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Motivation - Interactive Robot Systems
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Tally - Simbe 
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Amazon 
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Feb 22, 2017Dissertation DefensePiyush Khandelwal

Motivation - Video Demonstration
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https://docs.google.com/file/d/0B602p1zESnk2WjRBNF9uOUNJQVE/preview
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On-Demand Multi-Robot Coordination

4

Key aspects of interest for this problem:

➢ Temporarily coordinate multiple robots
➢ Unstructured indoor environment
➢ Stochastic outcome of actions

What is an on-demand multi-robot coordination task?

➢ Requires real-time planning
➢ Does not substantially deviate robots from independent 

background tasks
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Thesis Question
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How can multiple service robots be efficiently interrupted, 
reassigned, and coordinated to perform an on-demand task while

1. ensuring quick completion of the task 
2. with minimal disruption to the robots’ background duties?



Feb 22, 2017Dissertation DefensePiyush Khandelwal

Thesis Research Topics
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Stochastic
Planning

Algorithms
(MCTS)

Multi-Robot
Systems

(BWIBots)

Problem
Formalization

(MDP)
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Talk Outline
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➢ Background:
○ Markov Decision Processes
○ Monte Carlo Tree Search

➢ MDP Formalization of On-Demand Multi-Robot Coordination 
Problem

➢ Biased Backup in Monte Carlo Tree Search

➢ BWIBot Multi-Robot System + Conclusion
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Markov Decision Process

Agent

Environment

  Reward   rt

Next State   st+1

Action   at
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Formally, an MDP comprises:
➢ State space
➢ Action space
➢ Transition Function
➢ Reward Function
➢ Discount Factor
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Markov Decision Process

Agent

Environment

  Reward   rt

Next State   st+1

Action   at
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➢ Multiple actions available 
to agent at a state

➢ Each action can have a 
stochastic outcome

➢ Optimal solution can be 
computed using 
techniques such as Value 
Iteration, but it may be 
impractical to do so
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Monte Carlo Tree Search
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➢ Approximate search-based 
solver for MDPs

➢ Requires access to a model 
of the MDP for planning

Planning 
Start State

Actions
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Monte Carlo Tree Search
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Planning 
Start State

➢ 4 stages in MCTS:
○ Selection
○ Expansion
○ Simulation
○ Backup
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Monte Carlo Tree Search

10

Planning 
Start State

➢ 4 stages in MCTS:
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○ Expansion
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Monte Carlo Tree Search

10

➢ 4 stages in MCTS:
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○ Backup
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Q = r

Q = r
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Monte Carlo Tree Search
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Monte Carlo Tree Search

10

➢ 4 stages in MCTS:
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Monte Carlo Tree Search

10

➢ 4 stages in MCTS:
○ Selection
○ Expansion
○ Simulation
○ Backup

r'

Q = r'

r'' r

Q = r

Q = (r + r'' ) / 2

Q = r''
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Monte Carlo Tree Search

11

➢ Use UCB1 for intelligent 
selection

➢ Run as many simulations 
as time permits

➢ Return action with highest 
Q value at the end of 
planning.

Planning 
Start State
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Overview
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➢ Background
○ Markov Decision Processes
○ Monte Carlo Tree Search

➢ MDP Formalization of On-Demand Multi-Robot Coordination 
Problem

➢ Biased Backup in Monte Carlo Tree Search

➢ BWIBot Multi-Robot System + Conclusion
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In this section
➢ We discuss the salient aspects of formalizing the on-demand 

multi-robot coordination problem as an MDP. [1][2]

➢ We will demonstrate that MCTS based approaches can 
outperform heuristic baselines under almost all domain 
configurations.

[1] Khandelwal and Stone. Multi-Robot Human Guidance: Human Experiments and Multiple Concurrent Requests. AAMAS 2017.
[2] Khandelwal, Barrett, and Stone. Leading the Way: An Efficient Multi-Robot Human Guidance System. AAMAS 2015.

13
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Problem Introduction
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Easy Solution (SingleRobot)
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Easy Solution (SingleRobot)

15

Two main drawbacks:

➢ Robots are slower than humans

➢ The robot needs to go back to the starting 
position to complete original background task
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Desired Solution 
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Desired Solution 

16

Potential Benefits:
➢ Human walked part of the way herself - 

walking faster than being led by a robot

➢ Robots are deviated for less time

➢ Can perform MCTS planning while human is 
walking around



Feb 22, 2017Dissertation DefensePiyush Khandelwal

Desired Solution 

16

Induced MDP action space:
➢ A robot leads human
➢ A robot directs human
➢ Robots get assigned to or unassigned from 

locations to proactively help a human
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Desired Solution 

16

Problems Introduced:
➢ All planning needs to be performed in 

real-time
➢ Stochastic outcomes of actions
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Stochastic Outcomes
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Stochastic Outcomes
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?

?
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Stochastic Outcomes
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?

?
Use MDP framework to model stochasticity of 
human decisions.

➢ Stochasticity captured in MDP transition 
function.

➢ In this dissertation, we use a hand-coded 
stochastic model.
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Salient Representational Decisions

18

?

?
➢ Let’s quickly take a look behind some of the 

other salient representational decisions behind 
the MDP formalization.
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Topological Representation

19
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Action Decomposition

28



Feb 22, 2017Dissertation DefensePiyush Khandelwal

Action Decomposition

20

➢ This action consists of two separate parts:
○ Robot A directs human to robot B (node 9).
○ Robot B waits at node 9.

➢ Leads to excessive branching
○ 720 possible actions at this state.
○ Bad for intelligent selection in MCTS.
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Action Decomposition
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➢ Solution: Decompose action elements into 
separate MDP actions.

➢ Always execute in a canonical ordering.
➢ Decomposition induces only deterministic 

transitions.
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Multiple floors and concurrent requests

21
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MDP Reward - Linear Weighted Combination

22

➢ Reward function needs to balance multiple concurrent 
requests with background tasks of the robots:

➢ The background utility loss can be calculated using a model:

➢       is the average background task utility
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SingleRobotW Baseline

23

Complete 
background 
task first
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SingleRobotW Baseline
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Less utility 
loss after 
reaching goal.
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PDP-T [Coltin et al. 2015] baseline
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PDP-T [Coltin et al. 2015] baseline
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Transfer 
human to 
second robot
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PDP-T [Coltin et al. 2015] baseline
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➢ Transfer only if overall reward improves.
➢ Significant performance improvement in two floor 

environments:
○ Allow handoff from one floor to another without 

either robot traversing elevator.
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PDP-T [Coltin et al. 2015] baseline
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First robot leads 
human to elevator.

Second robot leads 
human to goal.
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MCTS-based approaches

26

➢ Use MCTS as a general purpose MDP solver.

➢ To determine how important stochasticity is during planning, 
we also compare MCTS where a deterministic model of the 
domain has been used to draw samples.

○ In this model, all action outcomes have been determinized 
to their most likely outcomes.
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MCTS-based approaches

27

➢ When task starts, no time for prior planning….
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MCTS-based approaches
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➢ When task starts, no time for prior planning….

○ Ask the human to wait so that planning can be done

○ Lead human to goal; use MCTS planning subsequently
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Evaluation

28

➢ 3 Heuristic Baselines:

○ SingleRobot
○ SingleRobotW
○ PDP-T

➢ We perform evaluation (1000 trials) by generating samples 
using the hand-coded human decision model. 

➢ 4 MCTS variants:

○ MCTS(Wait)
○ MCTS(Lead)
○ MCTS-D(Wait)
○ MCTS-D(Lead)
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Evaluation - SingleRobot
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1 floor, 5 robots, 1 request 2 floors, 10 robots, 2 requests
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Evaluation - PDP-T
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1 floor, 5 robots, 1 request 2 floors, 10 robots, 2 requests
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Evaluation - MCTS
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Evaluation - MCTS
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1 floor, 5 robots, 1 request 2 floors, 10 robots, 2 requests
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Evaluation - MCTS-D
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1 floor, 5 robots, 1 request 2 floors, 10 robots, 2 requests
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Evaluation - MCTS-D
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1 floor, 5 robots, 1 request 2 floors, 10 robots, 2 requests
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Additional Results

33

➢ As robot speed increases relative to human speed, the relative 
performance improvement MCTS has over heuristics 
decreases.

➢ MCTS based approaches are robust to some inaccuracies in 
the model used for planning.



Feb 22, 2017Dissertation DefensePiyush Khandelwal

Section Summary

34

➢ In this section, we have presented some of the key design 
decisions behind the MDP formalization of the problem.

➢ We’ve also demonstrated that MCTS based search can 
outperform heuristic baselines in most cases.

➢  However, MCTS planning did not work out of the box!
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Overview
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➢ Background
○ Markov Decision Processes
○ Monte Carlo Tree Search

➢ MDP Formalization of On-Demand Multi-Robot Coordination 
Problem

➢ Biased Backup in Monte Carlo Tree Search

➢ BWIBot Multi-Robot System + Conclusion
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Let’s Revisit Backups

36

➢ 4 stages in MCTS:
○ Selection
○ Expansion
○ Simulation
○ Backup

As part of this dissertation we 
have analyzed different 
backup techniques. [3]

[3] Khandelwal et al. On the Analysis of Complex Backup 
Strategies in Monte Carlo Tree Search. ICML 2016 

r'

Q = r'

r'' r

Q = r

Q = (r + r'' ) / 2

Q = r''
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MCTS - Backup (Motivation)

st

at

st+1

at+1

 , rt

 , rt+1

Monte Carlo backup for 
single trajectory:

Across all trajectories:

Can we do better?

37



Feb 22, 2017Dissertation DefensePiyush Khandelwal

n-step return (bias-variance tradeoff)

We can compute the return sample in 
many different ways!

1-step:

n-step:

Monte Carlo:

38

More
Bias

More
Variance

r0

r1

rn
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Complex returns
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Complex return:

λ-return/eligibility [Rummery 1995]:

γ-return weights [Konidaris et al. 2011]:

r0

r1

rn
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 MCTS - Novel Variants with Biased Backups!

39

Complex return:

λ-return/eligibility [Rummery 1995]:

   ➡ MCTS(λ)

γ-return weights [Konidaris et al. 2011]:

   ➡ MCTSγ

r0

r1

rn
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MaxMCTS - Off-Policy Returns
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Subtree with higher value

Backup using best known action:
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MaxMCTS - Off-Policy Returns
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Subtree with higher value

Backup using best known action:

Intuition:
➢ Don’t penalize exploratory actions.
➢ Reinforce previously seen better 

trajectories instead.
Equivalent to Peng’s Q(λ) style updates.

MaxMCTS(λ) and MaxMCTSγ
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Evaluation

● We have proposed 4 novel variants:
○ On-policy: MCTS(λ) and MCTSγ
○ Off-policy: MaxMCTS(λ) and MaxMCTSγ

● We only show the performance of MaxMCTS variants with 
random action selection during planning.

● Test performance in 12 different IPC domains
○ Limited planning time (10,000 rollouts per step).

41
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IPC - Random action selection
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(1 Domain)

(3 Domains)

(7 Domains)
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IPC - Random action selection
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(1 Domain)

(3 Domains)

(7 Domains)
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We used MaxMCTS(λ) in previous results!

46

2 floors, 10 robots, 2 requests
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Additional Results 
➢ Different backup techniques can be implemented efficiently, 

and typically do not change overall planning time by 10%.

➢ We also demonstrated dependence between domain 
structure and and bias by using a parametrized grid-world 
domain.

45
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Section Summary
➢ We have introduced and analyzed some principled and 

parametrized approaches for inducing bias during backup in 
MCTS.

➢ In some domains, selecting the right complex backup strategy 
is important. On-demand Multi-Robot Coordination is one such 
domain!

➢ Applicable to many different domains:
○ Music Recommendation System [Liebman et al. 2017].

47
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Overview
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➢ Background
○ Markov Decision Processes
○ Monte Carlo Tree Search

➢ Biased Backup in Monte Carlo Tree Search

➢ MDP Formalization of On-Demand Multi-Robot Coordination 
Problem

➢ BWIBot Multi-Robot System + Conclusion
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BWIBot Multi-Robot System

49

➢ 3rd iteration of BWIBot platform [4]

➢ Over 600km of recorded distance 
traveled.

➢ Realistic 3D simulation using ROS 
and Gazebo.

➢ Implement MDP framework on 
real robots and simulated user 
study.

[4] Khandelwal et al. BWIBots: A platform for bridging the gap between AI 
and human–robot interaction research. IJRR 2017
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User Study Interface
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https://docs.google.com/file/d/0B602p1zESnk2ekRyV3NqTHdYdUU/preview
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Dissertation - Key Contributions
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➢ Designed MDP formalization of on-demand multi-robot 
coordination problem. 
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➢ Key representational decisions applicable to other 
formalizations of multi-robot coordination problems as well.

○ Topological representation, action decomposition, and 
variable duration of actions.
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Dissertation - Key Contributions
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➢ Designed MDP formalization of on-demand multi-robot 
coordination problem. 

➢ Key representational decisions applicable to other 
formalizations of multi-robot coordination problems as well.

○ Topological representation, action decomposition, and 
variable duration of actions.

➢ Introduced and analyzed some principled and parameterized 
approaches for inducing bias during backup in MCTS.

➢ Developed the BWIBot multi-robot system and 
proof-of-concept implementation of the MDP framework.
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Directions for Future Work

52

➢ Human decision model learning; quickly selecting an 
appropriate model.

➢ Generalization of value estimates in MCTS.

➢ Alternate planning approaches (RTDP, Deterministic planning 
with limited stochasticity).

➢ Alternate on-demand tasks.



Feb 22, 2017Dissertation DefensePiyush Khandelwal

Related Work (MCTS Backup)
➢ λ-return has been applied previously for planning:

○ TEXPLORE used a slightly different version of MaxMCTS(λ) 
[Hester 2012].

➢ Other backup strategies:

○ MaxMCTS(λ=0) is equivalent to MaxUCT [Keller, Helmert 2012].

○ Coulom analyzed hand-designed backup strategies in 9x9 
Computer Go [Coulom 2007].

53
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Related Work (MDP Framework)
➢ Multi-Robot Task Allocation Strategies [Gerkey et al. 2004].

➢ Flexible Job-shop Scheduling  Problem [Brucker 1990].

➢ Dec-POMDP and Macro-Actions for multi-robot coordination 
[Amato et al. 2015].

➢ Operator Decomposition [Standley 2010].

➢ MINERVA Tour Guide [Thrun et al. 1998].

➢ Single Robot Human Guidance [Montemerlo et al. 2002].

54
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Thanks!

55
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MDP - Variable duration of actions
➢ MDP decisions are made when human completes a transition 

to a graph node

➢ Action decomposition induces another source of variable 
duration of actions

○ Decomposed actions do not take time in the real world

➢ Planning approaches such as MCTS need to plan for a 
sequence of individual actions

➢ Due to variable duration, the formulation is Semi-Markov
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MDP - Increasing Robot Speed

1 floor, 5 robots
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MDP - Model Inaccuracy during Planning

1 floor, 5 robots,
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IPC - UCB1 action selection

44

(1 Domain)

(3 Domains)

(7 Domains)
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MCTS - Domain Dependence - Grid World

Start 

Goal +100

Variable 
number of
0 Reward
Terminal
States 

Step -1 

➢ 90% chance of moving in 
intended direction.

➢ 10% chance of moving to 
any neighbor randomly.
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MCTS - Domain Dependence - Grid World

#0-Term 0 3 6 15

λ = 1 90.4 11.3 0.9 -2.2

λ = 0.8 90.2 28.0 10.7 -1.4

λ = 0.6 89.5 62.8 45.3 8.5

λ = 0.4 88.7 85.1 77.6 24.1

λ = 0.2 87.7 82.6 78.1 28.4

λ = 0 84.5 79.8 74.1 31.8

Start 

Goal +100

Variable 
number of
0 Reward
Terminal
States 

Step -1 
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MCTS - Computational Time Comparison
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Simulated User Study Results

➢ 3 hand-selected problems.

➢ Compare time human 
takes to reach the goal on 
average against simulation 
results using hand-coded 
human decision model.

➢ 22 participants.
Simulation Results
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Simulated User Study Results

Simulation Results User Study Results
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 MCTS - Novel Variants with Biased Backups!
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Complex return:

λ-return/eligibility [Rummery 1995]:

   ➡ MCTS(λ)

γ-return weights [Konidaris et al. 2011]:

   ➡ MCTSγ
➢ Parameter free.
➢ Assumes n-step return variances are 

highly correlated.

➢ Easier to implement.
➢ Assumes n-step return variances increase @ λ-1.

r0

r1

rn


