
Internet Protocol Stack
 Application: supporting network

applications
 FTP, SMTP, HTTP

 Transport: data transfer between
processes
 TCP, UDP

 Network: routing of datagrams
from source to destination
 IP, routing protocols

 Link: data transfer between
neighboring network elements
 Ethernet, WiFi

 Physical: bits “on the wire”
 Coaxial cable, optical fibers, radios

application

transport

network

link

physical

2

Network Layer and Mobile IP

Outline
 IP addresses
 Virtual circuit vs. datagrams
 Routing algorithms

 Link state
 Distance vector

Mobile IP
 Architecture

 Encapsulation

3

4

Network Layer in Internet:
Big Picture

The picture can't be displayed.

forwarding

Host, router network layer functions:

routing protocols
•path selection

Network layer protocol (e.g., IP)
•addressing conventions
•packet format
•packet handling conventions

Control protocols (e.g. ICMP)
•error reporting
•router “signaling”

Transport layer: TCP, UDP

Link layer

physical layer

Network
layer

5

Network layer functions

 transport packet from
sending to receiving hosts

 network layer protocols in
every host, router

three important functions:
 path determination: route

taken by packets from source
to dest. Routing algorithms

 switching: move packets from
router’s input to appropriate
router output

 call setup: some network
architectures require router
call setup along path before
data flows

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

6

IP Datagram Format

ver length

32 bits

data
(variable length,
typically a TCP

or UDP segment)

16-bit identifier
Internet
checksum

time to
live

32 bit source IP address

IP protocol version
number

header length
(bytes)

max number
remaining hops

(decremented at
each router)

for
fragmentation/
reassembly

total datagram
length (bytes)

upper layer protocol
to deliver payload to

head.
len

type of
service

“type” of data flgs fragment
offset

upper
layer

32 bit destination IP address

Options (if any) E.g. timestamp,
record route
taken, specify
list of routers
to visit.

7

IP Addressing: introduction

 IP address: 32-bit
identifier for host,
router interface

 interface: connection
between host/router
and physical link
 router’s typically have

multiple interfaces
 host typically has one

interface
 IP addresses

associated with each
interface

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

8

Subnets
 IP address:

 subnet part (high
order bits)

 host part (low order
bits)

 What’s a subnet?
 device interfaces with

same subnet part of IP
address

 can physically reach
each other without
intervening router

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

network consisting of 3 subnets

subnet

9

Subnets
How many? 223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2223.1.2.1

223.1.2.6

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.0

223.1.7.1
223.1.8.0223.1.8.1

223.1.9.1

223.1.9.2

10

IP addressing: CIDR
CIDR: Classless InterDomain Routing

 subnet portion of address of arbitrary length
 address format: a.b.c.d/x, where x is # bits in

subnet portion of address

11001000 00010111 00010000 00000000

subnet
part

host
part

200.23.16.0/23

11

IP addresses: how to get one?

Q: How does host get IP address?

 hard-coded by system admin in a file
Windows: control-panel->network->configuration-

>tcp/ip->properties
 UNIX: /etc/rc.config

 DHCP: Dynamic Host Configuration Protocol:
dynamically get address from server

12

IP addresses: how to get one?
Q: How does network get subnet part of IP

addr?
A: gets allocated portion of its provider ISP’s

address space

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23
Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23
Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23

... ….. …. ….

Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

13

Hierarchical addressing: route aggregation

“Send me anything
with addresses
beginning
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses
beginning
199.31.0.0/16”

200.23.20.0/23
Organization 2

...

...

Hierarchical addressing allows efficient advertisement of routing
information:

14

Hierarchical addressing: more specific
routes

ISPs-R-Us has a more specific route to Organization 1

“Send me anything
with addresses
beginning
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses
beginning 199.31.0.0/16
or 200.23.18.0/23”

200.23.20.0/23
Organization 2

...

...

15

IP addressing: the last word...

Q: How does an ISP get block of addresses?
A: ICANN: Internet Corporation for Assigned

Names and Numbers
 allocates addresses
manages DNS
 assigns domain names, resolves disputes

16

Network service model
Q: What service model

for “channel”
transporting packets
from sender to
receiver?

 guaranteed bandwidth?
 preservation of inter-packet

timing (no jitter)?
 loss-free delivery?
 in-order delivery?
 congestion feedback to

sender?

virtual circuit
or

datagram?

The most important
abstraction provided

by network layer:

CRUCIAL
question!

17

Virtual circuits

 call setup, teardown for each call before data can flow
 each packet carries VC identifier (not destination host ID)
 every router on source-dest path maintains “state” for each

passing connection
 transport-layer connection only involved two end systems

 link, router resources (bandwidth, buffers) may be allocated
to VC
 to get circuit-like perf.

“source-to-dest path behaves much like telephone
circuit”
 performance-wise
 network actions along source-to-dest path

18

Virtual circuits: signaling protocols

 used to setup, maintain teardown VC
 used in ATM, frame-relay, X.25
 not used in today’s Internet
 Pros and cons?

application
transport
network
data link
physical

application
transport
network
data link
physical

1. Initiate call 2. incoming call
3. Accept call4. Call connected

5. Data flow begins 6. Receive data

19

Datagram networks: the Internet model

 no call setup at network layer
 routers: no state about end-to-end connections

 no network-level concept of “connection”
 packets typically routed using destination host ID

 packets between same source-dest pair may take
different paths

application
transport
network
data link
physical

application
transport
network
data link
physical

1. Send data 2. Receive data

20

Datagram or VC network: why?

Internet
 data exchanged among

computers
 “elastic” service, no strict

timing req.
 “smart” end systems

(computers)
 can adapt, perform cong.

control, error recovery
 simple inside network,

complexity at “edge”
 many link types

 different characteristics
 uniform service difficult

ATM
 evolved from telephony
 human conversation:

 strict timing, reliability
requirements

 need for guaranteed
service

 “dumb” end systems
 telephones
 complexity inside

network

Outline
 IP addresses
 Virtual circuit vs. datagrams
 Routing algorithms

 Link state
 Distance vector

Mobile IP
 Architecture

 Encapsulation

21

IPv4

22

•Definition: Internet Protocol version 4, the primary protocol for
communication on the Internet since 1983.
•Structure: Uses a 32-bit address space.
•Format: Dotted-decimal (e.g., 192.168.1.1).

•Capacity: Approximately 4.3 billion unique addresses.
•The Bottleneck: With the explosion of smartphones, IoT, and
always-on devices, we officially "ran out" of unallocated IPv4
addresses in 2011.

IPv6

23

•Definition: Internet Protocol version 6, designed to replace IPv4.
•Structure: Uses a 128-bit address space.
•Format: Hexadecimal colon-separated (e.g.,
2001:0db8:85a3:0000:0000:8a2e:0370:7334).

•Capacity: Roughly 340 undecillion addresses ($3.4 \times
10^{38}$).

•Analogy: Enough for every grain of sand on Earth to have
trillions of IP addresses.

NAT

24

•NAT (Network Address Translation): A method of remapping
one IP address space into another.
•How it works: Allows a single public IPv4 address to represent
an entire private network (like your home Wi-Fi).
•Core Types:

•Static NAT: One-to-one mapping (server to public IP).
•Dynamic NAT: One-to-many from a pool of addresses.

•PAT (Port Address Translation): Maps multiple private IPs to
one public IP using unique port numbers.

NAT: Pros and Cons

25

The Good
•Address Conservation: Significantly delayed the total collapse of
IPv4.
•Security: Hides internal network IP schemes from the public
internet.

The Bad
•Breaks "End-to-End" Connectivity: Direct peer-to-peer
communication (like VoIP or gaming) becomes difficult without
"hole punching" (STUN/TURN).
•Latency: Every packet must be modified by the router, adding
processing overhead.
•Layer Violation: NAT must look at transport layer ports, which
violates strict networking layering principles.

Co-existence and Transition

26

We are currently in a "Dual-Stack" era where both protocols live
together.
Dual-Stack: Devices run both IPv4 and IPv6 simultaneously.
Tunneling: Wrapping IPv6 packets inside IPv4 packets to travel
across older infrastructure.
NAT64: A translation mechanism that allows IPv6-only devices to
communicate with IPv4-only resources.

Summary

27

 IPv4 is the foundation but is hindered by its small
address pool.

 NAT is a necessary workaround that keeps IPv4 alive
but complicates connectivity.

 IPv6 is the ultimate solution, offering infinite scale,
better security, and simplified routing.

Outline
 IP addresses
 Virtual circuit vs. datagrams
 Routing algorithms

 Link state
 Distance vector

Mobile IP
 Architecture

 Encapsulation

28

29

Routing

Graph abstraction for
routing algorithms:

 graph nodes are
routers

 graph edges are
physical links
 What are possible link

cost metrics?

Goal: determine “good” path
(sequence of routers) thru

network from source to dest.

Routing protocol

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

 “good” path:
 typically means minimum

cost path
 other def’s possible

30

Routing Algorithm classification

Global or decentralized
information?

Global:
 all routers have complete

topology, link cost info
 “link state” algorithms
Decentralized:
 router knows physically-

connected neighbors, link
costs to neighbors

 iterative process of
computation, exchange of
info with neighbors

 “distance vector” algorithms

Static or dynamic?
Static:
 routes change slowly

over time
Dynamic:
 routes change more

quickly
 periodic update
 in response to link

cost changes

31

A Link-State Routing Algorithm
Dijkstra’s algorithm
 net topology, link costs

known to all nodes
 accomplished via “link

state broadcast”
 all nodes have same info

 computes least cost paths
from one node (‘source”) to
all other nodes
 gives routing table for

that node
 iterative: after k iterations,

know least cost path to k
dest.’s

Notation:
 c(i,j): link cost from node i

to j. cost infinite if not
direct neighbors

 D(v): current value of cost
of path from source to dest.
V

 p(v): predecessor node
along path from source to v,
that is next v

 N: set of nodes whose least
cost path definitively known

32

Dijsktra’s Algorithm

1 Initialization:
2 N = {A}
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v)
6 else D(v) = infinity
7
8 Loop
9 find w not in N such that D(w) is a minimum
10 add w to N
11 update D(v) for all v adjacent to w and not in N:
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N

33

Dijkstra’s algorithm: example

Step
0
1
2
3
4
5

start N
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A
2,A
2,A

D(C),p(C)
5,A
4,D
3,E
3,E

D(D),p(D)
1,A

D(E),p(E)
infinity

2,D

D(F),p(F)
infinity
infinity

4,E
4,E
4,E

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

34

Distance Vector Routing Algorithm

iterative:
 continues until no nodes

exchange info.
 self-terminating: no “signal”

to stop
asynchronous:
 nodes need not exchange

info/iterate in lock step!
distributed:
 each node communicates

only with directly-attached
neighbors

wait for (change in local link
cost of msg from neighbor)

recompute distance table

if least cost path to any dest

has changed, notify
neighbors

Each node:

35

Distance Vector Algorithm: Data
Structures
 Each node x maintains:

 For each neighbor v, cost c(x,v)
Node x’s distance vector: Dx = [Dx(y): y N]

containing x’s estimate of cost to all destinations
 Distance vectors for each neighbor v: Dv = [Dv(y):

y  N]

 Basic operation: Bellman-Ford algorithm
Dx(y) = minv {c(x,v) + Dv(y)}  y  N

36

Distance Vector Algorithm:

1 Initialization:
2 For all destinations y  N:
3 Dx(y) = c(x,y) /* if y is not a neighbor, then c(x,y) =  */:
4 For each neighbor w
5 Dw(y) =  for all destinations y  N
6 For each neighbor w
7 Send distance vector Dx = [Dx(y): y  N] to w

8 Loop:
9 Wait (until communication from neighbor w)
10 For each y  N:
11 Dx(y) = minv {c(x,v)+ Dv(y) }
12 If Dx(y) changes for any destination y
13 Send distance vector Dx = [Dx(y): y  N] to all neighbors

At all nodes, X:
X Z

12

7

Y

37

Distance Vector: link cost changes

Link cost changes:
 node detects local link cost change
 updates routing info, recalculates

distance vector
 if DV changes, notify neighbors

x z
14

50

y
1

38

Distance Vector: link cost changes

Link cost changes:
 node detects local link cost change
 updates routing info, recalculates

distance vector
 if DV changes, notify neighbors

“good
news
travels
fast”

x z
14

50

y
1

At time t0, y detects the link-cost change, updates its DV,
and informs its neighbors.

At time t1, z receives the update from y and updates its table.
It computes a new least cost to x and sends its neighbors its DV.

At time t2, y receives z’s update and updates its distance table.
y’s least costs do not change and hence y does not send any
message to z.

39

Distance Vector: link cost changes

x z
14

50

y
60

40

Distance Vector: link cost changes

x z
14

50

y
60

Dy(x) = min{c(y,x)+Dx(x), c(y,z)+Dz(x)}
= min{60+0, 1+5} = 6

41

Distance Vector: link cost changes

Link cost changes:
 good news travels fast
 bad news travels slow -

“count to infinity” problem!
 44 iterations before

algorithm stabilizes
Poissoned reverse:
 If Z routes through Y to

get to X :
 Z tells Y its (Z’s) distance

to X is infinite (so Y won’t
route to X via Z)

 will this completely solve
count to infinity problem?

x z
14

50

y
60

42

Comparison of LS and DV algorithms I

Message complexity
 with n nodes, E links
 LS:
 DV:

43

Comparison of LS and DV algorithms II

Message complexity
 LS: with n nodes, E links,

O(nE) msgs sent each
 DV: exchange between

neighbors only
 convergence time varies

Speed of Convergence
 LS:
 DV:

Outline
 IP addresses
 Virtual circuit vs. datagrams
 Routing algorithms

 Link state
 Distance vector

Mobile IP
 Architecture

 Encapsulation

44

45

Comparison of LS and DV algorithms

Message complexity
 LS: with n nodes, E links,

O(nE) msgs sent each
 DV: exchange between

neighbors only
 convergence time varies

Speed of Convergence
 LS: O(n^2) algorithm

requires O(nE) msgs
 may have oscillations

 DV: convergence time varies
 may be routing loops
 count-to-infinity problem

Robustness: what happens
if router malfunctions?

46

Comparison of LS and DV algorithms

Message complexity
 LS: with n nodes, E links,

O(nE) msgs sent each
 DV: exchange between

neighbors only
 convergence time varies

Speed of Convergence
 LS: O(n^2) algorithm

requires O(nE) msgs
 may have oscillations

 DV: convergence time varies
 may be routing loops
 count-to-infinity problem

Robustness: what happens
if router malfunctions?

LS:
 node can advertise

incorrect link cost
 each node computes only

its own table
DV:

 DV node can advertise
incorrect path cost

 each node’s table used by
others

• error propagate thru
network

How does Internet routing
work?

47

48

Hierarchical Routing

scale: with 200 million
destinations:

 can’t store all dest’s in
routing tables!

 routing table exchange
would swamp links!

administrative
autonomy

 internet = network of
networks

 each network admin may
want to control routing
in its own network

Our routing review thus far - idealization
 all routers identical
 network “flat”
… not true in practice

49

Hierarchical Routing

 aggregate routers into
regions, “autonomous
systems” (AS)

 routers in same AS run
same routing protocol
 “intra-AS” routing

protocol
 routers in different AS

can run different intra-
AS routing protocol

 special routers in AS
 run intra-AS routing

protocol with all other
routers in AS

 also responsible for
routing to destinations
outside AS
 run inter-AS routing

protocol with other
gateway routers

gateway routers

50

IntraAS and InterAS routing
Gateways:

•perform inter-AS
routing amongst
themselves
•perform intra-AS
routers with other
routers in their
AS

inter-AS, intra-AS
routing in

gateway A.c

network layer

link layer
physical layer

a

b

b

a
aC

A

B
d

A.a
A.c

C.b
B.a

c
b

c

51

IntraAS and InterAS routing

Host
h2

a

b

b

a
aC

A

B
d c

A.a
A.c

C.b
B.a

c
b

Host
h1

Intra-AS routing
within AS A

Inter-AS
routing

between
A and B

Intra-AS routing
within AS B

Intra-AS: OSPF, IS-IS, RIP
Inter-AS: BGP

Internet: BGP

52

Discussion
 IP works fine for the Internet

 it has problems; but during vast majority of the
time it gets its job done efficiently—moving a
packet from a src. to a dest.

What problem can mobility cause?

53

Motivation for Mobile IP
 Routing

 based on IP destination address, network prefix (e.g. 129.13.42)
determines physical subnet

 change of physical subnet implies change of IP address to have a
topological correct address (standard IP) or needs special entries
in the routing tables

54

Motivation for Mobile IP
 Routing

 based on IP destination address, network prefix (e.g. 129.13.42)
determines physical subnet

 change of physical subnet implies change of IP address to have a
topological correct address (standard IP) or needs special entries
in the routing tables

 Keeping the IP address while moving
 Specific routes to end-systems
 change of all routing table entries to forward packets to the right

destination
 does not scale with the number of mobile hosts and frequent

changes in the location, security problems
 Changing the IP address

 adjust the host IP address depending on the current location
 almost impossible to find a mobile system, DNS updates take a

long time
 TCP connections break, security problems

55

Requirements to Mobile IP (RFC
3344, was: 3220, was: 2002)
 Transparency

 mobile end-systems keep their IP address
 continuation of communication after interruption of link possible
 point of connection to the fixed network can be changed

 Compatibility
 support of the same layer 2 protocols as IP
 no changes to current end-systems and routers required
 mobile end-systems can communicate with fixed systems

 Security
 authentication of all registration messages

 Efficiency and scalability
 only little additional messages to the mobile system required

(connection typically via a low bandwidth radio link)
 world-wide support of a large number of mobile systems in the

whole Internet

56

Terminology
 Mobile Node (MN)

 system (node) that can change the point of connection
to the network without changing its IP address

 Home Agent (HA)
 system in the home network of the MN, typically a router
 registers the location of the MN, tunnels IP datagrams to the COA

 Foreign Agent (FA)
 system in the current foreign network of the MN, typically a router
 forwards the tunneled datagrams to the MN, typically also the default

router for the MN
 Care-of Address (COA)

 address of the current tunnel end-point for the MN (at FA or MN)
 actual location of the MN from an IP point of view
 can be chosen, e.g., via DHCP

 Correspondent Node (CN)
 communication partner

57

Example network 1

Internet

router

router

end-system

HA

home network

(physical home network
for the MN)

CN

58

Example network 2

mobile end-system
Internet

router

router

router

end-system

FA

HA

MN

home network

foreign
network

(physical home network
for the MN)

(current physical network
for the MN)

CN

59

Data transfer to the mobile system

Internet

sender

FA

HA

MN

home network

foreign
network

receiver

1

2

3

1. Sender sends to the IP address of MN,
HA intercepts packet (proxy ARP)

2. HA tunnels packet to COA, here FA,
by encapsulation

3. FA forwards the packet
to the MN

CN

60

Data transfer from the mobile system

Internet

receiver

FA

HA

MN

home network

foreign
network

sender

1

1. Sender sends to the IP address
of the receiver as usual,
FA works as default router

CN

61

Overview

CN

router
HA

router
FA

Internet

router

1.

2.

3.

home
network

MN

foreign
network

4.

CN

router
HA

router
FA

Internet

router

home
network

MN

foreign
network

COA

62

Network integration
 Agent Advertisement

 HA and FA periodically send advertisement messages into their
physical subnets

 MN listens to these messages and detects, if it is in the home or a
foreign network (standard case for home network)

 MN reads a COA from the FA advertisement messages
 Registration (always limited lifetime!)

 MN signals COA to the HA via the FA, HA acknowledges via FA to
MN

 these actions have to be secured by authentication
 Advertisement

 HA advertises the IP address of the MN (as for fixed systems),
i.e. standard routing information

 routers adjust their entries, these are stable for a longer time
(HA responsible for a MN over a longer period of time)

 packets to the MN are sent to the HA,
 independent of changes in COA/FA

63

ICMP packets
type = 16
length = 6 + 4 * #COAs
R: registration required
B: busy, no more registrations
H: home agent
F: foreign agent
M: minimal encapsulation
G: GRE encapsulation
r: =0, ignored (former Van Jacobson compression)
T: FA supports reverse tunneling
reserved: =0, ignored

Agent advertisement

preference level 1
router address 1

#addresses
type

addr. size lifetime
checksum

COA 1
COA 2

type = 16 sequence numberlength

0 7 8 15 16 312423
code

preference level 2
router address 2

. . .

registration lifetime

. . .

R B H F M G r reservedT

64

Registration

t

MN HA

t

MN
FA HA

65

Mobile IP registration request

home agent
home address

type = 1 lifetime
0 7 8 15 16 312423

T x

identification

COA

extensions . . .

S B DMG r

UDP packets
S: simultaneous bindings
B: broadcast datagrams
D: decapsulation by MN
M mininal encapsulation
G: GRE encapsulation
r: =0, ignored
T: reverse tunneling requested
x: =0, ignored

66

Mobile IP registration reply

home agent
home address

type = 3 lifetime
0 7 8 15 16 31

code

identification

extensions . . . Example codes:
registration successful

0 registration accepted
1 registration accepted, but simultaneous mobility bindings unsupported

registration denied by FA
65 administratively prohibited
66 insufficient resources
67 mobile node failed authentication
68 home agent failed authentication
69 requested Lifetime too long

registration denied by HA
129 administratively prohibited
131 mobile node failed authentication
133 registration Identification mismatch
135 too many simultaneous mobility bindings

67

Encapsulation 1

CN

router
HA

router
FA

Internet

router

1.

2.

3.

home
network

MN

foreign
network

4.

68

Encapsulation II

original IP header original data

new datanew IP header

outer header inner header original data

69

Encapsulation I
 Encapsulation of one packet into another as payload

 e.g. IPv6 in IPv4 (6Bone), Multicast in Unicast (Mbone)
 here: e.g. IP-in-IP-encapsulation, minimal encapsulation or

GRE (Generic Record Encapsulation)
 IP-in-IP-encapsulation (mandatory, RFC 2003)

 tunnel between HA and COA

Care-of address COA
IP address of HA

TTL
IP identification

IP-in-IP IP checksum
flags fragment offset

lengthDS (TOS)ver. IHL

IP address of MN
IP address of CN

TTL
IP identification

lay. 4 prot. IP checksum
flags fragment offset

lengthDS (TOS)ver. IHL

TCP/UDP/ ... payload

70

Encapsulation II
Minimal encapsulation (optional)

 avoids repetition of identical fields
 e.g. TTL, IHL, version, DS (RFC 2474, old: TOS)
 only applicable for unfragmented packets, no

space left for fragment identification

care-of address COA
IP address of HA

TTL
IP identification

min. encap. IP checksum
flags fragment offset

lengthDS (TOS)ver. IHL

IP address of MN
original sender IP address (if S=1)

Slay. 4 protoc. IP checksum

TCP/UDP/ ... payload

reserved

71

Generic Routing Encapsulation
original
header

original data

new datanew header

outer header
GRE

header
original data

original
header

Care-of address COA
IP address of HA

TTL
IP identification

GRE IP checksum
flags fragment offset

lengthDS (TOS)ver. IHL

IP address of MN
IP address of CN

TTL
IP identification

lay. 4 prot. IP checksum
flags fragment offset

lengthDS (TOS)ver. IHL

TCP/UDP/ ... payload

routing (optional)
sequence number (optional)

key (optional)
offset (optional)checksum (optional)

protocolrec. rsv. ver.CRK S s

RFC 1701

RFC 2784

reserved1 (=0)checksum (optional)
protocolreserved0 ver.C

