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ABSTRACT
Wireless LANs (WLANs) have been deployed at a remark-
able rate at university campuses, office buildings, airports,
hotels, and malls. Providing efficient and reliable wireless
communications is challenging due to inherent lossy wire-
less medium and imperfect packet scheduling that results
in packet collisions. In this paper, we develop an efficient
retransmission scheme (ER) for wireless LANs. Instead of
retransmitting the lost packets in their original forms, ER
codes packets lost at different destinations and uses a single
retransmission to potentially recover multiple packet losses.
We develop a simple and practical protocol to realize the
idea and implement it in both simulation and testbed, and
our results demonstrate the effectiveness of this approach.

1. INTRODUCTION
The proliferation of lightweight hand-held devices with

built-in high-speed WiFi network cards and the significant
benefit of any-where any-time Internet access has spurred
the deployment of wireless local-area networks (WLANs) [4,
5]. Unicast traffic contributes to the majority of wireless traf-
fic today, but with increasing popularity of multicast appli-
cations, such as streaming video and file sharing, wireless
multicast will become increasingly important. Providing ef-
ficient and reliable communication, however, is challenging
due to inherent lossy wireless medium and imperfect packet
scheduling that results in packet collisions. The average loss
rate in some deployments is as high as 20-40% [2, 25].

This paper presentsER, an efficient retransmission mech-
anism to support reliable unicast, broadcast, and multicast
in WLANs. The design of ER can also easily be extended
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to multihop wireless networks. We illustrate the idea of ER
using the following two simple examples.

Consider two clientsC1 andC2 associated with an ac-
cess point (AP). The AP has two packets to send:p1 des-
tined toC1 andp2 destined toC2. The linksAP − C1 and
AP − C2 both have 50% loss rates. Using the traditional
unicast in IEEE 802.11 [1], on average 4 transmissions are
required to successfully send packets to both clients. Due
to the broadcast nature of wireless medium,C1 may lose
p1 but receivep2; similarly, C2 may losep2 but receivep1.
Whenever this case occurs, ER reduces the number of trans-
missions by letting AP retransmitp1+p2, which isp1 xor-ed
with p2, instead of sendingp1 andp2 separately. ThenC1
can extractp1 by xoringp2 with p1 + p2, and similarlyC2
can extractp2 by xoringp1 with p1 + p2. In this way, the
AP reduces the number of transmissions (including the orig-
inal transmissions) from 4 to 3 to successfully deliver both
packets.

Now consider a multicast example. Since broadcast is a
special case of multicast, in this paper we consider multicast
without loss of generality. Suppose the AP wants to send
both packetsp1 andp2 to the clientsC1 andC2. If both
clients only receive one packet and the packets they receive
are different, then AP can retransmitp1 + p2 instead of re-
transmitting them separately, thereby using one transmission
to recover two packet losses.

In both unicast and multicast examples, ER takes advan-
tage of wireless broadcast medium and minimizes the num-
ber of transmissions by effectively combining packets. As
we will show later, the coding benefit further increases with
the number of clients and/or the number of packets.

The design of ER is inspired by several recent works on
network coding, in particular, COPE [11]. ER complements
the previous work in several important ways. First, the ex-
isting network coding approaches target multihop wireless
networks and there are no coding opportunities for single
hop paths. Instead we show that the coding benefit also
exists in widely-used single-hop WLANs. Second, the ex-
isting coding schemes, such as COPE, maximize efficiency
by coding the original transmissions destined to differentre-
ceivers, but relies on MAC-layer retransmissions to recover
lost packets. In comparison, ER improves the efficiency of
MAC-layer retransmissions by reducing the number of re-



transmissions required to recover the losses. Therefore ER
can be applied to wireless LANs and multihop wireless net-
works to achieve efficient retransmission. When combined
with COPE, it helps achieve high efficiency in both origi-
nal transmissions and retransmissions of lost packets. Third,
the coding opportunities in the previous work are determined
by traffic demands. For example, coding opportunities arise
in COPE when traffic heading towards different directions
meet at the same intermediate router. Instead the coding op-
portunities in ER are determined by the loss patterns – more
coding opportunities arise when different receivers lose dif-
ferent sets of packets. So understanding the coding bene-
fits under realistic packet loss characteristics is an interesting
and open question.

In this paper, we develop and implement ER to provide
reliable unicast, broadcast, and multicast in WLANs. An
important component in the design of ER, as well as other
network coding schemes, such as COPE [11] and broadcast
coding [15], is which set of packets should be coded together
to minimize the number of required transmissions. We for-
mally study the problem, and show it is NP-hard. We de-
scribe several practical heuristics and use empirical evalua-
tion to study their effectiveness. Our extensive simulation
and testbed experiments show that ER significantly reduces
the number of retransmissions compared to the existing re-
transmission scheme, which retransmits the lost packets by
themselves.

The rest of the paper is organized as follows. In Section 2,
we review the existing work on providing reliable commu-
nication in WLANs. In Section 3, we present our approach.
We describe our simulation methodology and results in Sec-
tion 4, and present the implementation and experimental re-
sults in Section 5. We conclude in Section 6.

2. RELATED WORK
The existing work of supporting reliable communications

uses one or a combination of the following techniques: (i) re-
transmissions, (ii) forward error correction (FEC), (iii)net-
work coding, and (iv) channel reservation for reducing col-
lision losses.

Retransmission: Retransmission is the most commonly used
approach to recover packet errors and losses. Retransmis-
sions require feedback from the receivers, specifying which
packets are required for retransmissions. The feedback can
be either ACKs or negative ACKs (NACKs) [1, 13]. IEEE
802.11 [1] uses a retransmission mechanism to improve the
reliability of unicast traffic, but provides no reliabilitysup-
port to broadcast and multicast traffic. In 802.11 unicast, a
station transmits the packet and waits for an ACK. If the re-
ceiver successfully receives the packet, it waits for a short
inter-frame spacing time (SIFS) and then transmits an ACK
frame. If the sender does not receive an ACK (e.g., due to a
collision or poor channel condition), it retransmits the packet
using binary exponential back-off, where its contention win-
dow is doubled every time after a failed transmission until it

reaches its maximum value, denoted asCWmax. In 802.11,
the packet is retransmitted in its original form. When an AP
unicasts to multiple clients via lossy links, the retransmis-
sion mechanism in IEEE 802.11 is not efficient, as illustrated
in Section 1.

FEC: FEC has been used to provide reliable unicast and
multicast communication in both wireless networks (e.g.,
[24, 29, 17, 20, 14, 30]) and wireline networks (e.g., [6,
22, 23, 26]). For example, in [17], McKinley et al. dynami-
cally adjusts the level of FEC redundancy based on observed
channel quality. [14] points out that many existing FEC-
based works incorrectly assume independent packet losses,
and studies the impact of spatial and temporal correlation
of packet losses on FEC schemes. In addition to network
performance, [30] analyzes the tradeoff between improving
multicast throughput and minimizing power consumption when
using FEC techniques.

Network coding: The pioneering work by Ahlswede et al. [3]
shows that allowing relay nodes to encode and decode traf-
fic can achieve maximum multicast rate, and this is generally
more efficient than only allowing the relay nodes to forward
traffic. Since then, lots of progress has been made in apply-
ing network coding to wireless and wireline networks (e.g.,
[12, 16, 11, 15]). In particular, COPE [11] develops a prac-
tical network coding scheme for unicast in multi-hop wire-
less networks and [15] further extends the idea to broadcast.
Both works focus on multihop wireless networks, and use
network coding for the initial transmissions. COPE relies on
MAC-layer retransmissions to recover packet losses, while
[15] does not consider loss recovery. Built on existing net-
work coding work, ER applies the coding concept to provide
efficient MAC-layer retransmissions and is complementary
to the existing work.

Channel reservation: One of the major sources of packet
losses in wireless networks comes from packet collisions.
For unicast traffic, binary exponential back-off and RTS/CTS
are used to reduce collision losses and avoid hidden ter-
minals. Due to expensive feedback, neither schemes are
applicable to multicast/broadcast traffic [1] and the colli-
sion losses of multicast/broadcast traffic can be quite high.
Motivated by this observation, several channel reservation
schemes have been proposed to reduce collision losses for
multicast traffic, such as Broadcast Support Multiple Access
(BSMA) [27], Broadcast Medium Window (BMW) [28], Batch
Mode Multicast MAC protocol (BMMM) [9], and Leader
based Priority Ring Multicast Protocol (LPRMP) [8]. These
protocols are complementary to loss recovery schemes using
retransmissions with or without source/network coding, and
can be used in combination with ER. In particular, the chan-
nel reservation schemes reduce collision losses, while the
retransmissions can recover both collision and other wire-
less medium related losses (e.g., those due to fading and low
SNR).



3. OUR APPROACH
ER can be applied to single-hop WLANs and multihop

wireless networks in the same way. In the following descrip-
tion, a sender refers to an AP in a wireless LAN, or refers to
a traffic source or an intermediate router in a multihop wire-
less network.

3.1 Overview
First, we consider unicast transmissions. In ER, a sender

maintains two packet queues: one for new packets and the
other for retransmission packets. In the new packet trans-
mission mode, the sender sends packets from its new packet
queue, following 802.11’s contention mechanism. Since ER
is a replacement of the MAC-layer retransmission in 802.11,
the sender disables the default MAC-layer retransmission
by setting the MAC retry count (i.e., the maximum number
of retransmissions at MAC-layer) to 0. ER retransmits the
packet above the MAC-layer until its receiver acknowledges
the packet or the retry count in ER is reached. To provide
the same level of reliability, the retry count in ER is set to
the original MAC retry count.

The receivers periodically send feedback of which packets
are received successfully. Based on the feedback, the sender
puts the packets that require retransmissions into the retrans-
mission queue. In the retransmission mode, the sender ex-
amines all the packets in its retransmission queue to deter-
mine which sets of packets to code together in order to mini-
mize the number of retransmissions. The sender uses MAC-
layer unicast to send both new and retransmitted packets,
while all the other nodes use promiscuous mode monitor-
ing so that they can receive packets destined to other nodes,
which is necessary to create coding opportunities. Unicast
is used in this case because its binary exponential backoff
can help reduce collision losses under high load and it also
allows the use of RTS/CTS to avoid hidden terminals (if
needed).

ER can be applied to multicast traffic in a similar man-
ner. As in unicast, the sender also maintains two queues
and switches between them for sending new and retrans-
mitted packets. The receivers report to the sender the set
of packets that they receive, and a packet is retransmitted
until all its receivers acknowledge the packet or the retry
count in ER is reached. Multicast packets can be sent ei-
ther using MAC-layer multicast or MAC-layer unicast with
promiscuous monitoring. Our implementation uses the lat-
ter approach: packets are unicast to one of the receivers in
the multicast group, and the other receivers in the group
use promiscuous mode monitoring to extract their data. We
choose this implementation because it unifies the unicast and
multicast implementation and also allows potential use of
exponential backoff and RTS/CTS. However this choice is
not fundamental, and ER can also be built on top of MAC-
layer multicast.

Note that ER can be applied to both encrypted and unen-
crypted data packets. When encryption (e.g., WPA) is used,

the sender xors encrypted packets and adds ER’s header in
plain text to specify which packets are combined, and the
receiver uses the ER’s header information to extract the new
packet and then decrypt its content. Therefore the benefit of
ER extends to corporate wireless networks using WPA.

Several important design issues should be addressed in or-
der to realize ER.

• First, how should the receivers give timely feedback to the
sender without incurring much overhead?

• Second, when to retransmit data? This question involves
two parts: (i) how should the sender determine that a packet
requires a retransmission? (ii) when the medium is avail-
able for the sender to transmit, which packet to send – a
new packet or a lost packet? The answers to these ques-
tions affect the retransmission delay, the number of unnec-
essary retransmissions, and the potential coding benefit.

• Third, which set of packets should be coded together to
minimize the number of retransmissions?

To address the above issues, ER consists of the follow-
ing three components: (i) a light-weight receiver feedback
scheme, (ii) a scheduling algorithm to determine which pack-
ets need retransmissions and when to transmit a new or lost
packet, and (iii) a coding algorithm to optimize which set of
packets to be coded together.

3.2 Receiver Feedback
Our receiver feedback scheme is built on COPE [11], where

a node sends reception reports to inform which set of pack-
ets it has recently received. As in COPE, we use selec-
tive/cumulative ACKs to minimize the impact of ACK losses.
Specifically, the report contains two fields: (i) the starting se-
quence number of the out of order ACKs (start), and (ii) a
bit-map of out of order ACKs. All the packets up tostart
are assumed to be received, andi-th position in the bitmap is
1 if and only if thestart+i-th packet is received. Our imple-
mentation differs from COPE in the following ways. First,
to increase the reliability of feedback, we send feedback us-
ing MAC-layer unicast, which will automatically retransmit
lost feedback. Second, the length of bitmap increases from
1 byte in COPE to 8 bytes in ER so that it is more resilient to
high ACK losses at a cost of a small increase in ACK over-
head. We find this small cost increase is worthwhile since
its benefits under ACK losses is significant. Third, COPE
has separate ACKs and reception reports, where the former
acknowledge the receipt of packets destined to itself and the
latter acknowledge the receipt of packets destined to other
nodes; furthermore these two types of reports are sent in dif-
ferent time scales. For the purpose of ER, the difference
between ACK and reception reports is no longer necessary
because in order to determine which packets to retransmit
and how to code them, the sender needs both ACKs and re-
ception reports. Therefore, our implementation unifies ACK
and reception reports. Finally, when retransmitting a multi-
cast packet, the sender specifies the nodes to which multicast
packets are destined; and only the nodes that are specified as



destinations will send feedback. In this way, we can reduce
the receiver feedback especially when the multicast group is
large but only a small number of nodes need the packet.

3.3 Scheduling Algorithm
Next we need to decide (i) when a packet needs a retrans-

mission and (ii) when the medium is available for the sender
to transmit, which packet should the sender transmit – a new
packet or a lost packet?

if (T is the first RTT measurement)
SRTT = T;
RTTVAR = T/2;
RTO = SRTT + K*RTTVAR;

else
RTTV AR = (1 − β) × RTTV AR + β × |SRTT − T |;
SRTT = (1 − α) × SRTT + α × T ;
RTO = SRTT + K ∗ RTTV AR;

end

Figure 1: Estimation of RTO.
To address the first question, we use a standard approach

to estimate retransmission timeout (RTO), similar to TCP.
Specifically, for every packet that has not been retransmit-
ted, a node measures the time difference between when the
packet is transmitted and when the corresponding ACK in
ER is received. LetT denote the measured round-trip time
of the current packet. Then the node updates itsRTO based
on smoothed RTT and RTT variance as shown in Figure 1.
RTO is initialized based on the MAC data rate. Our evalua-
tion usesK = 4, α = 1/8, andβ = 1/4 as in TCP [21].

To answer the second question, we make the following
observation. If the sender retransmits a packet whenever
the retransmission queue is non-empty, it achieves lowest
retransmission delay. On the other hand, such aggressive
retransmission would reduce or even eliminate coding op-
portunities. In the extreme, there is only one packet in the
retransmission queue, and the packet has to be sent by it-
self and results in 0 coding gain. To strike a good balance
between low delay and high coding gain, we use the follow-
ing heuristic: retransmit the packet when the retransmission
queue reaches a certain threshold or the packets in the re-
transmission queue timeout. The first condition increases
the coding gain, and the second condition bounds retrans-
mission delay. Our evaluation uses 25 as the threshold for
the retransmission queue, and uses 250 msec as the timeout.

3.4 Coding Problem and Algorithms
Another important design issue is how to code packets to-

gether to minimize the number of transmissions. In this sec-
tion, we first formally study the coding problem and show
that it is NP-hard to solve. Then we describe several practi-
cal coding algorithms.

3.4.1 Problem Specification

First, we introduce some notation. LetN(i) denote the
set of nodes that need packeti, andH(i) denote the set of
nodes that have packeti. A sender only codes packets to-
gether if the coded packet can be decoded right after its re-
ception. This condition is commonly used in existing coding

algorithms to simplify decoding algorithms [11, 15]. Under
the above condition, two packetsi andj can be coded if and
only if N(i) ⊆ H(j) andN(j) ⊆ H(i), which we callcod-
ing condition. Essentially it means thati andj can be coded
if and only if any nodes that needj havei, and any nodes that
needi havej. To show the forward direction holds,i andj
can be coded means that any node inN(i) can decode the
packetPi + Pj immediately after its reception; since nodes
in N(i) do not havePi, the only way for decoding to suc-
ceed is thatN(i) havePj so that they can xorPi + Pj with
Pj . Similarly for N(j). To show the reverse direction holds,
sinceN(i) ⊆ H(j), every node inN(i) hasPj . Then af-
ter receiving the coded packetPi + Pj , it can extractPi by
xoringPi + Pj with Pj . Similarly for N(j).

Based on the coding condition, we construct the following
coding graph. Each packet is denoted by a vertex in the cod-
ing graph. For any two packets that can be coded together,
we draw an edge between their corresponding vertices. It is
not difficult to see that a transmission can be decoded if and
only if the transmission only involves packets correspond-
ing to a clique in the coding graph, where a clique is a set
of vertices such that there is an edge between every pair of
the vertices. This is a simple generalization of the coding
condition from 2 packets to N packets. Therefore the cod-
ing problem,i.e., transmitting a given set of packets using
a minimum number of transmissions, is essentially finding
a minimum clique partition [10], which is stated as follows.
Given a graphG = (V,E), whereV are vertices andE
are edges inG, partitionV into a minimum number of dis-
joint subsetsV1, V2, ..., Vk such that the subgraph induced
by Vi is a complete graph. Next we show the coding prob-
lem is NP-hard. We prove this by reducing the minimum
clique partition problem, which is known to be NP-hard, to
the coding problem.

Given a graphG = (V,E) for a minimum clique partition
problem, we construct the coding problem that consists of
three types of input: (i) a set of packets, (ii) for each packet i
which clients need it –N(i), and (iii) for each packeti which
clients have it –H(i). For each vertexi in G of the mini-
mum partition problem, we create a corresponding packetPi

in the coding problem. Each packetPi is needed by a dis-
tinct receiverRi, i.e., N(i) = {Ri}. Based on the coding
condition, we assignH(i) as follows:

H(i) = {Rj |∀j s.t.(i, j) ∈ E}

To show the above assignment ofH(i) satisfies the coding
condition, we need to show that (i) any two adjacent nodes
i and j satisfyN(i) ⊆ H(j) andN(j) ⊆ H(i), and (ii)
any nodes that satisfyN(i) ⊆ H(j) and N(j) ⊆ H(i)
are adjacent. The former holds because for∀ (i, j) ∈ E,
N(i) = {Ri} ⊆ {Rk|∀k s.t. (k, j) ∈ E} = H(j), similarly
for N(j) ⊆ H(i). The latter holds because for∀N(i) =
{Ri} ⊆ H(j) = {Rk|∀k s.t. (k, j) ∈ E}, we have(i, j) ∈
E. Therefore with the above construction, finding a mini-
mum clique partition is essentially finding the optimal so-
lution to the coding problem. Hence the coding problem is



NP-hard.

3.4.2 Coding Algorithms

We describe three practical heuristics to solve the coding
problem. Given the NP-hard nature of the problem, these
heuristics are not guaranteed to yield optimal results. How-
ever as we will show in Section 4 and Section 5, they work
well in practice. In addition, we also present an exhaustive
search algorithm. While the algorithm is guaranteed to give
an optimal solution, it is computational very expensive and
can only run on small-sized problems. So it just serves as an
interesting baseline comparison.

Sort by time: The heuristic described in COPE [11] can
be directly applied here. This heuristic is greedy in nature.
Packets are sorted according to their arrival time with the
first packet being the one that arrives the earliest. Every time
the sender starts with the first packet in the queue, and itera-
tively combines with subsequent packets in the queue as long
as the combined packet can be decoded (i.e., all the receivers
of the combined packet already have all but one packets in
the combined packet).

Sort by utility: We find the order in which packets are
examined for potential coding is important. The previous
heuristic codes the packet in the order of their arrival time.
In the sort-by-utility heuristic, each packet is assigned autil-
ity, defined as the number of receivers that need the packet.
Intuitively, the packet that is required by more receivers is
more important, and should be transmitted earlier. There-
fore we examine the packet in the non-increasing order of
utility and using arrival time for tie-break. Specifically,the
sender starts with the packet having the highest utility, and
iteratively codes subsequent packets as long as the combined
packet can be decoded. Note that this algorithm is useful for
broadcast and multicast. In unicast, each packet is needed by
one client, and has the same utility of 1. So it is equivalent
to the sort-by-time heuristic under unicast.

Maximum clique: As shown in Section 3.4.1, the coding
problem can be cast as finding a minimum clique partition
in a coding graph. Therefore another approach is to employ
heuristics for minimum clique partition. One of the com-
monly used heuristics to minimum clique partition is to first
find a maximum clique in the graph; then remove the clique
from the graph and find another maximum clique, and it-
erate. Note that the maximum clique problem itself is NP-
hard, but has a simple heuristic, which starts with the vertex
of highest degree and iteratively adds additional verticesto
the clique as long as they maintain the clique property – there
is an edge between every pair of vertices in a clique.

Exhaustive search: We develop an exhaustive search al-
gorithm to minimize the number of retransmissions. This
algorithm is computationally very expensive and is not for
practical use. Instead it serves as an interesting baseline
comparison to quantify the effectiveness of the other coding
algorithms.

First, we introduce a few notations. LetM denote the

number of packets required for retransmissions. LetS de-
note a state, indicating for each packeti which nodes need it
and which nodes have it, namely(N(i),H(i)). The exhaus-
tive search algorithm first generates all possible packet com-
binations. There are2M packet combinations, since each
packet either belongs to a packet combination or not. The
goal is to find a smallest number of packet combinations that
converts the current state to the state where every node gets
the packets it needs (i.e., N(i) = {} for everyi). To identify
a minimum set of packet combinations, we build the fol-
lowing coding tree. The root of the tree is the current state.
Starting from the root, we try every packet combination. A
packet combination is considered useful if it allows at least
one receiver to get a packet it needs if there is no loss. For
each useful packet combination, we add a child node to the
root; we also label the edge of to the child with the packet
combination and label the node with the state after all nodes
receive the packet combination. Packets combinations that
are not useful are simply ignored. After going through all
the packet combinations, we then repeat the process – for
each of the child nodes we identify the useful packet combi-
nations and add them to the next level of the tree. The pro-
cess continues until we reach a state where every node gets
the packet that it needs. The depth of the tree at that node is
the minimum number of transmissions required (assuming
the depth of a root is 0). Moreover, the packet combinations
marked along the path from the root to that node are the set
of packets to transmit that minimizes the number of trans-
missions.

4. SIMULATION METHODOLOGY AND RE-
SULTS

In this section, we first describe our simulation methodol-
ogy and then present performance results.

4.1 Simulation Methodology
To evaluate the performance of various retransmission schemes

presented in Section 3.4, we simulate the behavior of the al-
gorithms under both unicast and multicast using a variety of
network topologies. In our simulation, we generate network
topologies consisting of a sender and a varying number of
receivers with varying loss rates.

We consider both homogeneous and heterogeneous loss
rate assignments between a sender and each of its receivers.
In homogeneous cases, the loss rates between the sender and
all its receivers are the same, and are varied from 10% to
90%. In heterogeneous loss cases, we assign the loss rates
between the sender and its receivers randomly chosen be-
tween 0 and an upperbound, where the upperbound is varied
from 10% to 90%. Therefore some receivers may see loss
rate as low as 0, while other receivers may see loss rates
close to the upperbound. For both homogeneous and het-
erogeneous cases, we generate losses using Bernoulli and
Gilbert models. In the Bernoulli model, each packet is dropped
with a fixed probability determined by the loss rate of the



link. In the Gilbert model, the link moves between a good
state and a bad state, where no packets are dropped at the
good state and all packets are dropped at the bad state. Fol-
lowing [18, 19], we use 35% as the probability of remaining
in the bad state. The other state-transition probabilitiesare
determined to match the average loss rate with the loss rate
assigned to the link.

The high-level simulation evaluates a simplified schedul-
ing algorithm, where a sender sends a constant-sized batch
of packets at a time before starting retransmissions. Unless
otherwise specified, the batch size is 20. In addition, we also
evaluate the impact of varying batch sizes. Note that the
batch-based scheduling tries to approximate the effect of the
scheduling algorithm presented in Section 3.3. The simula-
tion does not directly evaluate the latter scheduling, because
it requires modeling timing dynamics, which the high-level
simulation does not model. The testbed evaluation will di-
rectly evaluate the scheduling algorithm in Section 3.3.

We useretransmission ratioto quantify the performance
of different retransmission schemes. The retransmission ra-
tio is defined as the total number of retransmissions using the
current scheme divided by the total number of retransmis-
sions using a basic retransmission scheme, which retrans-
mits each lost packet by itself without coding and corre-
sponds to the retransmission scheme in IEEE 802.11. A
lower retransmission ratio indicates fewer retransmissions,
and hence is preferred. We calculate the retransmission ratio
for every 200 new packets that sender sends to each of the
clients. Then we compute the average and standard devia-
tion of retransmission ratios over 10 runs. Under all cases,
the standard deviation of retransmission ratios is low – typ-
ically around 0.02 and no more than 0.08 over all the runs.
So in the interest of space and clarity, we only present the
average retransmission ratios in the following evaluationre-
sults.

To ensure the same level of reliability, all retransmission
schemes use an unlimited number of retransmissions so that
they all achieve 100% delivery rate. Our results of bounded
retransmissions are qualitatively similar. The only difference
is that under extremely high loss rates (e.g., 90%), the re-
transmission ratio under bounded retry count approaches 1
because the numbers of retransmissions under both the ba-
sic and coding algorithms are determined by the retry count.
In such cases, the coding based retransmission schemes de-
liver more packets successfully. Therefore in the interest
of brevity, we will focus on the performance of unbounded
retry count in this section.

4.2 Simulation Results
First we present the simulation results of multicast by vary-

ing the number of receivers, loss rates, and batch sizes. Then
we present the unicast performance results.

4.2.1 Multicast Results under Homogeneous loss rates

Varying the number of receivers: Figure 2 and Figure 3
show retransmission ratios with a varying number of clients
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Figure 2: Multicast comparison under a varying number
of receivers with homogeneous Bernoulli losses.
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Figure 3: Multicast comparison under a varying number
of receivers with homogeneous Gilbert losses.

under Bernoulli and Gilbert loss models, respectively. We
make the following observations.

First, in all cases the coding-based retransmissions yield



retransmission ratios below 1. This indicates that the coding-
based retransmissions is more efficient than the basic re-
transmission. The lowest ratios achieved are around 0.4, re-
ducing the total number of retransmissions by 60%.

Second, the retransmission ratios decrease with the num-
ber of receivers, which suggests that the benefit of coding-
based retransmissions increases with the number of receivers.
This is because a larger number of receivers makes it easier
to find receivers that lose different packets and create coding
opportunities.

Third, comparing the three different coding algorithms,
we observe the sort-by-utility algorithm out-performs the
maximum clique, which out-performs the sort-by-time. Their
performance difference is larger under the Gilbert loss model
than under the Bernoulli loss model. The good performance
of the sort-by-utility algorithm is likely because packetslost
at many nodes are harder to find other packets to code with
(in the extreme, the packets lost at all nodes have to be re-
transmitted by itself); sending them earlier makes it easier to
find packets to code with since there are more candidates to
choose from. In addition, sending them earlier helps to cre-
ate coding opportunities for future retransmissions as cod-
ing opportunities arise after enough packets are received.
The larger benefit under the Gilbert loss model is likely be-
cause utility distribution is more skewed under the Gilbert
loss model and the sort-by-utility algorithm makes a larger
difference. In the interest of brevity, below we present the
results under the Bernoulli loss model, and comment on the
the Gilbert results whenever their difference is significant.

Varying loss rates: Next we evaluate the performance by
varying loss rates. Figure 4 summarizes the results under 3,
5, and 10 receivers. For 3 receivers, we also plot the results
of the exhaustive search; the results of the exhaustive search
under a higher number of receivers are not available due to
its high computational complexity. Under 3 receivers, the
practical coding schemes perform almost the same as the ex-
haustive search, with all curves overlapping with each other.
This further confirms the effectiveness of the coding heuris-
tics. Under 5 and 10 receivers, the retransmission ratios of
three coding heuristics are between 0.35 and 0.8, cutting the
number of retransmissions by 20% to 65%. The sort-by-
utility continues to perform the best. In all cases, the ratios
are lowest under low packet loss rates because the packets
lost at different receivers are more likely to be different un-
der low loss rates and create more coding opportunities.

Varying batch sizes: We further evaluate the impact of batch
sizes. As shown in Figure 5, with an increasing batch size,
the retransmission ratio decreases and coding benefit increases.
When the batch size is 5 packets, the coding-based retrans-
mission schemes already achieve the ratio below 0.6. When
the batch size increases to 50, the ratios are as low as 0.3.
This shows that there is a tradeoff between packet delay and
bandwidth saving. The good news is that only a small batch
(or delay) is needed to achieve significant saving.

4.2.2 Multicast Results under Heterogeneous Losses
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Figure 4: Multicast comparison under a varying loss rate
with homogeneous Bernoulli losses.
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Figure 5: Multicast comparison under a varying batch
size with 10 receivers and 20% homogeneous Bernoulli
loss rates.

So far we consider similar loss rates between the sender
and all its receivers. In the following evaluation, we consider
heterogeneous loss rates. We assign the average loss rate to



each client, randomly chosen between 0 and the loss bound.
In this case, the difference between loss rates across different
clients is up to the loss bound.

Varying the number of receivers: Figure 6(a) and (b) show
the results under 20% and 50% loss bounds, respectively,
where the number of receivers varies from 2 to 20. As we
can see, the coding-based retransmission schemes signifi-
cantly out-perform the basic retransmission, with retrans-
mission ratios ranging between 0.4 and 0.8. However, the
difference across different coding algorithms is small un-
der Bernoulli losses. The difference under the Gilbert loss
model (not shown) is larger, with the same ranking as before
and the sort-by-utility out-performing the sort-by-time by up
to 25%.
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Figure 6: Multicast comparison under a varying number
of receivers with heterogeneous Bernoulli losses.

Varying loss bounds: We further evaluate the heteroge-
neous cases by varying the loss bound. Figure 7 summa-
rizes the results under 5 and 10 receivers. As the loss bound
increases, loss heterogeneity increases, which increasesthe
retransmission ratio and decreases the coding benefit. This
is expected because under higher loss heterogeneity most of
the retransmissions are sent to one or few receivers and such
imbalanced retransmission load makes it hard to find coding
opportunities.

4.2.3 Unicast Results under Homogeneous Losses

In the following two sections, we evaluate the performance
of unicast retransmission schemes under homogeneous and
heterogeneous losses. Since the sort-by-utility and sort-by-
time algorithms are equivalent under unicast, we only com-
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Figure 7: Multicast comparison under a varying loss
bound with heterogeneous Bernoulli losses.

pare the sort-by-time and maximum clique with the basic
retransmission.
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Figure 8: Unicast comparison under a varying number
of receivers with homogeneous Bernoulli losses.

Varying the number of receivers: Figure 8(a) and (b) show



the results under a varying number of receivers when the loss
rate to each receiver is 20% and 50%, respectively. In both
cases, the coding-based schemes achieve retransmission ra-
tios between 0.6 and 0.8. As in multicast cases, with an
increasing number of receivers, the retransmission ratio de-
creases and the coding benefit increases.
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Figure 9: Unicast comparison under a varying loss rate
with homogeneous Bernoulli losses.

Varying loss rates: Figure 9 shows the results under a vary-
ing loss rate. Under 3 receivers, the coding heuristics are
compared against the exhaustive search, and they all per-
form similarly, indicating the effectiveness of the heuristics.
Compared with the multicast performance in Figure 4, the
coding benefit of unicast retransmissions under the corre-
sponding loss rates are smaller. This is because coding gain
in multicast cases arises whenever receivers obtain different
sets of packets, whereas coding in unicast not only requires
the above condition but also requires that packets that the re-
ceivers lose are destined to them (i.e., receivers do not care

if they lose packets destined to other nodes). The additional
coding constraint reduces the coding opportunities.
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Figure 10: Unicast comparison under a varying batch
size with 10 receivers and 20% homogeneous Bernoulli
loss rates.

Varying batch sizes: Figure 10 shows the result of varying
batch size. As the batch size increases, the retransmission
ratio decreases and coding benefit increases. This is con-
sistent with multicast results, since a larger batch size has
more packet combinations to choose from and increases the
coding benefit.

4.2.4 Unicast Results under Heterogeneous Losses

We also evaluate the retransmission schemes under uni-
cast traffic using heterogeneous losses.

Varying the number of receivers: First we vary the num-
ber of receivers with the loss bound of either 20% or 50%.
As shown in Figure 11, in both cases, the retransmission ra-
tio is between 0.6 and 0.8. As in multicast cases, the lower
retransmission ratios (or higher coding benefit) is achieved
under a larger number of receivers due to more coding op-
portunities.

Varying loss bounds: We further evaluate the performance
by varying the loss bounds while setting the number of re-
ceivers to 5 or 10. Figure 12 shows that the retransmis-
sion ratio initially decreases and then increases with the loss
bound. The later increase is due to the same reason as in
the multicast cases, where under higher loss bounds most
retransmissions are towards one or few receivers and hard
to code them with other packets. The initial decrease is
likely because coding unicast retransmissions requires anad-
ditional constraint that different nodes miss their own pack-
ets, and increasing the loss bound initially helps to increase
the likelihood of satisfying this constraint.

4.3 Summary
The simulation results show that coding-based retransmis-

sions are effective in reducing the number of retransmissions
required to recover packet losses. Their performance benefit
increases with the number of receivers and the batch size.
Moreover their performance gain is larger for multicast traf-
fic. Comparing different coding-based heuristics, the sort-
by-utility performs the best.
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Figure 11: Unicast comparison under a varying number
of receivers with heterogeneous Bernoulli losses.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
et

ra
ns

m
is

si
on

 r
at

io

Loss Bound

Sort by time Maximum Clique

(a) 5 receivers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
et

ra
ns

m
is

si
on

 r
at

io

Loss Bound

Sort by time Maximum Clique

(b) 10 receivers

Figure 12: Unicast comparison for unicast under a vary-
ing loss bound with heterogeneous Bernoulli losses.

5. IMPLEMENTATION AND TESTBED EX-
PERIMENTS

In addition to high-level simulation, we also implement

different retransmission mechanisms in a wireless testbed.
Testbed experiments are valuable because they allow us to
evaluate the ER protocol under realistic scenarios. In this
section, we first describe our testbed implementation and
evaluation methodology, and then present the performance
results.

5.1 Implementation
Our implementation is built on the COPE source code [7],

which performs network coding at intermediate nodes in mul-
tihop wireless networks. We make the following modifica-
tions to support ER. We modify the receiver feedback scheme
in COPE as described in Section 3.2. We implement the
scheduling algorithm described in Section 3.3 to determine
whether a packet needs a retransmission and when a retrans-
mission should be sent. In addition, we disable MAC-layer
retransmissions used in COPE. Instead, we implement two
retransmission mechanisms above the MAC-layer: (i) the
basic retransmission, which keeps sending a lost packet un-
til all the intended receivers acknowledge it or the maximum
retry count is reached, and (ii) the coding-based retransmis-
sion using the sorted by time heuristic. The maximum retry
count is 7 in both basic retransmission and the coding-based
retransmission to achieve similar level of reliability, and 7
is commonly used retry count in IEEE 802.11. We plan to
evaluate the performance of other coding heuristics as part
of our future work.

5.2 Experiment Methodology
We set up a wireless testbed that consists of 7 DELL Di-

mension 1100 PCs. The testbed spans one floor of an office
building. Each machine has a 2.66 GHz Intel Celeron D Pro-
cessor, and runs Fedora Core 4 Linux. Each is equipped with
802.11 a/b/g NetGear WAG511 using MadWiFi. RTS/CTS
is disabled as in the default setting. Our experiments use
802.11b. To avoid interference with resident wireless net-
works, we run our experiments during nights and weekends.
We use 1 AP as a sender, and use up to 6 clients as re-
ceivers. The loss rates between the AP and clients are gen-
erated in a controlled manner to evaluate the performance
under various loss scenarios. We impose a specific loss rate
on each wireless link by artificially dropping traffic at the
receivers, and the dropped packets are not acknowledged by
the receiver’s feedback in ER. Unless otherwise specified,
the packets are dropped using the Bernoulli loss model and
all clients experience similar loss rates. For each scenario
(i.e., a given number of receivers and loss rate), we run seven
times, where each time we obtain the retransmission ratio
(defined in Section 4.1) by letting the AP send 1000 packets.
We then plot retransmission ratios using errorbars, where the
center of an errorbar corresponds to the mean and the length
of the errorbar is twice the standard deviation over seven
runs. In addition, we compare the total throughput of ER
and the basic retransmission by running a 30-second UDP
transfer, and report throughput ratio, defined as the ratio of
the ER’s throughput against that of the basic retransmission



scheme. A higher throughput ratio indicates a larger perfor-
mance gain from ER.

5.3 Experiment Results

5.3.1 Multicast Evaluation
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Figure 13: Multicast experiment results under a varying
loss rate.

We first evaluate the multicast performance of ER by vary-
ing the loss rates. Figure 13 summarizes the results under 2
and 5 clients. The retransmission ratio is between 0.7 – 0.8
for 2 receivers, and between 0.4 – 0.7 for 5 receivers. These
results are consistent with the simulation results, indicating
that the benefit of ER extends to real wireless networks.
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Figure 14: Multicast experiment results under a varying
number of clients.

We further evaluate the performance using a varying num-
ber of receivers while keeping the loss rate to each client
around 50%. As shown in Figure 14, the retransmission ratio
decreases from 0.7 to 0.5 as the number of receivers varies
from 2 to 6. This shows that the benefit of ER increases with
the number of receivers, which is consistent to the simula-
tion results.

Finally we compare the throughput of ER and basic re-
transmission by varying the loss rate to each client. As shown
in Figure 15, the throughput gain from ER can be quite sig-
nificant: up to 21% gain for 2 clients, and up to 50% gain
for 5 clients. Moreover, the throughput gain tends to in-
crease with loss rate, because ER improves the efficiency
of retransmission, which is more important under high loss
rates.

5.3.2 Unicast Evaluation

Next we evaluate the unicast performance of ER. Fig-
ure 16 shows that the retransmission ratios are between 0.6
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Figure 15: Compare throughput against the basic
scheme for multicast under a varying loss rate.

and 0.8 as the loss rate varies from 0.1 to 0.8. The retrans-
mission ratio is lower under 5 clients than under 2 clients, as
we would expect.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
R

et
ra

ns
m

is
si

on
 r

at
io

Loss rate

2 clients
5 clients

Figure 16: Compare retransmission mechanisms for uni-
cast under a varying loss rate.

To further quantify how the loss patterns affect the cod-
ing benefit, we impose a different loss characteristic – only
packets destined to the receivers are dropped according to
the specified loss rate, while all the other packets incur no
artificial losses. In this case, the packets lost at different re-
ceivers are guaranteed to be different, and this increases the
coding opportunities. Therefore we observe a lower retrans-
mission ratio, between 0.2 and 0.8, as shown in Figure 17.
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Figure 17: Compare retransmission mechanisms for uni-
cast under a varying loss rate, where only packets des-
tined to the receivers are dropped.

We also evaluate the performance by varying the number
of clients and keeping the loss rate to each client to be around
0.5. As shown in Figure 18, the retransmission ratio is be-
tween 0.6 and 0.7. Moreover, the ratio tends to decrease with
the number of receivers, as we would expect.
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Figure 18: Unicast experiment results under a varying
number of clients.

Finally we evaluate the performance in terms of through-
put ratio by varying the loss rate to each client. As shown in
Figure 19, the improvement of ER under unicast is generally
less than under multicast, as we would expect. Nevertheless,
we observe that throughput improves by up to 17% for 2
clients and up to 25% for 5 clients. As in multicast, the per-
formance gain of ER under unicast also increases with loss
rates, since ER helps to reduce more packet retransmissions
under higher loss rates.
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Figure 19: Compare throughput against the basic
scheme for unicast under a varying loss rate.

6. CONCLUSION
In this paper, we develop ER to efficiently support retrans-

missions in wireless networks for both unicast and broad-
cast/multicast traffic. ER reduces the number of required
transmissions to recover packet losses by coding packets lost
at different receivers. Using simulation and experiments,we
show that ER is effective over a wide range of scenarios. In
the future, we plan to study the performance of ER in multi-
hop wireless networks.
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