by unilaterally deviating from profile
(every agent plays best-response to other agents)

Every finite normal-form game has at least one NE (Nash, 1950)
(also stochastic games, e.g. Fink (1964))

• Standard solution in game theory
• In two-player zero-sum game, minimax is same as NE

S. Albrecht, P. Stone 33

Nash Equilibrium

Policy profile π = (π1, ..., πn) is Nash equilibrium (NE) if

∀i ∀π′
i : Ui(π′

i , π−i) ≤ Ui(π)

No agent can improve utility by unilaterally deviating from profile
(every agent plays best-response to other agents)

Every finite normal-form game has at least one NE (Nash, 1950)
(also stochastic games, e.g. Fink (1964))

• Standard solution in game theory
• In two-player zero-sum game, minimax is same as NE

S. Albrecht, P. Stone 33

Nash Equilibrium – Example

Example: Prisoner’s Dilemma
• Only NE in normal-form game is (D,D)
• Normal-form NE are also NE in infinite
repeated game

• Infinite repeated game has many
more NE⇒ Folk theorem

Example: Rock-Paper-Scissors
• Only NE in normal-form game is
πi = πj = (13 ,

1
3 ,

1
3)

C D
C -1,-1 -5,0
D 0,-5 -3,-3

R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0

S. Albrecht, P. Stone 34

Nash Equilibrium – Example

Example: Prisoner’s Dilemma
• Only NE in normal-form game is (D,D)
• Normal-form NE are also NE in infinite
repeated game

• Infinite repeated game has many
more NE⇒ Folk theorem

Example: Rock-Paper-Scissors
• Only NE in normal-form game is
πi = πj = (13 ,

1
3 ,

1
3)

C D
C -1,-1 -5,0
D 0,-5 -3,-3

R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0

S. Albrecht, P. Stone 34

Correlated Equilibrium

Each agent i observes signal xi with joint distribution ξ(x1, ..., xn)

• E.g. xi is action recommendation to agent i

(π1, ..., πn) is correlated equilibrium (CE) (Aumann, 1974) if no agent
can individually improve its expected utility by deviating from
recommended actions

• NE is subset of CE→ no correlation
• CE easier to compute than NE→ linear program

S. Albrecht, P. Stone 35

Correlated Equilibrium

Each agent i observes signal xi with joint distribution ξ(x1, ..., xn)

• E.g. xi is action recommendation to agent i

(π1, ..., πn) is correlated equilibrium (CE) (Aumann, 1974) if no agent
can individually improve its expected utility by deviating from
recommended actions

• NE is subset of CE→ no correlation
• CE easier to compute than NE→ linear program

S. Albrecht, P. Stone 35

Correlated Equilibrium – Example

Example: Chicken

Correlated equilibrium:
• ξ(L, L) = ξ(S, L) = ξ(L, S) = 1

3

• ξ(S, S) = 0

Expected utility to both:
7 ∗ 1

3 + 2 ∗ 1
3 + 6 ∗ 1

3 = 5

Nash equilibrium utilities:
• πi(S) = 1, πj(S) = 0 → (7, 2)
• πi(S) = 0, πj(S) = 1 → (2, 7)
• πi(S) = 1

3 , πj(S) =
1
3 → ≈ 4.66

S L
S 0,0 7,2
L 2,7 6,6

S. Albrecht, P. Stone 36

Correlated Equilibrium – Example

Example: Chicken

Correlated equilibrium:
• ξ(L, L) = ξ(S, L) = ξ(L, S) = 1

3

• ξ(S, S) = 0

Expected utility to both:
7 ∗ 1

3 + 2 ∗ 1
3 + 6 ∗ 1

3 = 5

Nash equilibrium utilities:
• πi(S) = 1, πj(S) = 0 → (7, 2)
• πi(S) = 0, πj(S) = 1 → (2, 7)
• πi(S) = 1

3 , πj(S) =
1
3 → ≈ 4.66

S L
S 0,0 7,2
L 2,7 6,6

S. Albrecht, P. Stone 36

The Equilibrium Legacy

The “Equilibrium Legacy” in multiagent learning:

• Quickly adopted equilibrium as standard goal of learning
• But equilibrium (e.g. NE) has many limitations...

1. Non-uniqueness
Often multiple NE exist, how should agents choose same one?

2. Incompleteness
NE does not specify behaviours for off-equilibrium paths

3. Sup-optimality
NE not generally same as utility maximisation

4. Rationality
NE assumes all agents are rational (= perfect utility maximisers)

S. Albrecht, P. Stone 37

The Equilibrium Legacy

The “Equilibrium Legacy” in multiagent learning:

• Quickly adopted equilibrium as standard goal of learning
• But equilibrium (e.g. NE) has many limitations...

1. Non-uniqueness
Often multiple NE exist, how should agents choose same one?

2. Incompleteness
NE does not specify behaviours for off-equilibrium paths

3. Sup-optimality
NE not generally same as utility maximisation

4. Rationality
NE assumes all agents are rational (= perfect utility maximisers)

S. Albrecht, P. Stone 37

The Equilibrium Legacy

The “Equilibrium Legacy” in multiagent learning:

• Quickly adopted equilibrium as standard goal of learning
• But equilibrium (e.g. NE) has many limitations...

1. Non-uniqueness
Often multiple NE exist, how should agents choose same one?

2. Incompleteness
NE does not specify behaviours for off-equilibrium paths

3. Sup-optimality
NE not generally same as utility maximisation

4. Rationality
NE assumes all agents are rational (= perfect utility maximisers)

S. Albrecht, P. Stone 37

The Equilibrium Legacy

The “Equilibrium Legacy” in multiagent learning:

• Quickly adopted equilibrium as standard goal of learning
• But equilibrium (e.g. NE) has many limitations...

1. Non-uniqueness
Often multiple NE exist, how should agents choose same one?

2. Incompleteness
NE does not specify behaviours for off-equilibrium paths

3. Sup-optimality
NE not generally same as utility maximisation

4. Rationality
NE assumes all agents are rational (= perfect utility maximisers)

S. Albrecht, P. Stone 37

The Equilibrium Legacy

The “Equilibrium Legacy” in multiagent learning:

• Quickly adopted equilibrium as standard goal of learning
• But equilibrium (e.g. NE) has many limitations...

1. Non-uniqueness
Often multiple NE exist, how should agents choose same one?

2. Incompleteness
NE does not specify behaviours for off-equilibrium paths

3. Sup-optimality
NE not generally same as utility maximisation

4. Rationality
NE assumes all agents are rational (= perfect utility maximisers)

S. Albrecht, P. Stone 37

Pareto Optimum

Policy profile π = (π1, ..., πn) is Pareto-optimal if there is no other
profile π′ such that

∀i : Ui(π′) ≥ Ui(π) and ∃i : Ui(π′) > Ui(π)

Can’t improve one agent without making other agent worse off

0 1 2 3 4 5
0

1

2

3

4

5

Payoff to player 1

P
a

y
o

ff
 t
o

 p
la

y
e

r
2

1, 1 4, 1

1, 4 3, 3

Pareto-front is set of all
Pareto-optimal utilities
(red line)

S. Albrecht, P. Stone 38

Pareto Optimum

Policy profile π = (π1, ..., πn) is Pareto-optimal if there is no other
profile π′ such that

∀i : Ui(π′) ≥ Ui(π) and ∃i : Ui(π′) > Ui(π)

Can’t improve one agent without making other agent worse off

0 1 2 3 4 5
0

1

2

3

4

5

Payoff to player 1

P
a

y
o

ff
 t

o
 p

la
y
e

r
2

1, 1 4, 1

1, 4 3, 3

Pareto-front is set of all
Pareto-optimal utilities
(red line)

S. Albrecht, P. Stone 38

Social Welfare & Fairness

Pareto-optimality says nothing about social welfare and fairness

Welfare and fairness of profile π = (π1, ..., πn) often defined as

Welfare(π) =
∑
i

Ui(π) Fairness(π) =
∏
i

Ui(π)

π welfare/fairness-optimal if maximum Welfare(π)/Fairness(π)

Any welfare/fairness-optimal π is also Pareto-optimal! (Why?)

S. Albrecht, P. Stone 39

Social Welfare & Fairness

Pareto-optimality says nothing about social welfare and fairness

Welfare and fairness of profile π = (π1, ..., πn) often defined as

Welfare(π) =
∑
i

Ui(π) Fairness(π) =
∏
i

Ui(π)

π welfare/fairness-optimal if maximum Welfare(π)/Fairness(π)

Any welfare/fairness-optimal π is also Pareto-optimal! (Why?)

S. Albrecht, P. Stone 39

Social Welfare & Fairness

Pareto-optimality says nothing about social welfare and fairness

Welfare and fairness of profile π = (π1, ..., πn) often defined as

Welfare(π) =
∑
i

Ui(π) Fairness(π) =
∏
i

Ui(π)

π welfare/fairness-optimal if maximum Welfare(π)/Fairness(π)

Any welfare/fairness-optimal π is also Pareto-optimal! (Why?)

S. Albrecht, P. Stone 39

No-Regret

Given history Ht = (a0,a1, ...,at−1), agent i’s regret for not having
taken action ai is

Ri(ai|Ht) =
t−1∑
τ=0

ui(ai,aτ−i)− ui(aτi ,aτ−i)

Policy πi achieves no-regret if

∀ai : lim
t→∞

1
t Ri(ai|H

t) ≤ 0

(Other variants exist)

S. Albrecht, P. Stone 40

No-Regret

Given history Ht = (a0,a1, ...,at−1), agent i’s regret for not having
taken action ai is

Ri(ai|Ht) =
t−1∑
τ=0

ui(ai,aτ−i)− ui(aτi ,aτ−i)

Policy πi achieves no-regret if

∀ai : lim
t→∞

1
t Ri(ai|H

t) ≤ 0

(Other variants exist)

S. Albrecht, P. Stone 40

No-Regret

Like Nash equilibrium, no-regret widely used in multiagent learning

But, like NE, definition of regret has conceptual issues

• Regret definition assumes other agents don’t change actions

Ri(ai|Ht) =
t−1∑
τ=0

ui(ai,aτ−i)− ui(aτi ,aτ−i)

⇒ But: entire history may change if different actions taken!

• Thus, minimising regret not generally same as maximising utility
(e.g. Crandall, 2014)

S. Albrecht, P. Stone 41

No-Regret

Like Nash equilibrium, no-regret widely used in multiagent learning

But, like NE, definition of regret has conceptual issues

• Regret definition assumes other agents don’t change actions

Ri(ai|Ht) =
t−1∑
τ=0

ui(ai,aτ−i)− ui(aτi ,aτ−i)

⇒ But: entire history may change if different actions taken!

• Thus, minimising regret not generally same as maximising utility
(e.g. Crandall, 2014)

S. Albrecht, P. Stone 41

No-Regret

Like Nash equilibrium, no-regret widely used in multiagent learning

But, like NE, definition of regret has conceptual issues

• Regret definition assumes other agents don’t change actions

Ri(ai|Ht) =
t−1∑
τ=0

ui(ai,aτ−i)− ui(aτi ,aτ−i)

⇒ But: entire history may change if different actions taken!

• Thus, minimising regret not generally same as maximising utility
(e.g. Crandall, 2014)

S. Albrecht, P. Stone 41

Targeted Optimality & Safety

Many algorithms designed to achieve some version of targeted
optimality and safety:

• If other agent’s policy πj in certain class, agent i’s learning should
converge to best-response

Ui(πi, πj) ≈ max
π′
i

Ui(π′
i , πj)

• If not in class, learning should at least achieve safety (maximin)
utility

Ui(πi, πj) ≈ max
π′
i

min
π′
j

Ui(π′
i , π

′
j)

Policy classes: non-learning, memory-bounded, finite automata, ...

S. Albrecht, P. Stone 42

Targeted Optimality & Safety

Many algorithms designed to achieve some version of targeted
optimality and safety:

• If other agent’s policy πj in certain class, agent i’s learning should
converge to best-response

Ui(πi, πj) ≈ max
π′
i

Ui(π′
i , πj)

• If not in class, learning should at least achieve safety (maximin)
utility

Ui(πi, πj) ≈ max
π′
i

min
π′
j

Ui(π′
i , π

′
j)

Policy classes: non-learning, memory-bounded, finite automata, ...

S. Albrecht, P. Stone 42

Targeted Optimality & Safety

Many algorithms designed to achieve some version of targeted
optimality and safety:

• If other agent’s policy πj in certain class, agent i’s learning should
converge to best-response

Ui(πi, πj) ≈ max
π′
i

Ui(π′
i , πj)

• If not in class, learning should at least achieve safety (maximin)
utility

Ui(πi, πj) ≈ max
π′
i

min
π′
j

Ui(π′
i , π

′
j)

Policy classes: non-learning, memory-bounded, finite automata, ...

S. Albrecht, P. Stone 42

Targeted Optimality & Safety

Many algorithms designed to achieve some version of targeted
optimality and safety:

• If other agent’s policy πj in certain class, agent i’s learning should
converge to best-response

Ui(πi, πj) ≈ max
π′
i

Ui(π′
i , πj)

• If not in class, learning should at least achieve safety (maximin)
utility

Ui(πi, πj) ≈ max
π′
i

min
π′
j

Ui(π′
i , π

′
j)

Policy classes: non-learning, memory-bounded, finite automata, ...

S. Albrecht, P. Stone 42

Overview

Introduction

Multiagent Models & Assumptions

Learning Goals

Learning Algorithms

Recent Trends

S. Albrecht, P. Stone 43

Learning Algorithms – The Internal View

How does learning take place in policy πi?

The internal view:
• πi continually modifies internal policy π̂ti based on Ht

• π̂ti has own representation and input format Ĥt

πi

Ht

ati
Modify π̂t−1i → π̂ti

Extract Ht → Ĥt
π̂tiĤt

S. Albrecht, P. Stone 44

Learning Algorithms – The Internal View

Internal policy π̂ti :

• Representation: Q-learning, MCTS planner, neural network, ...
• Parameters: Q-table, opponent model, connection weights, ...
• Input format: most recent state/action, abstract feature vector, ...

πi

Ht

ati
Modify π̂t−1i → π̂ti

Extract Ht → Ĥt
π̂tiĤt

S. Albrecht, P. Stone 45

Fictitious Play

Simple example: Fictitious Play (FP) (Brown, 1951)

At each time t:

1. Compute opponent’s action frequencies:

P(aj) =
1

t+ 1

t∑
τ=0

[aτj = aj]1

2. Compute best-response action:

ati ∈ argmax
ai

∑
aj

P(aj)ui(ai,aj)

Self-play: all agents use fictitious play
• If policies converge, policy profile is Nash equilibrium

S. Albrecht, P. Stone 46

Fictitious Play

Simple example: Fictitious Play (FP) (Brown, 1951)

At each time t:

1. Compute opponent’s action frequencies:

P(aj) =
1

t+ 1

t∑
τ=0

[aτj = aj]1

2. Compute best-response action:

ati ∈ argmax
ai

∑
aj

P(aj)ui(ai,aj)

Self-play: all agents use fictitious play
• If policies converge, policy profile is Nash equilibrium

S. Albrecht, P. Stone 46

Fictitious Play

Simple example: Fictitious Play (FP) (Brown, 1951)

At each time t:

1. Compute opponent’s action frequencies:

P(aj) =
1

t+ 1

t∑
τ=0

[aτj = aj]1

2. Compute best-response action:

ati ∈ argmax
ai

∑
aj

P(aj)ui(ai,aj)

Self-play: all agents use fictitious play
• If policies converge, policy profile is Nash equilibrium

S. Albrecht, P. Stone 46

Fictitious Play

Simple example: Fictitious Play (FP) (Brown, 1951)

At each time t:

1. Compute opponent’s action frequencies:

P(aj) =
1

t+ 1

t∑
τ=0

[aτj = aj]1

2. Compute best-response action:

ati ∈ argmax
ai

∑
aj

P(aj)ui(ai,aj)

Self-play: all agents use fictitious play
• If policies converge, policy profile is Nash equilibrium

S. Albrecht, P. Stone 46

Learning Algorithms

Many multiagent learning algorithms exist, e.g.
• Minimax-Q (Littman, 1994)
• JAL (Claus and Boutilier, 1998)
• Regret Matching (Hart and Mas-Colell, 2001, 2000)
• FFQ (Littman, 2001)
• WoLF-PHC (Bowling and Veloso, 2002)
• Nash-Q (Hu and Wellman, 2003)
• CE-Q (Greenwald and Hall, 2003)
• OAL (Wang and Sandholm, 2003)
• ReDVaLeR (Banerjee and Peng, 2004)
• GIGA-WoLF (Bowling, 2005)
• CJAL (Banerjee and Sen, 2007)
• AWESOME (Conitzer and Sandholm, 2007)
• CMLeS (Chakraborty and Stone, 2014)
• HBA (Albrecht, Crandall, and Ramamoorthy, 2016)

S. Albrecht, P. Stone 47

(Conditional) Joint Action Learning

Joint Action Learning (JAL) (Claus and Boutilier, 1998) and
Conditional Joint Action Learning (CJAL) (Banerjee and Sen, 2007)
learn Q-values for joint actions a ∈ A:

Qt+1(at) = (1− α)Qt(at) + αuti

• uti is utility received after joint action at

• α ∈ [0, 1] is learning rate

Use opponent model to compute expected utilities of actions:

JAL: E(ai) =
∑
aj

P(aj)Qt+1(ai,aj)

CJAL: E(ai) =
∑
aj

P(aj|ai)Qt+1(ai,aj)

S. Albrecht, P. Stone 48

(Conditional) Joint Action Learning

Joint Action Learning (JAL) (Claus and Boutilier, 1998) and
Conditional Joint Action Learning (CJAL) (Banerjee and Sen, 2007)
learn Q-values for joint actions a ∈ A:

Qt+1(at) = (1− α)Qt(at) + αuti

• uti is utility received after joint action at

• α ∈ [0, 1] is learning rate

Use opponent model to compute expected utilities of actions:

JAL: E(ai) =
∑
aj

P(aj)Qt+1(ai,aj)

CJAL: E(ai) =
∑
aj

P(aj|ai)Qt+1(ai,aj)

S. Albrecht, P. Stone 48

(Conditional) Joint Action Learning

Opponent models estimated from history Ht:

• JAL:

P(aj) =
1

t+ 1

t∑
τ=0

[aτj = aj]1

• CJAL:

P(aj|ai) =
∑t

τ=0[aτj = aj,aτi = ai]1∑t
τ=0[aτj = aj]1

Given expected utilities E(ai), use some action exploration scheme:

• E.g. ϵ-greedy: choose argmaxai E(ai) with probability 1− ϵ, else
choose random action

S. Albrecht, P. Stone 49

(Conditional) Joint Action Learning

Opponent models estimated from history Ht:

• JAL:

P(aj) =
1

t+ 1

t∑
τ=0

[aτj = aj]1

• CJAL:

P(aj|ai) =
∑t

τ=0[aτj = aj,aτi = ai]1∑t
τ=0[aτj = aj]1

Given expected utilities E(ai), use some action exploration scheme:

• E.g. ϵ-greedy: choose argmaxai E(ai) with probability 1− ϵ, else
choose random action

S. Albrecht, P. Stone 49

(Conditional) Joint Action Learning

JAL and CJAL can converge to Nash equilibrium in self-play

CJAL in variant of Prisoner’s Dilemma (from Banerjee and Sen, 2007):

Converging to Pareto-optimal NE (C,C)

S. Albrecht, P. Stone 50

Opponent Modelling

FP, JAL, CJAL are simple examples of opponent modelling:

• Use model of other agent to predict its actions, goals, beliefs, ...

Many forms of opponent modelling exist:
• Policy reconstruction
• Type-based methods
• Classification
• Plan recognition

• Recursive reasoning
• Graphical methods
• Group modelling
• ...

Upcoming survey by S. Albrecht & P. Stone!

S. Albrecht, P. Stone 51

Opponent Modelling

FP, JAL, CJAL are simple examples of opponent modelling:

• Use model of other agent to predict its actions, goals, beliefs, ...

Many forms of opponent modelling exist:
• Policy reconstruction
• Type-based methods
• Classification
• Plan recognition

• Recursive reasoning
• Graphical methods
• Group modelling
• ...

Upcoming survey by S. Albrecht & P. Stone!

S. Albrecht, P. Stone 51

Opponent Modelling

FP, JAL, CJAL are simple examples of opponent modelling:

• Use model of other agent to predict its actions, goals, beliefs, ...

Many forms of opponent modelling exist:
• Policy reconstruction
• Type-based methods
• Classification
• Plan recognition

• Recursive reasoning
• Graphical methods
• Group modelling
• ...

Upcoming survey by S. Albrecht & P. Stone!

S. Albrecht, P. Stone 51

Minimax/Nash/Correlated Q-Learning

Minimax Q-Learning (Minimax-Q) (Littman, 1994) and
Nash Q-Learning (Nash-Q) (Hu and Wellman, 2003) and
Correlated Q-Learning (CE-Q) (Greenwald and Hall, 2003)
learn joint-action Q-values for each agent j ∈ N:

Qt+1j (st,at) = (1− α)Qtj(st,at) + α
[
utj + γEQj(st+1)

]

• Assumes utilities utj are commonly observed
• EQ(st+1) is expected utility to agent j under equilibrium profile for
normal-form game with utility functions uj(a) = Qtj(st+1,a)
⇒ Minimax-Q: use minimax profile (assumes zero-sum game)
⇒ Nash-Q: use Nash equilibrium
⇒ CE-Q: use correlated equilibrium

S. Albrecht, P. Stone 52

Minimax/Nash/Correlated Q-Learning

Minimax Q-Learning (Minimax-Q) (Littman, 1994) and
Nash Q-Learning (Nash-Q) (Hu and Wellman, 2003) and
Correlated Q-Learning (CE-Q) (Greenwald and Hall, 2003)
learn joint-action Q-values for each agent j ∈ N:

Qt+1j (st,at) = (1− α)Qtj(st,at) + α
[
utj + γEQj(st+1)

]
• Assumes utilities utj are commonly observed

• EQ(st+1) is expected utility to agent j under equilibrium profile for
normal-form game with utility functions uj(a) = Qtj(st+1,a)
⇒ Minimax-Q: use minimax profile (assumes zero-sum game)
⇒ Nash-Q: use Nash equilibrium
⇒ CE-Q: use correlated equilibrium

S. Albrecht, P. Stone 52

Minimax/Nash/Correlated Q-Learning

Minimax Q-Learning (Minimax-Q) (Littman, 1994) and
Nash Q-Learning (Nash-Q) (Hu and Wellman, 2003) and
Correlated Q-Learning (CE-Q) (Greenwald and Hall, 2003)
learn joint-action Q-values for each agent j ∈ N:

Qt+1j (st,at) = (1− α)Qtj(st,at) + α
[
utj + γEQj(st+1)

]
• Assumes utilities utj are commonly observed
• EQ(st+1) is expected utility to agent j under equilibrium profile for
normal-form game with utility functions uj(a) = Qtj(st+1,a)
⇒ Minimax-Q: use minimax profile (assumes zero-sum game)
⇒ Nash-Q: use Nash equilibrium
⇒ CE-Q: use correlated equilibrium

S. Albrecht, P. Stone 52

Minimax/Nash/Correlated Q-Learning

Minimax-Q, Nash-Q, CE-Q can converge to equilibrium in self-play

• E.g. Nash-Q formal proof of convergence to NE
• But based on strong restrictions on Qtj !

HU AND WELLMAN

Assumption 3 One of the following conditions holds during learning.3
Condition A. Every stage game (Q1t (s), . . . ,Qn

t (s)), for all t and s, has a global optimal point,
and agents’ payoffs in this equilibrium are used to update their Q-functions.
Condition B. Every stage game (Q1t (s), . . . ,Qn

t (s)), for all t and s, has a saddle point, and
agents’ payoffs in this equilibrium are used to update their Q-functions.

We further define the distance between two Q-functions.

Definition 15 For Q, Q̂ 2Q, define

k Q� Q̂ k ⌘ max
j
max
s
k Qj(s)� Q̂ j(s) k(j,s)

⌘ max
j
max
s
max
a1,...,an

|Qj(s,a1, . . . ,an)� Q̂ j(s,a1, . . . ,an)|.

Given Assumption 3, we can establish that Pt is a contraction mapping operator.

Lemma 16 k PtQ�PtQ̂ k β k Q� Q̂ k for all Q, Q̂ 2Q.

Proof.

k PtQ�PtQ̂ k = max
j
k PtQj�PtQ̂ j k(j)

= max
j
max
s

| βπ1(s) · · ·πn(s)Qj(s)�βπ̂1(s) · · · π̂n(s)Q̂ j(s) |

= max
j
β | π1(s) · · ·πn(s)Qj(s)� π̂1(s) · · · π̂n(s)Q̂ j(s) |

We proceed to prove that

|π1(s) · · ·πn(s)Qj(s)� π̂1(s) · · · π̂n(s)Q̂ j(s)|k Qj(s)� Q̂ j(s) k .

To simplify notation, we use σ j to represent π j(s), and σ̂ j to represent π̂ j(s). The proposition we
want to prove is

|σ jσ� jQ j(s)� σ̂ jσ̂� jQ̂ j(s)|k Qj(s)� Q̂ j(s) k .

Case 1: Suppose both (σ1, . . . ,σn) and (σ̂1, . . . , σ̂n) satisfy Condition A in Assumption 3, which
means they are global optimal points.

If σ jσ� jQ j(s)� σ̂ jσ̂� jQ̂ j(s), we have

σ jσ� jQ j(s)� σ̂ jσ̂� jQ̂ j(s)
 σ jσ� jQ j(s)�σ jσ� jQ̂ j(s)
= ∑

a1,...,an
σ1(a1) · · ·σn(an)

�

Qj(s,a1, . . . ,an)� Q̂ j(s,a1, . . . ,an)
�

 ∑
a1,...,an

σ1(a1) · · ·σn(an) k Qj(s)� Q̂ j(s) k (15)

= k Qj(s)� Q̂ j(s) k,
3. In our statement of this assumption in previous writings (Hu and Wellman, 1998, Hu, 1999), we neglected to include
the qualification that the same condition be satisfied by all stage games. We have made the qualification more explicit
subsequently (Hu and Wellman, 2000). As Bowling (2000) has observed, the distinction is essential.

1050

(Hu and Wellman, 2003)

S. Albrecht, P. Stone 53

Model-Free Learning

JAL, CJAL, Nash-Q, ... learn models of other agents

• Model-based learning

Can also learn without modelling other agents

• Model-free learning
• e.g. WoLF-PHC, Regret Matching

S. Albrecht, P. Stone 54

Model-Free Learning

JAL, CJAL, Nash-Q, ... learn models of other agents

• Model-based learning

Can also learn without modelling other agents

• Model-free learning
• e.g. WoLF-PHC, Regret Matching

S. Albrecht, P. Stone 54

Win or Learn Fast Policy Hill Climbing

Win or Learn Fast Policy Hill Climbing (WoLF-PHC) (Bowling and
Veloso, 2002) uses policy hill climbing in policy space:

π̂t+1i (st,ati) = π̂ti (st,ati) +
{

δ if ati = argmaxa′i Q(s
t,a′i)

− δ
|Ai|−1 else

• Q is standard Q-learning

Variable learning rate δ:

δ =

{
δw if

∑
ai π̂

t
i (st,ai)Q(st,ai) >

∑
ai π̄i(s

t,ai)Q(st,ai)
δl else

• adapt slowly when “winning”, fast when “losing” (δw < δl)
• π̄i is average policy over past policies π̂i

S. Albrecht, P. Stone 55

Win or Learn Fast Policy Hill Climbing

Win or Learn Fast Policy Hill Climbing (WoLF-PHC) (Bowling and
Veloso, 2002) uses policy hill climbing in policy space:

π̂t+1i (st,ati) = π̂ti (st,ati) +
{

δ if ati = argmaxa′i Q(s
t,a′i)

− δ
|Ai|−1 else

• Q is standard Q-learning

Variable learning rate δ:

δ =

{
δw if

∑
ai π̂

t
i (st,ai)Q(st,ai) >

∑
ai π̄i(s

t,ai)Q(st,ai)
δl else

• adapt slowly when “winning”, fast when “losing” (δw < δl)
• π̄i is average policy over past policies π̂i

S. Albrecht, P. Stone 55

Win or Learn Fast Policy Hill Climbing

WoLF gradient ascent in self-play converges to Nash equilibrium in
two-player, two-action repeated game (Bowling and Veloso, 2002)

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1e+06

Pr
(H

ea
ds

)

Iterations

WoLF-PHC: Pr(Heads)
PHC: Pr(Heads)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
(P
ap
er
)

Pr(Rock)

PHC
WoLF

(a) Matching Pennies Game (b) Rock-Paper-Scissors Game

Figure 2: (a) Results for matching pennies: the policy for one of the players as a probability distribution while learning with
PHC and WoLF-PHC. The other player’s policy looks similar. (b) Results for rock-paper-scissors: trajectories of one player’s
policy. The bottom-left shows PHC in self-play, and the upper-right shows WoLF-PHC in self-play.

and the other trying to move North. Hence the game requires
that the players coordinate their behaviors.
WoLF policy hill-climbing successfully converges to one

of these equilibria. Figure 3(a) shows an example trajectory
of the players’ strategies for the initial state while learning
over 100,000 steps. In this example the players converged
to the equilibrium where player one moves East and player
two moves North from the initial state. This is evidence that
WoLF policy hill-climbing can learn an equilibrium even in a
general-sum game with multiple equilibria.

5.3 Soccer
The final domain is a comparatively large zero-sum soccer
game introduced by Littman [1994] to demonstrate Minimax-
Q. An example of an initial state in this game is shown in Fig-
ure 3(b), where player ’B’ has possession of the ball. The goal
is for the players to carry the ball into the goal on the opposite
side of the field. The actions available are the four compass
directions and the option to not move. The players select ac-
tions simultaneously but they are executed in a random order,
which adds non-determinism to their actions. If a player at-
tempts to move to the square occupied by its opponent, the
stationary player gets possession of the ball, and the move
fails. Unlike the grid world domain, the Nash equilibrium for
this game requires a mixed policy. In fact any deterministic
policy (therefore anything learned by an single-agent learner
or JAL) can always be defeated [Littman, 1994].
Our experimental setup resembles that used by Littman

in order to compare with his results for Minimax-Q. Each
player was trained for one million steps. After training,
its policy was fixed and a challenger using Q-learning was
trained against the player. This determines the learned pol-
icy’s worst-case performance, and gives an idea of how close
the player was to the equilibrium policy, which would per-
form no worse than losing half its games to its challenger.
Unlike Minimax-Q, WoLF-PHC and PHC generally oscillate
around the target solution. In order to account for this in the
results, training was continued for another 250,000 steps and

evaluated after every 50,000 steps. The worst performing pol-
icy was then used for the value of that learning run.
Figure 3(b) shows the percentage of games won by the

different players when playing their challengers. “Minimax-
Q” represents Minimax-Q when learning against itself (the
results were taken from Littman’s original paper.) “WoLF”
represents WoLF policy hill-climbing learning against itself.
“PHC(L)” and “PHC(W)” represents policy hill-climbing
with � = �l and � = �w, respectively. “WoLF(2x)” represents
WoLF policy hill-climbing learning with twice the training
(i.e. two million steps). The performance of the policies were
averaged over fifty training runs and the standard deviations
are shown by the lines beside the bars. The relative ordering
by performance is statistically significant.
WoLF-PHC does extremely well, performing equivalently

to Minimax-Q with the same amount of training2 and contin-
ues to improve with more training. The exact effect of the
WoLF principle can be seen by its out-performance of PHC,
using either the larger or smaller learning rate. This shows
that the success of WoLF-PHC is not simply due to changing
learning rates, but rather to changing the learning rate at the
appropriate time to encourage convergence.

6 Conclusion
In this paper we present two properties, rationality and con-
vergence, that are desirable for a multiagent learning algo-
rithm. We present a new algorithm that uses a variable learn-
ing rate based on the WoLF (“Win or Learn Fast”) princi-
ple. We then showed how this algorithm takes large steps
towards achieving these properties on a number and variety
of stochastic games. The algorithm is rational and is shown
empirically to converge in self-play to an equilibrium even in
games with multiple or mixed policy equilibria, which previ-
ous multiagent reinforcement learners have not achieved.

2The results are not directly comparable due to the use of a dif-
ferent decay of the learning rate. Minimax-Q uses an exponential
decay that decreases too quickly for use with WoLF-PHC.

Targeted optimality: if opponent policy converges, WoLF-PHC
converges to best-response against opponent

S. Albrecht, P. Stone 56

Regret Matching

Regret Matching (RegMat) (Hart and Mas-Colell, 2000) computes
conditional regret for not choosing a′i whenever ai was chosen:

R(ai,a′i) =
1

t+ 1
∑

τ :aτi = ai

ui(a′i ,aτj)− ui(aτ)

Used to modify policy:

π̂t+1i (ai) =


1
µ max[R(aτi ,ai), 0] ai ̸= ati

1−
∑

a′i ̸=a
τ
i
π̂t+1i (a′i) ai = ati

• µ > 0 is “inertia” parameter

S. Albrecht, P. Stone 57

Regret Matching

Regret Matching (RegMat) (Hart and Mas-Colell, 2000) computes
conditional regret for not choosing a′i whenever ai was chosen:

R(ai,a′i) =
1

t+ 1
∑

τ :aτi = ai

ui(a′i ,aτj)− ui(aτ)

Used to modify policy:

π̂t+1i (ai) =


1
µ max[R(aτi ,ai), 0] ai ̸= ati

1−
∑

a′i ̸=a
τ
i
π̂t+1i (a′i) ai = ati

• µ > 0 is “inertia” parameter

S. Albrecht, P. Stone 57

Regret Matching

RegMat converges to correlated equilibrium in self-play

Assumes actions commonly observed and utility functions known

• Modified RegMat (Hart and Mas-Colell, 2001) removes
assumptions — only observe own action and utilities

R(ai,a′i) =
1

t+ 1
∑

τ :aτi = a′i

π̂τ
i (ai)

π̂τ
i (a′i)

uτi −
1

t+ 1
∑

τ :aτi = ai

uτi

(plus modified policy normalisation)

• Also converges to correlated equilibrium in self-play!

S. Albrecht, P. Stone 58

Regret Matching

RegMat converges to correlated equilibrium in self-play

Assumes actions commonly observed and utility functions known

• Modified RegMat (Hart and Mas-Colell, 2001) removes
assumptions — only observe own action and utilities

R(ai,a′i) =
1

t+ 1
∑

τ :aτi = a′i

π̂τ
i (ai)

π̂τ
i (a′i)

uτi −
1

t+ 1
∑

τ :aτi = ai

uτi

(plus modified policy normalisation)

• Also converges to correlated equilibrium in self-play!

S. Albrecht, P. Stone 58

Regret Matching

RegMat converges to correlated equilibrium in self-play

Assumes actions commonly observed and utility functions known

• Modified RegMat (Hart and Mas-Colell, 2001) removes
assumptions — only observe own action and utilities

R(ai,a′i) =
1

t+ 1
∑

τ :aτi = a′i

π̂τ
i (ai)

π̂τ
i (a′i)

uτi −
1

t+ 1
∑

τ :aτi = ai

uτi

(plus modified policy normalisation)

• Also converges to correlated equilibrium in self-play!

S. Albrecht, P. Stone 58

Learning in Mixed Groups

Bonus question: How do algorithms perform in mixed groups?

Empirical study by Albrecht and Ramamoorthy (2012):

• Tested 5 algorithms in mixed groups:
JAL, CJAL, Nash-Q, WoLF-PHC, Modified RegMat

• Tested in all (78) structurally distinct, strictly ordinal 2× 2
repeated games (Rapoport and Guyer, 1966), e.g.

1,2 2,4
4,1 3,3

• Also tested in 500 random strictly ordinal 2× 2× 2 (3 agents)
repeated games

S. Albrecht, P. Stone 59

Learning in Mixed Groups

Bonus question: How do algorithms perform in mixed groups?

Empirical study by Albrecht and Ramamoorthy (2012):

• Tested 5 algorithms in mixed groups:
JAL, CJAL, Nash-Q, WoLF-PHC, Modified RegMat

• Tested in all (78) structurally distinct, strictly ordinal 2× 2
repeated games (Rapoport and Guyer, 1966), e.g.

1,2 2,4
4,1 3,3

• Also tested in 500 random strictly ordinal 2× 2× 2 (3 agents)
repeated games

S. Albrecht, P. Stone 59

Learning in Mixed Groups

Bonus question: How do algorithms perform in mixed groups?

Empirical study by Albrecht and Ramamoorthy (2012):

• Tested 5 algorithms in mixed groups:
JAL, CJAL, Nash-Q, WoLF-PHC, Modified RegMat

• Tested in all (78) structurally distinct, strictly ordinal 2× 2
repeated games (Rapoport and Guyer, 1966), e.g.

1,2 2,4
4,1 3,3

• Also tested in 500 random strictly ordinal 2× 2× 2 (3 agents)
repeated games

S. Albrecht, P. Stone 59

Learning in Mixed Groups

Test criteria:
• Convergence rate
• Final expected utilities
• Social welfare/fairness
• Solution rates:

• Nash equilibrium (NE)
• Pareto-optimality (PO)
• Welfare-optimality (WO)
• Fairness-optimality (FO)

Which algorithm is best?

S. Albrecht, P. Stone 60

Learning in Mixed Groups

Test criteria:
• Convergence rate
• Final expected utilities
• Social welfare/fairness
• Solution rates:

• Nash equilibrium (NE)
• Pareto-optimality (PO)
• Welfare-optimality (WO)
• Fairness-optimality (FO)

Which algorithm is best?

S. Albrecht, P. Stone 60

Learning in Mixed Groups

Conv. Exp. Util. NE PO WO FO

70%

75%

80%

85%

90%

95%

100%
Overall results

JAL
CJAL
WoLF−PHC
RegMat
Nash-Q

100% is maximum possible utility/rate
Difficulty: NE < PO < WO < FO

S. Albrecht, P. Stone 61

Learning in Mixed Groups

Conv. Exp. Util. NE PO WO FO

70%

75%

80%

85%

90%

95%

100%
Overall results

JAL
CJAL
WoLF−PHC
RegMat
Nash-Q

Answer:
No clear winner!

S. Albrecht, P. Stone 61

Overview

Introduction

Multiagent Models & Assumptions

Learning Goals

Learning Algorithms

Recent Trends

S. Albrecht, P. Stone 62

Teamwork

Typical approach:

• Whole team designed and trained by single organisation
• Agents share coordination protocols, communication languages,
domain knowledge, algorithms, ...

⇒ Pre-coordination!

S. Albrecht, P. Stone 63

Teamwork

Typical approach:

• Whole team designed and trained by single organisation
• Agents share coordination protocols, communication languages,
domain knowledge, algorithms, ...
⇒ Pre-coordination!

S. Albrecht, P. Stone 63

Ad Hoc Teamwork

What if pre-coordination not possible?

• Forming temporary teams “on the fly”
• Agents designed by different organisations
• Don’t speak same language, no knowledge of other agents’
capabilities, different beliefs, ...

Challenge: Ad Hoc Teamwork (Stone et al., 2010)
“Create an autonomous agent that is able to efficiently and robustly
collaborate with previously unknown teammates on tasks to which
they are all individually capable of contributing as team members.”

S. Albrecht, P. Stone 64

Ad Hoc Teamwork

What if pre-coordination not possible?

• Forming temporary teams “on the fly”

• Agents designed by different organisations
• Don’t speak same language, no knowledge of other agents’
capabilities, different beliefs, ...

Challenge: Ad Hoc Teamwork (Stone et al., 2010)
“Create an autonomous agent that is able to efficiently and robustly
collaborate with previously unknown teammates on tasks to which
they are all individually capable of contributing as team members.”

S. Albrecht, P. Stone 64

Ad Hoc Teamwork

What if pre-coordination not possible?

• Forming temporary teams “on the fly”
• Agents designed by different organisations

• Don’t speak same language, no knowledge of other agents’
capabilities, different beliefs, ...

Challenge: Ad Hoc Teamwork (Stone et al., 2010)
“Create an autonomous agent that is able to efficiently and robustly
collaborate with previously unknown teammates on tasks to which
they are all individually capable of contributing as team members.”

S. Albrecht, P. Stone 64

Ad Hoc Teamwork

What if pre-coordination not possible?

• Forming temporary teams “on the fly”
• Agents designed by different organisations
• Don’t speak same language, no knowledge of other agents’
capabilities, different beliefs, ...

Challenge: Ad Hoc Teamwork (Stone et al., 2010)
“Create an autonomous agent that is able to efficiently and robustly
collaborate with previously unknown teammates on tasks to which
they are all individually capable of contributing as team members.”

S. Albrecht, P. Stone 64

Ad Hoc Teamwork

What if pre-coordination not possible?

• Forming temporary teams “on the fly”
• Agents designed by different organisations
• Don’t speak same language, no knowledge of other agents’
capabilities, different beliefs, ...

Challenge: Ad Hoc Teamwork (Stone et al., 2010)
“Create an autonomous agent that is able to efficiently and robustly
collaborate with previously unknown teammates on tasks to which
they are all individually capable of contributing as team members.”

S. Albrecht, P. Stone 64

RoboCup Drop-In Competition

RoboCup SPL Drop-In Competition ’13, ’14, ’15 (Genter et al., 2017)

• Mixed players from different teams
• No prior coordination between players

Video: Drop-In Competition

S. Albrecht, P. Stone 65

Learning in Ad Hoc Teamwork

Many learning algorithms not suitable for ad hoc teamwork:

• RL-based algorithms (JAL, CJAL, Nash-Q, ...) need 1000’s of
iterations in simple games
Ad hoc teamwork: not much time for learning, trial & error, ...

• Many algorithms designed for self-play (all agents use same
algorithm)
Ad hoc teamwork: no control over other agents

Need method which can learn quickly to interact effectively with
unknown other agents!

S. Albrecht, P. Stone 66

Learning in Ad Hoc Teamwork

Many learning algorithms not suitable for ad hoc teamwork:

• RL-based algorithms (JAL, CJAL, Nash-Q, ...) need 1000’s of
iterations in simple games
Ad hoc teamwork: not much time for learning, trial & error, ...

• Many algorithms designed for self-play (all agents use same
algorithm)
Ad hoc teamwork: no control over other agents

Need method which can learn quickly to interact effectively with
unknown other agents!

S. Albrecht, P. Stone 66

Learning in Ad Hoc Teamwork

Many learning algorithms not suitable for ad hoc teamwork:

• RL-based algorithms (JAL, CJAL, Nash-Q, ...) need 1000’s of
iterations in simple games
Ad hoc teamwork: not much time for learning, trial & error, ...

• Many algorithms designed for self-play (all agents use same
algorithm)
Ad hoc teamwork: no control over other agents

Need method which can learn quickly to interact effectively with
unknown other agents!

S. Albrecht, P. Stone 66

Learning in Ad Hoc Teamwork

Many learning algorithms not suitable for ad hoc teamwork:

• RL-based algorithms (JAL, CJAL, Nash-Q, ...) need 1000’s of
iterations in simple games
Ad hoc teamwork: not much time for learning, trial & error, ...

• Many algorithms designed for self-play (all agents use same
algorithm)
Ad hoc teamwork: no control over other agents

Need method which can learn quickly to interact effectively with
unknown other agents!

S. Albrecht, P. Stone 66

Type-Based Method

Hypothesise possible types of other agents:

• Each type θj is blackbox behaviour specification:

P(aj|Ht, θj)

• Generate types from e.g.
• experience from past interactions
• domain and task knowledge
• learn new types online (opponent modelling)

S. Albrecht, P. Stone 67

Type-Based Method

Hypothesise possible types of other agents:

• Each type θj is blackbox behaviour specification:

P(aj|Ht, θj)

• Generate types from e.g.
• experience from past interactions
• domain and task knowledge
• learn new types online (opponent modelling)

S. Albrecht, P. Stone 67

Type-Based Method

During the interaction:
• Compute belief over types based on interaction history Ht:

P(θj|Ht) ∝ P(Ht|θj)P(θj)

• Plan own action based on beliefs

S. Albrecht, P. Stone 68

Type-Based Method – Planning

Harsanyi-Bellman Ad Hoc Coordination (HBA) (Albrecht et al., 2016)

πi(Ht,ai) ∼ argmax
ai

Eaist (H
t)

Eais (Ĥ) =
∑
θj

P(θj|Ĥ)
∑
aj

P(aj|Ĥ, θj)Q
(ai,aj)
s (Ĥ)

Qas (Ĥ) =
∑
s′
T(s,a, s′)

[
ui(s,a) + γmax

ai
Eais′

(
⟨Ĥ,a, s′⟩

)]

Optimal planning with built-in exploration: Value of Information

S. Albrecht, P. Stone 69

Type-Based Method – Planning

Harsanyi-Bellman Ad Hoc Coordination (HBA) (Albrecht et al., 2016)

πi(Ht,ai) ∼ argmax
ai

Eaist (H
t)

Eais (Ĥ) =
∑
θj

P(θj|Ĥ)
∑
aj

P(aj|Ĥ, θj)Q
(ai,aj)
s (Ĥ)

Qas (Ĥ) =
∑
s′
T(s,a, s′)

[
ui(s,a) + γmax

ai
Eais′

(
⟨Ĥ,a, s′⟩

)]

Optimal planning with built-in exploration: Value of Information

S. Albrecht, P. Stone 69

Type-Based Method – Planning

Can compute Eais with finite tree-expansion:
• Unfold tree of future trajectories with fixed depth
• Associate each trajectory with probability and utility
• Calculate expected utility of action by traversing to root

Inefficient: exponential in states, actions, agents

S. Albrecht, P. Stone 70

Type-Based Method – Planning

Can compute Eais with finite tree-expansion:
• Unfold tree of future trajectories with fixed depth
• Associate each trajectory with probability and utility
• Calculate expected utility of action by traversing to root

Inefficient: exponential in states, actions, agents

S. Albrecht, P. Stone 70

Type-Based Method – Planning

Use Monte-Carlo Tree Search (MCTS) for efficient approximation:

Repeat x times:
1. Sample type θj ∈ Θj with
probabilities P(θj|Ht)

2. Sample interaction trajectory
using θj and domain model T

3. Update utility estimates via
backprop on trajectory

E.g. Albrecht and Stone (2017), Barrett et al. (2011)

But: loses value of information! (no belief change during planning)

S. Albrecht, P. Stone 71

Type-Based Method – Planning

Use Monte-Carlo Tree Search (MCTS) for efficient approximation:

Repeat x times:
1. Sample type θj ∈ Θj with
probabilities P(θj|Ht)

2. Sample interaction trajectory
using θj and domain model T

3. Update utility estimates via
backprop on trajectory

E.g. Albrecht and Stone (2017), Barrett et al. (2011)

But: loses value of information! (no belief change during planning)

S. Albrecht, P. Stone 71

Ad Hoc Teamwork: Predator Pursuit

4 predators must capture 1 prey in grid world (Barrett et al., 2011)
• We control one agent in predator team
• Policies of other predators unknown (prey moves randomly)
• 4 types provided to our agent; online planning using MCTS

Video: 4 types, true type inside
Video: 4 types, true type outside (students)
Source: http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_Pursuit

S. Albrecht, P. Stone 72

http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_Pursuit

Ad Hoc Teamwork: Half Field Offense

4 offense players vs. 5 defense players (Barrett and Stone, 2015)

• We control one agent (green) in
offensive team (yellow)

• Policies of teammates unknown
(defense uses fixed policies)

• 7 team types provided to our agent;
for each team type, plan own policy
offline using RL

Video: 4v5 Half Field Offense
Source:
http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO

S. Albrecht, P. Stone 73

http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO

Learning Parameters in Types

We can learn more: parameters in types! (Albrecht and Stone, 2017)

P(ai|Ht, θj,p)

• p = (p1, ...,pk) continuous parameter vector
• Complex types can have several parameters
⇒ learning rate, exploration rate, discount factor, ...

Goal: simultaneously learn type and parameters in type

S. Albrecht, P. Stone 74

Learning Parameters in Types

We can learn more: parameters in types! (Albrecht and Stone, 2017)

P(ai|Ht, θj,p)

• p = (p1, ...,pk) continuous parameter vector
• Complex types can have several parameters
⇒ learning rate, exploration rate, discount factor, ...

Goal: simultaneously learn type and parameters in type

S. Albrecht, P. Stone 74

Learning Parameters in Types

For each type θj ∈ Θj, maintain parameter estimate p ∈ [pmin,pmax]

S. Albrecht, P. Stone 75

Observe action atj of agent j

Select types Φ ⊂ Θj for updating

For each θj ∈ Φ, update estimate pt → pt+1

Update beliefs:

P(θj|Ht+1) ∝ P(atj |Ht, θj,pt+1)P(θj|Ht)

Plan own action

Updating Parameter Estimates

S. Albrecht, P. Stone 76

Given type θj, update
parameter estimate

pt → pt+1

Type defines
action likelihoods

P(atj |Ht, θj,p) P (a0j |H
0, θj , p1, p2)

P (a1j |H
1, θj , p1, p2)

-5

P (a2j |H
2, θj , p1, p2)

5

p1

0

p2

0
5 -5

Updating Parameter Estimates

S. Albrecht, P. Stone 77

Bayesian updating:
• Approximate P(atj |Ht, θj,p) as
polynomial with variables p

• Perform conjugate updates
through successive layers

Global optimisation:

argmax
p

t+1∏
τ=1

P(aτ−1j |Hτ−1, θj,p)

Solve with Bayesian optimisation

(Albrecht and Stone, 2017)

P (a0j |H
0, θj , p1, p2)

P (a1j |H
1, θj , p1, p2)

-5

P (a2j |H
2, θj , p1, p2)

5

p1

0

p2

0
5 -5

Updating Parameter Estimates

S. Albrecht, P. Stone 77

Bayesian updating:
• Approximate P(atj |Ht, θj,p) as
polynomial with variables p

• Perform conjugate updates
through successive layers

Global optimisation:

argmax
p

t+1∏
τ=1

P(aτ−1j |Hτ−1, θj,p)

Solve with Bayesian optimisation

(Albrecht and Stone, 2017)

P (a0j |H
0, θj , p1, p2)

P (a1j |H
1, θj , p1, p2)

-5

P (a2j |H
2, θj , p1, p2)

5

p1

0

p2

0
5 -5

Ad Hoc Teamwork: Level-Based Foraging

Blue = our agent, red = other agents
Goal: collect all items in minimal time
Agents can collect item if
sum of agent levels ≥ item level

4 possible types for red, e.g.
• search for item, try to load
• search for agent, load item
closest to agent

Each type uses 3 parameters:
• skill level, view radius, view angle

Blue doesn’t know true type of red nor
parameter values of type

0.15

0.58

0.83

0.53

0.23

0.48

0.55

S. Albrecht, P. Stone 78

Ad Hoc Teamwork: Level-Based Foraging

Blue = our agent, red = other agents
Goal: collect all items in minimal time
Agents can collect item if
sum of agent levels ≥ item level

4 possible types for red, e.g.
• search for item, try to load
• search for agent, load item
closest to agent

Each type uses 3 parameters:
• skill level, view radius, view angle

Blue doesn’t know true type of red nor
parameter values of type

0.15

0.58

0.83

0.53

0.23

0.48

0.55

S. Albrecht, P. Stone 78

Ad Hoc Teamwork: Level-Based Foraging

Blue = our agent, red = other agents
Goal: collect all items in minimal time
Agents can collect item if
sum of agent levels ≥ item level

4 possible types for red, e.g.
• search for item, try to load
• search for agent, load item
closest to agent

Each type uses 3 parameters:
• skill level, view radius, view angle

Blue doesn’t know true type of red nor
parameter values of type

0.15

0.58

0.83

0.53

0.23

0.48

0.55

S. Albrecht, P. Stone 78

Ad Hoc Teamwork: Level-Based Foraging

Blue = our agent, red = other agents
Goal: collect all items in minimal time
Agents can collect item if
sum of agent levels ≥ item level

4 possible types for red, e.g.
• search for item, try to load
• search for agent, load item
closest to agent

Each type uses 3 parameters:
• skill level, view radius, view angle

Blue doesn’t know true type of red nor
parameter values of type

0.15

0.58

0.83

0.53

0.23

0.48

0.55

S. Albrecht, P. Stone 78

Ad Hoc Teamwork: Level-Based Foraging

Video: 10x10 world, 2 agents

0.15

0.58

0.83

0.53

0.23

0.48

0.55

Video: 15x15 world, 3 agents

.90

.57

.35

.87.32

.95

.67

.69

.79

.56

.63

.43

.23

S. Albrecht, P. Stone 79

Type-Based Method & Ad Hoc Teamwork

• AAAI’16 Tutorial on Type-Based Methods:
http://thinc.cs.uga.edu/tutorials/aaai-16.html

• Special Issue on Multiagent Interaction without Prior Coordination
(MIPC): http://mipc.inf.ed.ac.uk/journal

• MIPC Workshops:
• AAMAS’17, Sao Paulo, Brazil
• AAAI’16, Phoenix, Arizona, USA
• AAAI’15, Austin, Texas, USA
• AAAI’14, Quebec City, Canada

http://mipc.inf.ed.ac.uk

S. Albrecht, P. Stone 80

http://thinc.cs.uga.edu/tutorials/aaai-16.html
http://mipc.inf.ed.ac.uk/journal
http://mipc.inf.ed.ac.uk

Deep Reinforcement Learning

Standard Q-learning assumes tabular representation:

• One entry in Q for each (s,a)

⇒ Does not scale to complex domains!
⇒ Does not generalise values!

Needs extra engineering to work, including:

• State abstraction to reduce state space
(usually hand-coded & domain-specific)

• Function approximation to store and generalise Q
(e.g. linear function approximation in state features)

S. Albrecht, P. Stone 81

Deep Reinforcement Learning

Standard Q-learning assumes tabular representation:

• One entry in Q for each (s,a)
⇒ Does not scale to complex domains!

⇒ Does not generalise values!

Needs extra engineering to work, including:

• State abstraction to reduce state space
(usually hand-coded & domain-specific)

• Function approximation to store and generalise Q
(e.g. linear function approximation in state features)

S. Albrecht, P. Stone 81

Deep Reinforcement Learning

Standard Q-learning assumes tabular representation:

• One entry in Q for each (s,a)
⇒ Does not scale to complex domains!
⇒ Does not generalise values!

Needs extra engineering to work, including:

• State abstraction to reduce state space
(usually hand-coded & domain-specific)

• Function approximation to store and generalise Q
(e.g. linear function approximation in state features)

S. Albrecht, P. Stone 81

Deep Reinforcement Learning

Standard Q-learning assumes tabular representation:

• One entry in Q for each (s,a)
⇒ Does not scale to complex domains!
⇒ Does not generalise values!

Needs extra engineering to work, including:

• State abstraction to reduce state space
(usually hand-coded & domain-specific)

• Function approximation to store and generalise Q
(e.g. linear function approximation in state features)

S. Albrecht, P. Stone 81

Deep Reinforcement Learning

New problem: extra engineering may limit performance!
• State abstraction may be wrong (e.g. too coarse)
• Function approximator may be inaccurate

Idea: deep reinforcement learning
• Use “deep” neural network to represent Q
• Learn on raw data (no state abstraction)
⇒ Let network learn good abstraction on its own!

S. Albrecht, P. Stone 82

Deep Reinforcement Learning

New problem: extra engineering may limit performance!
• State abstraction may be wrong (e.g. too coarse)
• Function approximator may be inaccurate

Idea: deep reinforcement learning
• Use “deep” neural network to represent Q
• Learn on raw data (no state abstraction)
⇒ Let network learn good abstraction on its own!

S. Albrecht, P. Stone 82

Deep Reinforcement Learning

Deep learning: neural network with many layers
• Input layer takes raw data→ s
• Hidden layers transform data
• Output layer returns target scalars→ Q(s, ·)
• Train network with back-propagation on labelled data

S. Albrecht, P. Stone 83

Deep Q-Learning

Deep Q-Learning (Mnih et al., 2013)
Initialise network parameters Ψ with random weights

1. Observe current state st

2. With probability ϵ, select random action at
Else, select action at ∈ argmaxa Q(st,a; Ψ)

3. Get reward rt and new state st+1

4. Store experience (st,at, rt, st+1) in D

5. Sample random minibatch D+ ⊂ D

6. For each (sτ ,aτ , rτ , sτ+1) ∈ D+, perform gradient descent step on

(yτ − Q(sτ ,aτ ; Ψ))2

yτ = rτ + γmax
a′

Q(sτ ,a′; Ψfixed)

S. Albrecht, P. Stone 84

Deep Q-Learning

Deep Q-Learning (Mnih et al., 2013)
Initialise network parameters Ψ with random weights

1. Observe current state st

2. With probability ϵ, select random action at
Else, select action at ∈ argmaxa Q(st,a; Ψ)

3. Get reward rt and new state st+1

4. Store experience (st,at, rt, st+1) in D

5. Sample random minibatch D+ ⊂ D

6. For each (sτ ,aτ , rτ , sτ+1) ∈ D+, perform gradient descent step on

(yτ − Q(sτ ,aτ ; Ψ))2

yτ = rτ + γmax
a′

Q(sτ ,a′; Ψfixed)

S. Albrecht, P. Stone 84

Deep Q-Learning

Deep Q-Learning (Mnih et al., 2013)
Initialise network parameters Ψ with random weights

1. Observe current state st

2. With probability ϵ, select random action at
Else, select action at ∈ argmaxa Q(st,a; Ψ)

3. Get reward rt and new state st+1

4. Store experience (st,at, rt, st+1) in D

5. Sample random minibatch D+ ⊂ D

6. For each (sτ ,aτ , rτ , sτ+1) ∈ D+, perform gradient descent step on

(yτ − Q(sτ ,aτ ; Ψ))2

yτ = rτ + γmax
a′

Q(sτ ,a′; Ψfixed)

S. Albrecht, P. Stone 84

Deep Q-Learning

Deep Q-Learning (Mnih et al., 2013)
Initialise network parameters Ψ with random weights

1. Observe current state st

2. With probability ϵ, select random action at
Else, select action at ∈ argmaxa Q(st,a; Ψ)

3. Get reward rt and new state st+1

4. Store experience (st,at, rt, st+1) in D

5. Sample random minibatch D+ ⊂ D

6. For each (sτ ,aτ , rτ , sτ+1) ∈ D+, perform gradient descent step on

(yτ − Q(sτ ,aτ ; Ψ))2

yτ = rτ + γmax
a′

Q(sτ ,a′; Ψfixed)

S. Albrecht, P. Stone 84

Deep Q-Learning

Deep Q-Learning (Mnih et al., 2013)
Initialise network parameters Ψ with random weights

1. Observe current state st

2. With probability ϵ, select random action at
Else, select action at ∈ argmaxa Q(st,a; Ψ)

3. Get reward rt and new state st+1

4. Store experience (st,at, rt, st+1) in D

5. Sample random minibatch D+ ⊂ D

6. For each (sτ ,aτ , rτ , sτ+1) ∈ D+, perform gradient descent step on

(yτ − Q(sτ ,aτ ; Ψ))2

yτ = rτ + γmax
a′

Q(sτ ,a′; Ψfixed)

S. Albrecht, P. Stone 84

Deep Q-Learning

Deep Q-Learning (Mnih et al., 2013)
Initialise network parameters Ψ with random weights

1. Observe current state st

2. With probability ϵ, select random action at
Else, select action at ∈ argmaxa Q(st,a; Ψ)

3. Get reward rt and new state st+1

4. Store experience (st,at, rt, st+1) in D

5. Sample random minibatch D+ ⊂ D

6. For each (sτ ,aτ , rτ , sτ+1) ∈ D+, perform gradient descent step on

(yτ − Q(sτ ,aτ ; Ψ))2

yτ = rτ + γmax
a′

Q(sτ ,a′; Ψfixed)

S. Albrecht, P. Stone 84

Deep Q-Learning

Deep Q-Learning (Mnih et al., 2013)
Initialise network parameters Ψ with random weights

1. Observe current state st

2. With probability ϵ, select random action at
Else, select action at ∈ argmaxa Q(st,a; Ψ)

3. Get reward rt and new state st+1

4. Store experience (st,at, rt, st+1) in D

5. Sample random minibatch D+ ⊂ D

6. For each (sτ ,aτ , rτ , sτ+1) ∈ D+, perform gradient descent step on

(yτ − Q(sτ ,aτ ; Ψ))2

yτ = rτ + γmax
a′

Q(sτ ,a′; Ψfixed)

S. Albrecht, P. Stone 84

Multiagent Deep Reinforcement Learning

Deep RL very successful at many singe-agent games

• e.g. Atari games, Go, 3D maze navigation, ...

Can we use Deep RL for multiagent learning?

• Problem: learning of other agents makes environment
non-stationary (breaks Markov property)

S. Albrecht, P. Stone 85

Independent Deep Q-Learners

Video: Cooperative Pong
Video: Competitive Pong
(Tampuu et al., 2017)

https://www.youtube.com/watch?v=Gb9DprIgdGw
https://www.youtube.com/watch?v=nn6_GUVDnVw

Video: Gathering game
Video: Wolfpack game
(Leibo et al., 2017)

https://www.youtube.com/watch?v=F97lqqpcqsM
https://www.youtube.com/watch?v=kXudpMfecs4

Video: Starcraft
(Foerster et al., 2017)

https://www.youtube.com/watch?v=RK7y_uQmwhw

S. Albrecht, P. Stone 86

https://www.youtube.com/watch?v=Gb9DprIgdGw
https://www.youtube.com/watch?v=nn6_GUVDnVw
https://www.youtube.com/watch?v=F97lqqpcqsM
https://www.youtube.com/watch?v=kXudpMfecs4
https://www.youtube.com/watch?v=RK7y_uQmwhw

Multiagent Deep Reinforcement Learning

Some recent works on multiagent deep RL:
• Emergence of cooperative/competitive behaviours
(Tampuu et al., 2017; Leibo et al., 2017)

• Learning communication protocols
(Sukhbaatar et al., 2016; Foerster et al., 2016)

• Opponent modelling
(He et al., 2016)

• Improved minibatch selection
(Palmer et al., 2017; Foerster et al., 2017)

• Multi-task learning
(Omidshafiei et al., 2017)

• Learning value decomposition
(Sunehag et al., 2017)

S. Albrecht, P. Stone 87

Concluding Remarks

We covered...

• Multiagent models: normal-form games, repeated games,
stochastic games, ...

• Learning goals: equilibria, no-regret, targeted optimality, ...
• Learning algorithms: internal view, model-based, model-free
• Recent trends: ad hoc teamwork, deep RL

Download tutorial slides at:
http://www.cs.utexas.edu/~larg/ijcai17_tutorial

Watch out for our upcoming survey on agents modelling other
agents!

S. Albrecht, P. Stone 88

http://www.cs.utexas.edu/~larg/ijcai17_tutorial

References i

S. Albrecht and S. Ramamoorthy. Comparative evaluation of MAL algorithms
in a diverse set of ad hoc team problems. In Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems,
pages 349–356, 2012.

S. Albrecht and S. Ramamoorthy. A game-theoretic model and best-response
learning method for ad hoc coordination in multiagent systems. Technical
report, https://arxiv.org/abs/1506.01170, 2013.

S. Albrecht and P. Stone. Reasoning about hypothetical agent behaviours
and their parameters. In Proceedings of the 16th International Conference
on Autonomous Agents and Multiagent Systems, pages 547–555, 2017.

S. Albrecht, J. Crandall, and S. Ramamoorthy. Belief and truth in
hypothesised behaviours. Artificial Intelligence, 235:63–94, 2016.

E. Alonso, M. D’Inverno, D. Kudenko, M. Luck, and J. Noble. Learning in
multi-agent systems. Knowledge Engineering Review, 16(3):277–284, 2001.

S. Albrecht, P. Stone 89

References ii

R. Aumann. Subjectivity and correlation in randomized strategies. Journal of
mathematical Economics, 1:67–96, 1974.

B. Banerjee and J. Peng. Performance bounded reinforcement learning in
strategic interactions. In Proceedings of the 19th AAAI Conference on
Artificial Intelligence, pages 2–7, 2004.

D. Banerjee and S. Sen. Reaching pareto-optimality in prisoner’s dilemma
using conditional joint action learning. Autonomous Agents and
Multi-Agent Systems, 15(1):91–108, 2007.

S. Barrett and P. Stone. Cooperating with unknown teammates in complex
domains: A robot soccer case study of ad hoc teamwork. In Proceedings of
the 29th AAAI Conference on Artificial Intelligence, pages 2010–2016, 2015.

S. Barrett, P. Stone, and S. Kraus. Empirical evaluation of ad hoc teamwork in
the pursuit domain. In Proceedings of the 10th International Conference
on Autonomous Agents and Multiagent Systems, pages 567–574, 2011.

S. Albrecht, P. Stone 90

References iii

M. Bowling. Convergence and no-regret in multiagent learning. In Advances
in Neural Information Processing Systems, pages 209–216, 2005.

M. Bowling and M. Veloso. Multiagent learning using a variable learning rate.
Artificial Intelligence, 136(2):215–250, 2002.

G. Brown. Iterative solution of games by fictitious play. In Proceedings of the
Conference on Activity Analysis of Production and Allocation, Cowles
Commission Monograph 13, pages 374–376, 1951.

L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of
multiagent reinforcement learning. IEEE Transactions on Systems, Man,
and Cybernetics, Part C, 38(2), 2008.

D. Chakraborty and P. Stone. Multiagent learning in the presence of
memory-bounded agents. Autonomous Agents and Multi-Agent Systems,
28(2):182–213, 2014.

S. Albrecht, P. Stone 91

References iv

C. Claus and C. Boutilier. The dynamics of reinforcement learning in
cooperative multiagent systems. In Proceedings of the 15th National
Conference on Artificial Intelligence, pages 746–752, 1998.

V. Conitzer and T. Sandholm. AWESOME: a general multiagent learning
algorithm that converges in self-play and learns a best response against
stationary opponents. Machine Learning, 67(1-2):23–43, 2007.

J. Crandall. Towards minimizing disappointment in repeated games. Journal
of Artificial Intelligence Research, 49:111–142, 2014.

A. Fink. Equilibrium in a stochastic n-person game. Journal of Science of the
Hiroshima University, 28(1):89–93, 1964.

J. Foerster, Y. Assael, N. de Freitas, and S. Whiteson. Learning to communicate
with deep multi-agent reinforcement learning. In Advances in Neural
Information Processing Systems 29, pages 2137–2145, 2016.

S. Albrecht, P. Stone 92

References v

J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. Torr, P. Kohli, and
S. Whiteson. Stabilising experience replay for deep multi-agent
reinforcement learning. In Proceedings of the 34th International
Conference on Machine Learning, pages 1146–1155, 2017.

K. Genter, T. Laue, and P. Stone. Three years of the RoboCup standard
platform league drop-in player competition: Creating and maintaining a
large scale ad hoc teamwork robotics competition. Autonomous Agents
and Multi-Agent Systems, 31(4):790–820, 2017.

A. Greenwald and K. Hall. Correlated Q-learning. In Proceedings of the 20th
International Conference on Machine Learning, pages 242–249, 2003.

S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated
equilibrium. Econometrica, 68(5):1127–1150, 2000.

S. Hart and A. Mas-Colell. A reinforcement procedure leading to correlated
equilibrium. Economic Essays: A Festschrift for Werner Hildenbrand, pages
181–200, 2001.

S. Albrecht, P. Stone 93

References vi

H. He, J. Boyd-Graber, K. Kwok, and H. Daumé III. Opponent modeling in deep
reinforcement learning. In Proceedings of the 33rd International
Conference on Machine Learning, pages 1804–1813, 2016.

J. Hu and M. Wellman. Nash Q-learning for general-sum stochastic games.
Journal of Machine Learning Research, 4:1039–1069, 2003.

J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel. Multi-agent
reinforcement learning in sequential social dilemmas. In Proceedings of
the 16th International Conference on Autonomous Agents and Multi-Agent
Systems, pages 464–473, 2017.

M. Littman. Markov games as a framework for multi-agent reinforcement
learning. In Proceedings of the 11th International Conference on Machine
Learning, pages 157–163, 1994.

M. Littman. Friend-or-foe Q-learning in general-sum games. In Proceedings
of the 18th International Conference on Machine Learning, pages 322–328,
2001.

S. Albrecht, P. Stone 94

References vii

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing Atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

J. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences, 36(1):48–49, 1950.

S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian. Deep decentralized
multi-task multi-agent reinforcement learning under partial observability.
In International Conference on Machine Learning, pages 2681–2690, 2017.

G. Palmer, K. Tuyls, D. Bloembergen, and R. Savani. Lenient multi-agent deep
reinforcement learning. arXiv preprint arXiv:1707.04402, 2017.

L. Panait and S. Luke. Cooperative multi-agent learning: The state of the art.
Autonomous Agents and Multi-Agent Systems, 11(3):387–434, 2005.

A. Rapoport and M. Guyer. A taxonomy of 2× 2 games. General Systems:
Yearbook of the Society for General Systems Research, 11:203–214, 1966.

S. Albrecht, P. Stone 95

References viii

S. Sen and G. Weiss. Learning in multiagent systems. In Multiagent Systems:
A Modern Approach to Distributed Artificial Intelligence, chapter 6, pages
259–298. MIT Press, 1999.

L. Shapley. Stochastic games. Proceedings of the National Academy of
Sciences, 39(10):1095–1100, 1953.

Y. Shoham, R. Powers, and T. Grenager. Multi-agent reinforcement learning: A
critical survey. Unpublished survey, 2003.

P. Stone and M. Veloso. Multiagent systems: A survey from a machine
learning perspective. Autonomous Robots, 8(3):345–383, 2000.

P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement learning for RoboCup
soccer keepaway. Adaptive Behavior, 13(3):165–188, 2005.

P. Stone, G. Kaminka, S. Kraus, and J. Rosenschein. Ad hoc autonomous agent
teams: collaboration without pre-coordination. In Proceedings of the 24th
AAAI Conference on Artificial Intelligence, pages 1504–1509, 2010.

S. Albrecht, P. Stone 96

References ix

S. Sukhbaatar, A. Szlam, and R. Fergus. Learning multiagent communication
with backpropagation. In Advances in Neural Information Processing
Systems 29, pages 2244–2252, 2016.

P. Sunehag, G. Lever, A. Gruslys, W. Czarnecki, V. Zambaldi, M. Jaderberg,
M. Lanctot, N. Sonnerat, J. Leibo, K. Tuyls, and T. Graepel.
Value-decomposition networks for cooperative multi-agent learning. arXiv
preprint arXiv:1706.05296, 2017.

A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and
R. Vicente. Multiagent cooperation and competition with deep
reinforcement learning. PloS ONE, 12(4):e0172395, 2017.

K. Tuyls and G. Weiss. Multiagent learning: Basics, challenges, and prospects.
AI Magazine, 33(3):41, 2012.

J. von Neumann and O. Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, 1944.

S. Albrecht, P. Stone 97

References x

X. Wang and T. Sandholm. Reinforcement learning to play an optimal Nash
equilibrium in team Markov games. In Advances in Neural Information
Processing Systems 15, pages 1603–1610, 2003.

S. Albrecht, P. Stone 98

	Introduction
	Multiagent Models & Assumptions
	Learning Goals
	Learning Algorithms
	Recent Trends

