
Internet Protocol Stack
 Application: supporting network 

applications
 FTP, SMTP, HTTP

 Transport: data transfer between 
processes
 TCP, UDP

 Network: routing of datagrams 
from source to destination
 IP, routing protocols

 Link: data transfer between 
neighboring  network elements
 Ethernet, WiFi

 Physical: bits “on the wire”
 Coaxial cable, optical fibers, radios

application

transport

network

link

physical
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Network Layer and Mobile IP
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Network Layer in Internet: 
Big Picture

The picture can't be displayed.

forwarding

Host, router network layer functions:

routing protocols
•path selection

Network layer protocol (e.g., IP)
•addressing conventions
•packet format
•packet handling conventions

Control protocols (e.g. ICMP)
•error reporting
•router “signaling”

Transport layer: TCP, UDP

Link layer

physical layer

Network
layer
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Network layer functions

 transport packet from 
sending to receiving hosts 

 network layer protocols in 
every host, router

three important functions:
 path determination: route 

taken by packets from source 
to dest. Routing algorithms

 switching: move packets from 
router’s input to appropriate 
router output

 call setup: some network 
architectures require router 
call setup along path before 
data flows

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical
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IP Datagram Format

ver length

32 bits

data 
(variable length,
typically a TCP 

or UDP segment)

16-bit identifier
Internet
checksum

time to
live

32 bit source IP address

IP protocol version
number

header length
(bytes)

max number
remaining hops

(decremented at 
each router)

for
fragmentation/
reassembly

total datagram
length (bytes)

upper layer protocol
to deliver payload to

head.
len

type of
service

“type” of data flgs fragment
offset

upper
layer

32 bit destination IP address

Options (if any) E.g. timestamp,
record route
taken, specify
list of routers 
to visit.
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IP Addressing: introduction

 IP address: 32-bit 
identifier for host, 
router interface

 interface: connection 
between host/router 
and physical link
 router’s typically have 

multiple interfaces
 host typically has one 

interface
 IP addresses 

associated with each 
interface

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11
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Subnets
 IP address: 

 subnet part (high 
order bits)

 host part (low order 
bits) 

 What’s a subnet?
 device interfaces with 

same subnet part of IP 
address

 can physically reach 
each other without 
intervening router

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

network consisting of 3 subnets

subnet
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Subnets
How many? 223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2223.1.2.1

223.1.2.6

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.0

223.1.7.1
223.1.8.0223.1.8.1

223.1.9.1

223.1.9.2
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IP addressing: CIDR
CIDR: Classless InterDomain Routing

 subnet portion of address of arbitrary length
 address format: a.b.c.d/x, where x is # bits in 

subnet portion of address

11001000  00010111 00010000  00000000

subnet
part

host
part

200.23.16.0/23
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IP addresses: how to get one?

Q: How does host get IP address?

 hard-coded by system admin in a file
Windows: control-panel->network->configuration-

>tcp/ip->properties
 UNIX: /etc/rc.config

 DHCP: Dynamic Host Configuration Protocol: 
dynamically get address from server
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IP addresses: how to get one?
Q: How does network get subnet part of IP 

addr?
A: gets allocated portion of its provider ISP’s 

address space

ISP's block          11001000  00010111  00010000  00000000    200.23.16.0/20 

Organization 0    11001000  00010111  00010000  00000000    200.23.16.0/23 
Organization 1    11001000  00010111  00010010  00000000    200.23.18.0/23 
Organization 2    11001000  00010111  00010100  00000000    200.23.20.0/23 

...                                          …..                                   ….                ….

Organization 7    11001000  00010111  00011110  00000000    200.23.30.0/23
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Hierarchical addressing: route aggregation

“Send me anything
with addresses 
beginning 
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses 
beginning 
199.31.0.0/16”

200.23.20.0/23
Organization 2

...

...

Hierarchical addressing allows efficient advertisement of routing 
information:



14

Hierarchical addressing: more specific 
routes

ISPs-R-Us has a more specific route to Organization 1

“Send me anything
with addresses 
beginning 
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses 
beginning 199.31.0.0/16
or 200.23.18.0/23”

200.23.20.0/23
Organization 2

...

...
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IP addressing: the last word...

Q: How does an ISP get block of addresses?
A: ICANN: Internet Corporation for Assigned 

Names and Numbers
 allocates addresses
manages DNS
 assigns domain names, resolves disputes
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Network service model
Q: What service model

for “channel” 
transporting packets 
from sender to 
receiver?

 guaranteed bandwidth?
 preservation of inter-packet 

timing (no jitter)?
 loss-free delivery?
 in-order delivery?
 congestion feedback to 

sender?

virtual circuit
or 

datagram?

The most important
abstraction provided 

by network layer:

CRUCIAL
question!
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Virtual circuits

 call setup, teardown for each call before data can flow
 each packet carries VC identifier (not destination host ID)
 every router on source-dest path maintains “state” for each 

passing connection
 transport-layer connection only involved two end systems

 link, router resources (bandwidth, buffers) may be allocated 
to VC
 to get circuit-like perf.

“source-to-dest path behaves much like telephone 
circuit”
 performance-wise
 network actions along source-to-dest path
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Virtual circuits: signaling protocols

 used to setup, maintain teardown VC
 used in ATM, frame-relay, X.25
 not used in today’s Internet
 Pros and cons?

application
transport
network
data link
physical

application
transport
network
data link
physical

1. Initiate call 2. incoming call
3. Accept call4. Call connected

5. Data flow begins 6. Receive data
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Datagram networks: the Internet model

 no call setup at network layer
 routers: no state about end-to-end connections

 no network-level concept of “connection”
 packets typically routed using destination host ID

 packets between same source-dest pair may take 
different paths

application
transport
network
data link
physical

application
transport
network
data link
physical

1. Send data 2. Receive data
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Datagram or VC network: why?

Internet
 data exchanged among 

computers
 “elastic” service, no strict 

timing req. 
 “smart” end systems 

(computers)
 can adapt, perform cong. 

control, error recovery
 simple inside network, 

complexity at “edge”
 many link types 

 different characteristics
 uniform service difficult

ATM
 evolved from telephony
 human conversation: 

 strict timing, reliability 
requirements

 need for guaranteed 
service

 “dumb” end systems
 telephones
 complexity inside 

network
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IPv4

22

•Definition: Internet Protocol version 4, the primary protocol for 
communication on the Internet since 1983.
•Structure: Uses a 32-bit address space.
•Format: Dotted-decimal (e.g., 192.168.1.1).

•Capacity: Approximately 4.3 billion unique addresses.
•The Bottleneck: With the explosion of smartphones, IoT, and 
always-on devices, we officially "ran out" of unallocated IPv4 
addresses in 2011.



IPv6
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•Definition: Internet Protocol version 6, designed to replace IPv4.
•Structure: Uses a 128-bit address space.
•Format: Hexadecimal colon-separated (e.g., 
2001:0db8:85a3:0000:0000:8a2e:0370:7334).

•Capacity: Roughly 340 undecillion addresses ($3.4 \times 
10^{38}$).

•Analogy: Enough for every grain of sand on Earth to have 
trillions of IP addresses.



NAT
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•NAT (Network Address Translation): A method of remapping 
one IP address space into another.
•How it works: Allows a single public IPv4 address to represent 
an entire private network (like your home Wi-Fi).
•Core Types:

•Static NAT: One-to-one mapping (server to public IP).
•Dynamic NAT: One-to-many from a pool of addresses.

•PAT (Port Address Translation): Maps multiple private IPs to 
one public IP using unique port numbers.



NAT: Pros and Cons
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The Good
•Address Conservation: Significantly delayed the total collapse of 
IPv4.
•Security: Hides internal network IP schemes from the public 
internet.

The Bad
•Breaks "End-to-End" Connectivity: Direct peer-to-peer 
communication (like VoIP or gaming) becomes difficult without 
"hole punching" (STUN/TURN).
•Latency: Every packet must be modified by the router, adding 
processing overhead.
•Layer Violation: NAT must look at transport layer ports, which 
violates strict networking layering principles.



Co-existence and Transition
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We are currently in a "Dual-Stack" era where both protocols live 
together.
Dual-Stack: Devices run both IPv4 and IPv6 simultaneously.
Tunneling: Wrapping IPv6 packets inside IPv4 packets to travel 
across older infrastructure.
NAT64: A translation mechanism that allows IPv6-only devices to 
communicate with IPv4-only resources.



Summary
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 IPv4 is the foundation but is hindered by its small 
address pool.

 NAT is a necessary workaround that keeps IPv4 alive 
but complicates connectivity.

 IPv6 is the ultimate solution, offering infinite scale, 
better security, and simplified routing.



Outline
 IP addresses
 Virtual circuit vs. datagrams
 Routing algorithms

 Link state
 Distance vector

Mobile IP
 Architecture

 Encapsulation 

28



29

Routing

Graph abstraction for 
routing algorithms:

 graph nodes are 
routers

 graph edges are 
physical links
 What are possible link 

cost metrics?

Goal: determine “good” path
(sequence of routers) thru 

network from source to dest.

Routing protocol

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

 “good” path:
 typically means minimum 

cost path
 other def’s possible
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Routing Algorithm classification

Global or decentralized 
information?

Global:
 all routers have complete 

topology, link cost info
 “link state” algorithms
Decentralized: 
 router knows physically-

connected neighbors, link 
costs to neighbors

 iterative process of 
computation, exchange of 
info with neighbors

 “distance vector” algorithms

Static or dynamic?
Static: 
 routes change slowly 

over time
Dynamic: 
 routes change more 

quickly
 periodic update
 in response to link 

cost changes
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A Link-State Routing Algorithm
Dijkstra’s algorithm
 net topology, link costs 

known to all nodes
 accomplished via “link 

state broadcast” 
 all nodes have same info

 computes least cost paths 
from one node (‘source”) to 
all other nodes
 gives routing table for 

that node
 iterative: after k iterations, 

know least cost path to k 
dest.’s

Notation:
 c(i,j): link cost from node i 

to j. cost infinite if not 
direct neighbors

 D(v): current value of cost 
of path from source to dest. 
V

 p(v): predecessor node 
along path from source to v, 
that is next v

 N: set of nodes whose least 
cost path definitively known
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Dijsktra’s Algorithm

1  Initialization:
2    N = {A} 
3    for all nodes v 
4      if v adjacent to A 
5        then D(v) = c(A,v) 
6        else D(v) = infinity 
7 
8   Loop
9     find w not in N such that D(w) is a minimum 
10    add w to N 
11    update D(v) for all v adjacent to w and not in N: 
12       D(v) = min( D(v), D(w) + c(w,v) ) 
13    /* new cost to v is either old cost to v or known 
14     shortest path cost to w plus cost from w to v */ 
15  until all nodes in N



33

Dijkstra’s algorithm: example

Step
0
1
2
3
4
5

start N
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A
2,A
2,A

D(C),p(C)
5,A
4,D
3,E
3,E

D(D),p(D)
1,A

D(E),p(E)
infinity

2,D

D(F),p(F)
infinity
infinity

4,E
4,E
4,E

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5
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Distance Vector Routing Algorithm

iterative:
 continues until no nodes 

exchange info.
 self-terminating: no “signal” 

to stop
asynchronous:
 nodes need not exchange 

info/iterate in lock step!
distributed:
 each node communicates 

only with directly-attached 
neighbors

wait for (change in local link 
cost of msg from neighbor)

recompute distance table

if least cost path to any dest 

has changed, notify
neighbors 

Each node:
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Distance Vector Algorithm: Data 
Structures
 Each node x maintains:

 For each neighbor v, cost c(x,v)
Node x’s distance vector: Dx = [Dx(y): y N] 

containing x’s estimate of cost  to all destinations 
 Distance vectors for each neighbor v: Dv = [Dv(y): 

y  N]

 Basic operation: Bellman-Ford algorithm
Dx(y) = minv {c(x,v) + Dv(y)}  y  N
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Distance Vector Algorithm:

1 Initialization: 
2    For all destinations y  N:
3 Dx(y) = c(x,y) /* if y is not a neighbor, then c(x,y) =  */: 
4 For each neighbor w
5 Dw(y) =  for all destinations y  N
6 For each neighbor w
7 Send distance vector Dx = [Dx(y): y  N] to w    

8 Loop:
9 Wait (until communication from neighbor w)
10 For each y  N:
11 Dx(y) = minv {c(x,v)+ Dv(y) }
12 If Dx(y) changes for any destination y
13 Send distance vector Dx = [Dx(y): y  N] to all neighbors

At all nodes, X:
X Z

12

7

Y
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Distance Vector: link cost changes

Link cost changes:
 node detects local link cost change 
 updates routing info, recalculates 

distance vector
 if DV changes, notify neighbors 

x z
14

50

y
1
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Distance Vector: link cost changes

Link cost changes:
 node detects local link cost change 
 updates routing info, recalculates 

distance vector
 if DV changes, notify neighbors 

“good
news 
travels
fast”

x z
14

50

y
1

At time t0, y detects the link-cost change, updates its DV, 
and informs its neighbors.

At time t1, z receives the update from y and updates its table. 
It computes a new least cost to x and sends its neighbors its DV.

At time t2, y receives z’s update and updates its distance table. 
y’s least costs do not change and hence y does not send any 
message to z. 
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Distance Vector: link cost changes

x z
14

50

y
60
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Distance Vector: link cost changes

x z
14

50

y
60

Dy(x) = min{c(y,x)+Dx(x), c(y,z)+Dz(x)}
= min{60+0, 1+5} = 6          
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Distance Vector: link cost changes

Link cost changes:
 good news travels fast 
 bad news travels slow -

“count to infinity” problem!
 44 iterations before 

algorithm stabilizes
Poissoned reverse:
 If Z routes through Y to 

get to X :
 Z tells Y its (Z’s) distance 

to X is infinite (so Y won’t 
route to X via Z)

 will this completely solve 
count to infinity problem? 

x z
14

50

y
60
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Comparison of LS and DV algorithms I

Message complexity
 with n nodes, E links
 LS:
 DV:
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Comparison of LS and DV algorithms II

Message complexity
 LS: with n nodes, E links, 

O(nE) msgs sent each 
 DV: exchange between 

neighbors only
 convergence time varies

Speed of Convergence
 LS:
 DV:
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Comparison of LS and DV algorithms

Message complexity
 LS: with n nodes, E links, 

O(nE) msgs sent each 
 DV: exchange between 

neighbors only
 convergence time varies

Speed of Convergence
 LS: O(n^2) algorithm 

requires O(nE) msgs
 may have oscillations

 DV: convergence time varies
 may be routing loops
 count-to-infinity problem

Robustness: what happens 
if router malfunctions?
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Comparison of LS and DV algorithms

Message complexity
 LS: with n nodes, E links, 

O(nE) msgs sent each 
 DV: exchange between 

neighbors only
 convergence time varies

Speed of Convergence
 LS: O(n^2) algorithm 

requires O(nE) msgs
 may have oscillations

 DV: convergence time varies
 may be routing loops
 count-to-infinity problem

Robustness: what happens 
if router malfunctions?

LS:
 node can advertise 

incorrect link cost
 each node computes only 

its own table
DV:

 DV node can advertise 
incorrect path cost

 each node’s table used by 
others 

• error propagate thru 
network



How does Internet routing 
work?

47
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Hierarchical Routing

scale: with 200 million 
destinations:

 can’t store all dest’s in 
routing tables!

 routing table exchange 
would swamp links!

administrative 
autonomy

 internet = network of 
networks

 each network admin may 
want to control routing 
in its own network

Our routing review thus far - idealization 
 all routers identical
 network “flat”
… not true in practice
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Hierarchical Routing

 aggregate routers into 
regions, “autonomous 
systems” (AS)

 routers in same AS run 
same routing protocol
 “intra-AS” routing

protocol
 routers in different AS 

can run different intra-
AS routing protocol

 special routers in AS
 run intra-AS routing 

protocol with all other 
routers in AS

 also responsible for 
routing to destinations 
outside AS
 run inter-AS routing

protocol with other 
gateway routers

gateway routers



50

IntraAS  and InterAS routing
Gateways:

•perform inter-AS 
routing amongst 
themselves
•perform intra-AS 
routers with other 
routers in their 
AS

inter-AS, intra-AS 
routing in 

gateway A.c

network layer

link layer
physical layer

a

b

b

a
aC

A

B
d

A.a
A.c

C.b
B.a

c
b

c
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IntraAS and InterAS routing

Host 
h2

a

b

b

a
aC

A

B
d c

A.a
A.c

C.b
B.a

c
b

Host
h1

Intra-AS routing
within AS A

Inter-AS
routing

between 
A and B

Intra-AS routing
within AS B

Intra-AS: OSPF, IS-IS, RIP
Inter-AS: BGP

Internet: BGP
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Discussion
 IP works fine for the Internet

 it has problems; but during vast majority of the 
time it gets its job done efficiently—moving a 
packet from a src. to a dest.

What problem can mobility cause?
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Motivation for Mobile IP
 Routing

 based on IP destination address, network prefix (e.g. 129.13.42) 
determines physical subnet

 change of physical subnet implies change of IP address to have a 
topological correct address (standard IP) or needs special entries 
in the routing tables
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Motivation for Mobile IP
 Routing

 based on IP destination address, network prefix (e.g. 129.13.42) 
determines physical subnet

 change of physical subnet implies change of IP address to have a 
topological correct address (standard IP) or needs special entries 
in the routing tables

 Keeping the IP address while moving
 Specific routes to end-systems
 change of all routing table entries to forward packets to the right 

destination
 does not scale with the number of mobile hosts and frequent 

changes in the location, security problems
 Changing the IP address

 adjust the host IP address depending on the current location
 almost impossible to find a mobile system, DNS updates take a 

long time
 TCP connections break, security problems
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Requirements to Mobile IP (RFC 
3344, was: 3220, was: 2002)
 Transparency

 mobile end-systems keep their IP address
 continuation of communication after interruption of link possible
 point of connection to the fixed network can be changed

 Compatibility
 support of the same layer 2 protocols as IP
 no changes to current end-systems and routers required
 mobile end-systems can communicate with fixed systems

 Security
 authentication of all registration messages

 Efficiency and scalability
 only little additional messages to the mobile system required 

(connection typically via a low bandwidth radio link)
 world-wide support of a large number of mobile systems in the 

whole Internet
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Terminology
 Mobile Node (MN)

 system (node) that can change the point of connection 
to the network without changing its IP address

 Home Agent (HA)
 system in the home network of the MN, typically a router
 registers the location of the MN, tunnels IP datagrams to the COA

 Foreign Agent (FA)
 system in the current foreign network of the MN, typically a router
 forwards the tunneled datagrams to the MN, typically also the default 

router for the MN
 Care-of Address (COA)

 address of the current tunnel end-point for the MN (at FA or MN)
 actual location of the MN from an IP point of view
 can be chosen, e.g., via DHCP

 Correspondent Node (CN)
 communication partner
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Example network 1

Internet

router

router

end-system

HA

home network

(physical home network
for the MN)

CN
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Example network 2

mobile end-system
Internet

router

router

router

end-system

FA

HA

MN

home network

foreign 
network

(physical home network
for the MN)

(current physical network 
for the MN)

CN
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Data transfer to the mobile system

Internet

sender

FA

HA

MN

home network

foreign
network

receiver

1

2

3

1. Sender sends to the IP address of MN,
HA intercepts packet (proxy ARP)

2. HA tunnels packet to COA, here FA, 
by encapsulation

3. FA forwards the packet 
to the MN

CN
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Data transfer from the mobile system

Internet

receiver

FA

HA

MN

home network

foreign
network

sender

1

1. Sender sends to the IP address
of the receiver as usual,
FA works as default router

CN
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Overview

CN

router
HA

router
FA

Internet

router

1.

2.

3.

home
network

MN

foreign
network

4.

CN

router
HA

router
FA

Internet

router

home
network

MN

foreign
network

COA
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Network integration
 Agent Advertisement

 HA and FA periodically send advertisement messages into their 
physical subnets

 MN listens to these messages and detects, if it is in the home or a 
foreign network (standard case for home network)

 MN reads a COA from the FA advertisement messages
 Registration (always limited lifetime!)

 MN signals COA to the HA via the FA, HA acknowledges via FA to 
MN

 these actions have to be secured by authentication 
 Advertisement

 HA advertises the IP address of the MN (as for fixed systems), 
i.e. standard routing information

 routers adjust their entries, these are stable for a longer time 
(HA responsible for a MN over a longer period of time)

 packets to the MN are sent to the HA, 
 independent of changes in COA/FA
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ICMP packets
type = 16
length = 6 + 4 * #COAs
R: registration required
B: busy, no more registrations
H: home agent
F: foreign agent
M: minimal encapsulation
G: GRE encapsulation
r: =0, ignored (former Van Jacobson compression)
T: FA supports reverse tunneling
reserved: =0, ignored

Agent advertisement

preference level 1
router address 1

#addresses
type

addr. size lifetime
checksum

COA 1
COA 2

type = 16 sequence numberlength

0 7 8 15 16 312423
code

preference level 2
router address 2

. . . 

registration lifetime

. . . 

R B H F M G r reservedT
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Registration

t

MN HA

t

MN
FA HA



65

Mobile IP registration request

home agent
home address

type = 1 lifetime
0 7 8 15 16 312423

T x

identification

COA

extensions . . . 

S B DMG r

UDP packets
S: simultaneous bindings
B: broadcast datagrams
D: decapsulation by MN
M mininal encapsulation
G: GRE encapsulation
r: =0, ignored
T: reverse tunneling requested
x: =0, ignored



66

Mobile IP registration reply

home agent
home address

type = 3 lifetime
0 7 8 15 16 31

code

identification

extensions . . . Example codes:
registration successful

0 registration accepted
1 registration accepted, but simultaneous mobility bindings unsupported

registration denied by FA
65 administratively prohibited
66 insufficient resources
67 mobile node failed authentication
68 home agent failed authentication
69 requested Lifetime too long

registration denied by HA
129 administratively prohibited
131 mobile node failed authentication
133 registration Identification mismatch
135 too many simultaneous mobility bindings
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Encapsulation 1

CN

router
HA

router
FA

Internet

router

1.

2.

3.

home
network

MN

foreign
network

4.
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Encapsulation II

original IP header original data

new datanew IP header

outer header inner header original data
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Encapsulation I
 Encapsulation of one packet into another as payload

 e.g. IPv6 in IPv4 (6Bone), Multicast in Unicast (Mbone)
 here: e.g. IP-in-IP-encapsulation, minimal encapsulation or 

GRE (Generic Record Encapsulation)
 IP-in-IP-encapsulation (mandatory, RFC 2003)

 tunnel between HA and COA

Care-of address COA
IP address of HA

TTL
IP identification

IP-in-IP IP checksum
flags fragment offset

lengthDS (TOS)ver. IHL

IP address of MN
IP address of CN

TTL
IP identification

lay. 4 prot. IP checksum
flags fragment offset

lengthDS (TOS)ver. IHL

TCP/UDP/ ... payload
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Encapsulation II
Minimal encapsulation (optional)

 avoids repetition of identical fields
 e.g. TTL, IHL, version, DS (RFC 2474, old: TOS)
 only applicable for unfragmented packets, no 

space left for fragment identification

care-of address COA
IP address of HA

TTL
IP identification

min. encap. IP checksum
flags fragment offset

lengthDS (TOS)ver. IHL

IP address of MN
original sender IP address (if S=1)

Slay. 4 protoc. IP checksum

TCP/UDP/ ... payload

reserved
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Generic Routing Encapsulation
original
header

original data

new datanew header

outer header
GRE 

header
original data

original
header

Care-of address COA
IP address of HA

TTL
IP identification

GRE IP checksum
flags fragment offset

lengthDS (TOS)ver. IHL

IP address of MN
IP address of CN

TTL
IP identification

lay. 4 prot. IP checksum
flags fragment offset

lengthDS (TOS)ver. IHL

TCP/UDP/ ... payload

routing (optional)
sequence number (optional)

key (optional)
offset (optional)checksum (optional)

protocolrec. rsv. ver.CRK S s

RFC 1701

RFC 2784

reserved1 (=0)checksum (optional)
protocolreserved0 ver.C


