On-Demand Coordination of Multiple Service Robots

Piyush Khandelwal

February 22, 2017

Dissertation Defense

Piyush Khandelwal

Dissertation Defense

Feb 22, 2017

Motivation - Interactive Robot Systems

Motivation - Video Demonstration

Piyush Khandelwal

Dissertation Defense

3

On-Demand Multi-Robot Coordination

Key aspects of interest for this problem:

- Temporarily coordinate multiple robots
- Unstructured indoor environment
- Stochastic outcome of actions

What is an *on-demand* multi-robot coordination task?

- Requires *real-time* planning
- Does not substantially deviate robots from independent background tasks

Thesis Question

How can multiple service robots be efficiently *interrupted*, *reassigned*, and *coordinated* to perform an on-demand task while

- 1. ensuring quick completion of the task
- 2. with minimal disruption to the robots' background duties?

Thesis Research Topics

Piyush Khandelwal

Talk Outline

- ➤ Background:
 - Markov Decision Processes
 - Monte Carlo Tree Search
- MDP Formalization of On-Demand Multi-Robot Coordination Problem
- Biased Backup in Monte Carlo Tree Search
- BWIBot Multi-Robot System + Conclusion

Markov Decision Process

Formally, an MDP comprises:

- > State space
- > Action space
- > Transition Function
- Reward Function
- Discount Factor

Markov Decision Process

- Multiple actions available to agent at a state
- Each action can have a stochastic outcome
- Optimal solution can be computed using techniques such as Value Iteration, but it may be impractical to do so

- Approximate search-based solver for MDPs
- Requires access to a model of the MDP for planning

- \succ 4 stages in MCTS:
 - \circ Selection
 - Expansion
 - Simulation
 - Backup

- ➤ 4 stages in MCTS:
 - \circ Selection
 - Expansion
 - Simulation
 - Backup

- ➤ 4 stages in MCTS:
 - \circ Selection
 - Expansion
 - Simulation
 - Backup

- ➤ 4 stages in MCTS:
 - \circ Selection
 - Expansion
 - Simulation
 - Backup

- ➤ 4 stages in MCTS:
 - \circ Selection
 - Expansion
 - Simulation
 - Backup

- ➤ 4 stages in MCTS:
 - Selection
 - Expansion
 - Simulation
 - Backup

- ➤ 4 stages in MCTS:
 - \circ Selection
 - Expansion
 - Simulation
 - Backup

- ➤ 4 stages in MCTS:
 - \circ Selection
 - Expansion
 - Simulation
 - Backup

- Use UCB1 for intelligent selection
- Run as many simulations as time permits
- Return action with highest
 Q value at the end of
 planning.

Overview

- > Background
 - Markov Decision Processes
 - Monte Carlo Tree Search
- MDP Formalization of On-Demand Multi-Robot Coordination Problem
- Biased Backup in Monte Carlo Tree Search
- BWIBot Multi-Robot System + Conclusion

In this section

We discuss the salient aspects of formalizing the on-demand multi-robot coordination problem as an MDP. ^{[1][2]}

We will demonstrate that MCTS based approaches can outperform heuristic baselines under almost all domain configurations.

[1] Khandelwal and Stone. Multi-Robot Human Guidance: Human Experiments and Multiple Concurrent Requests. AAMAS 2017.
 [2] Khandelwal, Barrett, and Stone. Leading the Way: An Efficient Multi-Robot Human Guidance System. AAMAS 2015.

Problem Introduction

Piyush Khandelwal

Problem Introduction

Piyush Khandelwal

Piyush Khandelwal

Piyush Khandelwal

Piyush Khandelwal

Stochastic Outcomes

Stochastic Outcomes

Piyush Khandelwal
Stochastic Outcomes

Stochastic Outcomes

Salient Representational Decisions

Topological Representation

Piyush Khandelwal

Action Decomposition

Action Decomposition

Action Decomposition

Multiple floors and concurrent requests

Piyush Khandelwal

MDP Reward - Linear Weighted Combination

Reward function needs to balance multiple concurrent requests with background tasks of the robots:

The background utility loss can be calculated using a model:

$$U_{ss'}^r = \bar{\tau}_u(timeToDest(r_{s'}, r_s.\tau_d) + \Delta t - timeToDest(r_s, r_s.\tau_d))$$

 $\succ \bar{\tau}_u$ is the average background task utility

SingleRobotW Baseline

SingleRobotW Baseline

Piyush Khandelwal

Piyush Khandelwal

Dissertation Defense

Piyush Khandelwal

Dissertation Defense

Piyush Khandelwal

Dissertation Defense

MCTS-based approaches

- ➤ Use MCTS as a general purpose MDP solver.
- To determine how important stochasticity is during planning, we also compare MCTS where a deterministic model of the domain has been used to draw samples.
 - In this model, all action outcomes have been determinized to their most likely outcomes.

MCTS-based approaches

> When task starts, no time for prior planning....

MCTS-based approaches

- > When task starts, no time for prior planning....
 - Ask the human to *wait* so that planning can be done
 - *Lead* human to goal; use MCTS planning subsequently

27

Evaluation

- > 3 Heuristic Baselines:
 - SingleRobot
 - SingleRobotW
 - PDP-T

- ➤ 4 MCTS variants:
 - MCTS(Wait)
 - MCTS(Lead)
 - MCTS-D(Wait)
 - MCTS-D(Lead)

We perform evaluation (1000 trials) by generating samples using the hand-coded human decision model.

Evaluation - SingleRobot

Evaluation - PDP-T

Evaluation - PDP-T

Evaluation - MCTS

Evaluation - MCTS

Evaluation - MCTS-D

Evaluation - MCTS-D

Additional Results

- As robot speed increases relative to human speed, the relative performance improvement MCTS has over heuristics decreases.
- MCTS based approaches are robust to some inaccuracies in the model used for planning.

Section Summary

- ➤ In this section, we have presented some of the key design decisions behind the MDP formalization of the problem.
- We've also demonstrated that MCTS based search can outperform heuristic baselines in most cases.

> However, MCTS planning did not work out of the box!

Overview

- > Background
 - Markov Decision Processes
 - Monte Carlo Tree Search
- MDP Formalization of On-Demand Multi-Robot Coordination Problem
- Biased Backup in Monte Carlo Tree Search
- BWIBot Multi-Robot System + Conclusion

Let's Revisit Backups

- A stages in MCTS:
 - \circ Selection
 - Expansion
 - Simulation
 - Backup

As part of this dissertation we have analyzed different backup techniques. ^[3]

[3] Khandelwal et al. *On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search*. ICML 2016

MCTS - Backup (Motivation)

Monte Carlo backup for single trajectory: $R = \sum_{i=0}^{L-1} \gamma^{i} r_{t+i}$

Across all trajectories:

$$Q(s_t, a_t) = \mathbb{E}\left[\sum_{i=0}^{L-1} \gamma^i r_{t+i}\right]$$

Γτ

-1

Can we do better?

-

Piyush Khandelwal

n-step return (bias-variance tradeoff)

We can compute the return sample in many different ways!

1-step: More $R^{(1)} = r_t + \gamma Q(s_{t+1}, a_{t+1}),$ **Bias** n-step: $R^{(n)} = \left| \sum_{i=0}^{n-1} \gamma^{i} r_{t+i} \right| + \gamma^{n} Q(s_{t+n}, a_{t+n})$ **Monte Carlo:** More Variance

Complex returns

Complex return:
$$R^C = \sum_{i=1}^{L} \left[w_{n,L} \cdot R^{(n)} \right]$$

λ-return/eligibility [Rummery 1995]:

$$w_{n,L}^{\lambda} = \begin{cases} (1-\lambda)\lambda^{n-1} & 1 \le n < L\\ \lambda^{L} & n = L \end{cases}$$

γ-return weights [Konidaris et al. 2011]:

$$w_{n,L}^{\gamma} = \frac{\left(\sum_{i=1}^{n} \gamma^{2(i-1)}\right)^{-1}}{\sum_{n=1}^{L} \left(\sum_{i=1}^{n} \gamma^{2(i-1)}\right)^{-1}}$$

MCTS - Novel Variants with Biased Backups!

Complex return: $R^C = \sum_{i=1}^{L} \left[w_{n,L} \cdot R^{(n)} \right]$

λ-return/eligibility [Rummery 1995]:

 $\implies \mathsf{MCTS}(\lambda) \qquad \qquad w_{n,L}^{\lambda} = \begin{cases} (1-\lambda)\lambda^{n-1} & 1 \le n < L \\ \lambda^L & n = L \end{cases}$

γ-return weights [Konidaris et al. 2011]: $w_{n,L}^{\gamma} = \frac{(\sum_{i=1}^{n} \gamma^{2(i-1)})^{-1}}{\sum_{n=1}^{L} (\sum_{i=1}^{n} \gamma^{2(i-1)})^{-1}}$

> LARG Learning Agents Research Group The University of Texes of Autri

39
MaxMCTS - Off-Policy Returns

Backup using best known action:

$$R^{(1)} = r_t + \gamma \max_{a} Q(s_{t+1}, a)$$
$$R^{(n)} = \sum_{i=0}^{n-1} \gamma^i r_{t+i} + \gamma^n \max_{a} Q(s_{t+n}, a)$$

Subtree with higher value

Piyush Khandelwal

Dissertation Defense

Feb 22, 2017

40

MaxMCTS - Off-Policy Returns

Backup using best known action:

$$R^{(1)} = r_t + \gamma \max_{a} Q(s_{t+1}, a)$$
$$R^{(n)} = \sum_{i=0}^{n-1} \gamma^i r_{t+i} + \gamma^n \max_{a} Q(s_{t+n}, a)$$

Intuition:

- \succ Don't penalize exploratory actions. Reinforce previously seen better \succ
 - trajectories instead.

Equivalent to Peng's $Q(\lambda)$ style updates.

MaxMCTS(λ **)** and **MaxMCTS** γ

Piyush Khandelwal

Dissertation Defense

Evaluation

- We have proposed 4 novel variants:
 - On-policy: MCTS(λ) and MCTS,
 - Off-policy: MaxMCTS(λ) and MaxMCTS
- We only show the performance of MaxMCTS variants with random action selection during planning.
- Test performance in 12 different IPC domains
 Limited planning time (10,000 rollouts per step).

IPC - Random action selection

IPC - Random action selection

We used MaxMCTS(λ) in previous results!

Piyush Khandelwal

Dissertation Defense

Feb 22, 2017

Additional Results

- Different backup techniques can be implemented efficiently, and typically do not change overall planning time by 10%.
- We also demonstrated dependence between domain structure and and bias by using a parametrized grid-world domain.

Section Summary

- We have introduced and analyzed some principled and parametrized approaches for inducing bias during backup in MCTS.
- In some domains, selecting the right complex backup strategy is important. On-demand Multi-Robot Coordination is one such domain!
- > Applicable to many different domains:
 - Music Recommendation System [Liebman et al. 2017].

Overview

- > Background
 - Markov Decision Processes
 - Monte Carlo Tree Search
- Biased Backup in Monte Carlo Tree Search
- MDP Formalization of On-Demand Multi-Robot Coordination Problem
- BWIBot Multi-Robot System + Conclusion

BWIBot Multi-Robot System

- > 3rd iteration of BWIBot platform ^[4]
- Over 600km of recorded distance traveled.
- Realistic 3D simulation using ROS and Gazebo.
- Implement MDP framework on real robots and simulated user study.

[4] Khandelwal et al. *BWIBots: A platform for bridging the gap between Al and human–robot interaction research*. IJRR 2017

Piyush Khandelwal

User Study Interface

Designed MDP formalization of on-demand multi-robot coordination problem.

- Designed MDP formalization of on-demand multi-robot coordination problem.
- Key representational decisions applicable to other formalizations of multi-robot coordination problems as well.
 - Topological representation, action decomposition, and variable duration of actions.

- Designed MDP formalization of on-demand multi-robot coordination problem.
- Key representational decisions applicable to other formalizations of multi-robot coordination problems as well.
 - Topological representation, action decomposition, and variable duration of actions.
- Introduced and analyzed some principled and parameterized approaches for inducing bias during backup in MCTS.

- Designed MDP formalization of on-demand multi-robot coordination problem.
- Key representational decisions applicable to other formalizations of multi-robot coordination problems as well.
 - Topological representation, action decomposition, and variable duration of actions.
- Introduced and analyzed some principled and parameterized approaches for inducing bias during backup in MCTS.
- Developed the BWIBot multi-robot system and proof-of-concept implementation of the MDP framework.

Directions for Future Work

- Human decision model learning; quickly selecting an appropriate model.
- ➤ Generalization of value estimates in MCTS.
- Alternate planning approaches (RTDP, Deterministic planning with limited stochasticity).
- Alternate on-demand tasks.

Related Work (MCTS Backup)

- > λ -return has been applied previously for planning:
 - TEXPLORE used a slightly different version of MaxMCTS(λ) [Hester 2012].
- Other backup strategies:
 - MaxMCTS(λ =0) is equivalent to MaxUCT [Keller, Helmert 2012].
 - Coulom analyzed hand-designed backup strategies in 9x9 Computer Go [Coulom 2007].

Related Work (MDP Framework)

- Multi-Robot Task Allocation Strategies [Gerkey et al. 2004].
- Flexible Job-shop Scheduling Problem [Brucker 1990].
- Dec-POMDP and Macro-Actions for multi-robot coordination [Amato et al. 2015].

- Operator Decomposition [Standley 2010].
- ➢ MINERVA Tour Guide [Thrun et al. 1998].
- Single Robot Human Guidance [Montemerlo et al. 2002].

Thanks!

Piyush Khandelwal

Dissertation Defense

Feb 22, 2017

55

MDP - Variable duration of actions

- MDP decisions are made when human completes a transition to a graph node
- Action decomposition induces another source of variable duration of actions
 - Decomposed actions do not take time in the real world
- Planning approaches such as MCTS need to plan for a sequence of individual actions
- > Due to variable duration, the formulation is Semi-Markov

MDP - Increasing Robot Speed

Piyush Khandelwal

Dissertation Defense

Feb 22, 2017

The University of Texas at Austin

MDP - Model Inaccuracy during Planning

1 floor, 5 robots, $\bar{\tau}_u = 1$

Feb 22, 2017

IPC - UCB1 action selection

MCTS - Domain Dependence - Grid World

Goal +100

- 90% chance of moving in intended direction.
- 10% chance of moving to any neighbor randomly.

Step -1

MCTS - Domain Dependence - Grid World

Goal +100

#0-Term	0	3	6	15
$\lambda = 1$	90.4	11.3	0.9	-2.2
$\lambda = 0.8$	90.2	28.0	10.7	-1.4
$\lambda = 0.6$	89.5	62.8	45.3	8.5
$\lambda = 0.4$	88.7	85.1	77.6	24.1
$\lambda = 0.2$	87.7	82.6	78.1	28.4
$\lambda = 0$	84.5	79.8	74.1	31.8

Feb 22, 2017

MCTS - Computational Time Comparison

Dissertation Defense

Simulated User Study Results

Simulation Results

- > 3 hand-selected problems.
- Compare time human takes to reach the goal on average against simulation results using hand-coded human decision model.

Simulated User Study Results

Simulation Results

User Study Results

MCTS - Novel Variants with Biased Backups!

Complex return: $R^C = \sum_{i=1}^{L} \left[w_{n,L} \cdot R^{(n)} \right]$

λ-return/eligibility [Rummery 1995]:

- ➡ MCTS(λ)
- $w_{n,L}^{\lambda} = \begin{cases} (1-\lambda)\lambda^{n-1} & 1 \le n < L\\ \lambda^L & n = L \end{cases}$
- ➤ Easier to implement.
- Assumes n-step return variances increase @ λ^{-1} .

γ**-return weights** [Konidaris et al. 2011]:

➡ MCTSγ

$$w_{n,L}^{\gamma} = \frac{\left(\sum_{i=1}^{n} \gamma^{2(i-1)}\right)^{-1}}{\sum_{n=1}^{L} \left(\sum_{i=1}^{n} \gamma^{2(i-1)}\right)^{-1}}$$

- Parameter free.
- Assumes n-step return variances are highly correlated.

