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Abstract — We present VCD, a novel system for en- 5GB data transfer can only support 0.1Mbps for 111 hours
abling high-bandwidth content distribution in vehiculatn (< 5 days)! The cellular service price in many other coun-
works. In VCD, a vehicle opportunistically communicates tries are similar or even higher [49]. Moreover, many mobile
with nearby access points (APs) to download the content of broadband providers restrict or limit large data exchanges
interest. To fully take advantage of such transient contact including streaming audio, video, P2P file sharing, JPEG
with APs, we proactively push content to the APs that the ve- uploads, VolP and automated feeds [34]. According to the
hicles will likely visit in the near future. In this way, vaties international poll of 2700 Devicescape customers [39], 81%
can enjoy the full wireless capacity instead of being bettle smartphone users prefer Wi-Fi over 3G cellular for data ser-
necked by the Internet connectivity, which is either slow or vices. Therefore there is strong need for supporting high-
even unavailable. We develop a new algorithm for predicting bandwidth applications in vehicular networks using Wi-Fi.
the APs that will soon be visited by the vehicles. Wethende- A natural way is to let a vehicle download content from
velop a replication scheme that leverages the synergy amonghe Internet when it meets an access point (AP) [7, 22]. How-
(i) Internet connectivity (which is persistent but has lied ever, it is challenging to meet high bandwidth requirement
coverage and low bandwidth), (ii) local wireless connectiv since vehicles often move at a high speed and thus the con-
ity (which has high bandwidth but transient duration),) (iii  tact time between vehicles and APs tends to be short (e.g.,
vehicular relay connectivity (which has high bandwidth but [14] reported that 70% of connection opportunities are less
high delay), and (iv) mesh connectivity among APs (which than 10 seconds). In addition, it is often expensive to gevi
has high bandwidth but low coverage). We demonstrate thedense high-speed Internet coverage at a large scale. As a re-
effectiveness of VCD system using trace-driven simulation sult, if vehicles fetch desired content on-demand from the
and Emulab emulation based on real taxi traces. We furtherInternet during their contact with an AP, the amount of data
deploy VCD in two vehicular networks: one using 802.11b fetched may be insufficient to sustain the data rate required
and the other using 802.11n, to demonstrate its effectseene by applications such as video streaming when vehicles are

outside the communication range of any APs.
1. INTRODUCTION ] With recent advances in wireless technology, Wi-Fi ca-

Veh|cular_networks have emerged from the strong desire pacity has grown rapidly and can be at least an order of mag-
to communicate on the move [6, 7, 22, 47]. Car manu- nityde higher than typical Internet access link conneftivi
facturers all over the world are developing industry stan- gqr example, IEEE 802.11n can offer up to 600Mbps PHY
dards and prototypes for vehicular networks (e.g., [9, 13, gata rate using 4 antennas. We performed a measurement ex-
low-bandwidth applications, such as credit card payment, oy 3 vehicle communicating with a NetGear WNDR3300
traffic condition monitoring [14], Web browsing [6, 7], and  Ap deployed near the road. We got 4.6Mbps using 802.11b,
VoIP [7]. We explore how to support high-bandwidth appli- 22 2Mbps using 802.11g, and 39.7Mbps using 802.11n (2x2
cations (e.g., video streaming) in vehicular networks. MIMO) on 2.4GHz frequency, and 56.1Mbps using 802.11n
Challenges and opportunities: Cellular networks, despite on 5GHz. In comparison, DSL throughput ranges between
good coverage, still have limited bandwidth and incur high 768Kbps to 6Mbps [3], which is an order of magnitude
cost. For example, many cellular service providers in US, slower. The gap between the wireline and wireless capac-
like AT&T, T-mobile, Sprint, Verizon, charge around $60 per ity is likely to increase further (e.g., due to the availiil
month for 5GB data transfer and $0.2/MB afterwards [34]. of new spectrum, such as whitespace, and advances in an-

tenna and signal processing technology). Such large gap
suggests that in order to enjoy high wireless capacity, we
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Figure 1: VCD architecture

among (i) Internet connectivity, which is persistent bus ha
limited coverage and relatively low bandwidth, (ii) locae+
less connectivity, which has high bandwidth but short con-
tact duration, (iii) vehicle relay connectivity, which hlaigh
bandwidth but high delay, and (iv) mesh connectivity among
APs, which is persistent and has high bandwidth but low
coverage. In particular, we optimize replication througrew
line network and wireless mesh networks based on predicted
mobility and traffic demands. Moreover, we opportunisti-
cally exploit the mobility of the vehicles to extend the cov-
erage of the Internet and mesh connectivity. Even if only
a small fraction of APs have Internet and mesh connectiv-
ity, by having the vehicles themselves relay content, one
can potentially replicate content to a much larger number of
APs. In essence, vehicle mobility has the potential to &igni
icantly increase the network capacity [24] and reduce &utur

own APs and/or subscribe to existing wireless hotspot ser-
vices. Since itis easy to place a stand-alone AP than hooking
it up with Internet connection, VCD is designed to expligitl
take advantage of APs with and without Internet connectiv-
ity. An AP without Internet connectivity is still useful sia
it can serve as a static cache, which vehicles can upload con-
tent that can be served to other passing vehicles in thesfutur

VSPs can offer content distribution service to taxis, buses
subways, and personal vehicles. We focus on taxis and buses
that offer high-bandwidth content distribution as a valdeexd
service to their passengers. These vehicles have low-cost
mobile devices on board for playing downloaded content.
Such mobile devices can be installed by either the taxi/bus
companies or VSPs. Since the mobile devices can be pow-
ered by the vehicles, power consumption is not an issue. The
mobile devices interact with APs and the VCD controller to
report required information (e.g., location update and pre
dicted traffic demands) and follow their instructions.

The key contributions of VCD include:

e Optimized wireline and mesh replicatioro fully take ad-
vantage of short contact time between APs and vehicles,
we replicate content in advance to the APs that will soon
be visited by the vehicle. A distinctive feature of our repli
cation scheme is that it is based on optimization. Specifi-
cally, we explicitly formulate a linear program (LP) to op-
timize the amount of data that can be delivered before the
deadline under the predicted mobility pattern and traffic
demands subject to given resource constraints (e.g., short
contact time and limited link capacity). The formulation
involves addressing challenging modeling issues and is a

content access delay. Note that many mobile devices, such Valuable contribution. In contrast, previous works either

as smartphones, support the use of cheap external storag
cards, which can help mitigate potential storage concerns r
garding carrying traffic for other users in the system [44].

To this end, we develop a nowékhicularContentDistri-
bution (VCD) system for enabling high-bandwidth content
distribution in vehicular networks. As illustrated in Figul,
VCD consists of vehicles, APs with and without Internet ac-
cess (some of which may form a mesh network), content
server on the Internet (e.g., Web servers), and a controller
Vehicles submit location updates and content request®to th
controller via cellular links. The controller optimizeseth
replication strategy based on predicted mobility and taffi
demands, and instructs the APs to carry out the replication
strategy. To enhance reliability and scalability, the colier
can be replicated on multiple nodes. APs are deployed along
road sides (e.g., at gas stations and/or coffee shops)pte all
vehicles on the road to opportunistically communicate with
them. The APs prefetch content as instructed by the con-
troller. Whenever a vehicle encounters an AP, the AP tries
to send the requested content from its local storage if the
content is available locally. Otherwise, the AP tries taffiet
the content from an AP in the same mesh network if one is
available. If no such AP is found, it fetches content from
the Internet when it has Internet connectivity. In addition
sending the content that the vehicle itself needs, the AP may
also send the vehicle content that can then be relayed to othe
APs, or fetch from the vehicle content that can be served to
other passing vehicles later.

VCD systems are easy to deploy in practical settings. For
example, a vehicular service provider (VSP) can install its

e focus exclusively on protocol-level optimization of one-
hop communication between vehicles and APs (e.g., [7,
12, 14, 35]), or rely on heuristics to guide data replication
[15], or completely ignore the resource constraints [19],
which are crucial in vehicular networks. Our formulation
is highly flexible and can support both wireline replica-
tion (Section 2.2) and mesh replication (Section 2.3). The
formulation can be efficiently solved using standard LP
solvers (e.g.lp_solve[31] andcplex[17]) owing to mod-
ern interior-point linear programming methods.

e Opportunistic vehicular replicationTo further extend the
coverage of the Internet and wireless mesh networks, we
develop vehicular replication to opportunistically takke a
vantage of local wireless connectivity and vehicular re-
lay connectivity (Section 2.4). Different from traditidna
vehicle-to-vehicle (v2v) communication, our scheme lever
ages the APs as the rendezvous points for replicating con-
tent among vehicles since vehicle-to-AP communication
is easier to deploy and such contacts are generally easier
to predict than v2v contacts.

e A new algorithm for mobility predictionf-or our replica-
tion optimization algorithms to be effective, it is critica
to predict the set of APs a vehicle will visit in a future in-
terval with high accuracy. Given the high driving speeds,
diverse and unpredictable road conditions, infrequent lo-
cation updates, and irregular update intervals, accyratel
predicting mobility is challenging in vehicular networks.
We develop a new mobility prediction algorithm based on
the idea ofvoting among K nearest trajectories (KNT)



(Section 3). We also implement several state-of-the-art Problem formulation: Our goal is to find a replication strat-
mobility prediction algorithms based on Markov mobility egy that maximizes user satisfaction subject to the aJailab
models [43, 36]. Our evaluation in Section 5 shows that network capacity. Specifically, we want to determine how
KNT achieves better prediction accuracy on our dataset. to replicate files to APs during the current interval to max-
e Thorough evaluation through simulation, emulation, and imize the amount of useful content that can be downloaded

testbed experimentsVe conduct trace-driven simulations ~ BY vehicles when vehicles meet the APs in the next interval.
to evaluate the performance of VCD using San Francisco 10 Support delay sensitive applications, only contentinat
taxi [11] and Seattle bus traces [41] (Section 6). Our re- downloaded before the deadline counts and the other con-
sults show that VCD is capable of downloading 3-6X as tent t.hat allready misses 'ghe dea(_jllne WI|| b_e excluded f_rom
much content as no replication, and 2-4X as much con- consideration fOI" repllcauon._ '_I'h|s replication pro_blem i
tent as wireline or vehicular replication alone; mesh repli  volves the following issues: (i) in what form to replicateth
cation further helps to improve throughput by up to 22%. content, and (ii) how much to replicate for each file.
The benefit of VCD further increases as the gap between Applying network coding: To answer the first question,
wireless and wireline capacity enlarges and the AP density we note that directly replicating original content introgs
increases. In addition, we have developed a full-fledged two major problemsFirst, it is inefficient for serving multi-
prototype VCD system that supports real video streaming ple vehicles. Suppose multiple vehicles are interestekldn t
applications running on smartphones and laptops (Sec-same file and have downloaded different portions of the files
tion 4, 7 and 8). We deploy our system in two wireless before their contacts with an AP. If they visit the same AP,
testbeds using 802.11b and 802.11n. Live road tests sug+n order to satisfy all vehicles we need to replicate the onio
gest that our system is capable of providing video stream- of the packets they need, which is inefficient. For example,
ing to smartphone and laptop clients at a vehicular speed.vehicles 1 and 2 are both interested in file 1. Vehicle 1 has
To further evaluate the performance of VCD at scale, we downloaded the first half and vehicle 2 has downloaded the
run the same AP and controller code as in the testbed to-second half before they encounter the AP. We need to repli-
gether with emulated vehicles in the Emulab [21]. Our ex- cate the complete file to satisfy both vehicl8gcondrepli-
periments show the efficiency of our implementation and cating original files is also unreliable. Consider a vehisle
that Emulab results closely follow the simulation results. expected to visit three APs but in fact it only visits two oéth
three APs, which is quite common due to prediction errors.
2. OPTIMIZING REPLICATION If we just split the file into three and transfer one part toreac
In this section, we first present an overview of our system, AP, then the vehicle will not get the complete file. However,
and then develop wireline, mesh, and vehicular replication iLwe Sﬁ!it|the f”es into two andhtranSferlonefﬁart to each AP,
- the vehicle still may not get the complete file since it may
2.1 Overview get two redundant pieces (e.g., when it visits the two APs
At the beginning of every interval, the controller (shown that both have the first half of the file).
in Figure 1) collects the inputs required for computing repl We apply network coding to solve both problems. Specif-
cation strategy. The controller computes the replicaticats  jcally, we divide the original content into one or multiple
egy during the current interval so that it can maximize user files, each containing multiple packets. We use random lin-
satisfaction during the next interval (Section 2.2). We use ear coding to generate random linear combinations of pack-
user satisfaction in the next interval as the objectiveesinc ets within a file. With a sufficiently large finite field, the
replication in the current interval is often too late to shti likelihood of generating linearly independent packetssig/v
the traffic demands in the same interval. The controller then high [26]. For a file withn packets, a vehicle can decode it
informs the APs of the replication strategy through therinte  as long as it receivaslinearly independent packets for it.
net or cellular network (in case the APs do not have Internet  Network coding solves redundancy problems in the muilti-
connectivity). We use cellular networks to send controlmes ple-vehicle case since each linearly independent packist ad
sages as they are small. A vehicle performs the following value. In the above example of two vehicles, we only need to

actions during its contact with an AP: replicate one half worth of file content to satisfy both users
e Step 1: The vehicle downloads the content according to reducing bandwidth consumption by half. It solves reliabil
the optimization results from this section. ity issue in the single vehicle case by incorporating redun-

d dancy. In the above example, we can split the file of interest

into 2 and randomly generate 3 linear combinations of these

2 pieces and replicate one to each AP. Since any two pieces
are linearly independent with a high probability, the véic

e Step 2: After step 1, the vehicle may still have unsatisfie
demand (e.g., due to inaccurate prediction or insufficient
capacity to replicate all the interesting content). The ve-
hicle then downloads all the content that it is interested in " ) X

can decode the file once it gets any two pieces.

and is also available locally at the AP. : . .
. . . Note that we need network coding (not just source coding)
o Step 3: Next, it downloads the remaining content that itis iy order to avoid redundancy during replication without fine
interested in from the AP’s mesh network or the wireline  grained coordination. That is, APs should re-encode data
network when the AP has wireline connectivity. before they replicate data to vehicles and other APs. For ex-
e Step 4: Parallel to the Internet download, the vehicle can ample, AP 1 has a complete file 1, and sends to vehicle 1 half
take advantage of wireless capacity by opportunistically the file, which is relayed to AP2; similarly AP 1 sends half
transferring files to and from APs (Section 2.4). of the file 1 to vehicle 2, which relays it to AP2. In order to
I . . avoid replicating duplicates to AP 2, AP 1 should re-encode
2.2 Optimized Wireline Replication the data before sending to the vehicles. In Section 4.2, we



> Input: IntvWCapInCap OutCapCT, AP sizehas Q in file f towards an AP is bounded by the file size minus the

> Output: x(f.i,a) and DV, f,a) amount that the AP already has. Constraints C5 and C6 re-
Maximize: ZZ Y QD f,a) —yZ ZAZx(f,i,a) flect the total replication traffic through the wireline netk
Subiectt vV T acAP() ferde does not exceed the access link capacity. The formulation
ubject to: can support APs with and without wireline access by setting
[C1] 3 D(vf.a) <WCapa) xCT(@v)  Yv.acAPv) wireline capacity to zeros for APs without wireline access.
[C2] 5 D(vf,a) <sizgf)—hagy,f) W f Obtaining input: As shown in Figure 2, we neédtv, WCap
acAP(V, . .
[C3] D(\ﬂ(fza) <haga,f)+ 3y x(f,i,a) Wy, f,aeAP(v) InCap OutCap CT, AP, sizg has andQ. Theintvisa
[C4] Siux(f.ia)<sizdf) “haga,f)  vfacA control parameter that determines how frequently the opti-
[C5] Sia Six(f,i,a) <InCap@) xIntv  VacA mization is performed. In our evaluation, we $etv to be
[CB] Facaix(f,i,a) <OutCagi)xIntv Viel 3 minutes, which gives a good balance between (i) achiev-
Figure 2: Optimizing wireline replication, where v is a vehicle, f is ing accurate mobility prediction and (i) limiting the opti
afile, ais an AP, i is a node with wireline connectivity (which may or mization overhead, since both (i) and (ii) decreasénts
.mar{ not befa’l’l QP' X'F?'*I?‘ V:’ﬁb Setrv?)"tht\l’/\ is a%i”ter?;ﬁ' d.‘”"i‘.“on' A increases. The next three inputs on link capaciy-Gap
is the set of al e S,I Is the set of al € nodes with wireline con- . .
nectivity, AP(v) is the set of APs that vehiclev will visit, Q(v, f) is the InCan andOUtc.:ap_.are kHOWI”! In aqvan.ce and Change In-
probability that vis interested in file f, D(v, f,a) is the amount of traffic frequently. CT is estlr_nated using historical data E_md _Only_
in file f vehiclev should download from AP a during a contact in the needs to be updated infrequently. For ease of estimation, in
next interval, x(f,ng,ny) is the amount of traffic in file f to replicate our evaluation we se&€T(a,Vv) to be the average duration of
from node ny to noden, during the current interval, CT(a,V) is average all contacts from the tracé\P can be obtained by either let-
contact time of vehiclev at AP a, WCapis wireless capacity,InCapis ting a vehicle run a mobility prediction algorithm locally o

incoming wireline access link capacityOutCapis outgoing wireline ac-

cess link capacityhas(n. f) is amount of file f a noden has, andsize ) have it send several of its recent GPS coordinates to the con-

is the size of filef . troller, which will perform mobility prediction. size has
. . S and Q are reported by the vehicles either through a Wi-Fi
describe network coding cost and optimization. link during a contact with an AP or via a cellular link during
Optimizing replication traffic: Using network coding, we  other time. A vehicle predicts what future content to reques
transform the original problem of determining which pack- based on the previous and current requests. For streaming
ets to replicate into the problem of determining how much content, it is relatively easy to predict as most users \&Hl r
to replicate for each file. To solve the latter problem, we quest the subsequent frames. Demand prediction in general
formulate a linear program, as shown in Figure 2. A few has been a well-researched problem in many domains [37,
explanations follow. The first term in the objective functio 6] and we can leverage existing solutions. Note that all the
vy tYacapw) Qv F)D(V, f,a), quantifies user satisfaction, control information is small and can be easily compressed
which is essentially the total traffic downloaded by a vehicl by sending delta from the previous update.

(before the deadline), denoted@§y, f,a), weighted by the  ysing optimization results: To enhance robustness against
probability for vehiclev to be interested in filéf, denoted errors in estimating the inputs, we usgxi,a) and D(v, f, a)

by Q(v, f). The second term in the objective represents the tg control the relative replication and download rates agso
total amount of wireline replication traffic. We include hot  gifferent files using the weighted round robin schedul Fuay.
terms to reflect the goals to (i) maximize user satisfaction, example, ifx(f1,i,a) = 2xx(f2,i,a), file 1 is downloaded
and (ii) prefer the replication that uses less traffic amé®eg t  twice as fast as file 2. In this way, we can still fully utilize

replication strategies that support the same amount of traf petwork resources even if contact time or network capacity
fic demands. Since the first objective is more important, we hayve estimation errors.

use a small weighting factorfor the second term just for . .
tie breaking (i.e? Wh%n thg[ﬁrst objective is the éame, we 2.3 Optimized Mesh Replication
prefer the one that has the lowest replication traffic). The If some APs along the road are close together, they can
value ofy should be small enough to ensure it does not dom- form a mesh network. The mesh connectivity indicates that
inate the first term, and our evaluation uges 0.001. Note (i) we can now replicate content to the APs using mesh con-
that in addition to optimizing the total downloaded traffic, nectivity in addition to wireline connectivity, and (ii) &
it is also easy to support alternative metrics that are func- vehicle meeting AP1 requests a file that AP1 does not have,
tions of downloaded traffic (e.g., a linear approximation of it is more efficient to fetch from its mesh network (if there
proportional fairness, which balances between fairneds an is an AP having the file) than fetching via the slow wireline
total downloaded traffic [40]). access link. A neighboring AP in the mesh network can have
Constraint C1 in Figure 2 enforces that the total amount of the file either due to explicit replication or opportunistig
traffic downloaded from an AP during a contact is bounded caching from earlier interactions.
by the product of AP’s wireless capacity and average con- To support (i), we make the following modifications to the
tact duration. Constraint C2 ensures that the total contentreplication formulation in Figure 2. LéfiCap(a’,a) denote
downloaded for each file does not exceed the total file size the capacity of a wireless link from A& to a in the mesh
minus the amount of file the vehicle already has before the network, which can be different from the capacity of wire-
download. Constraint C3 encodes the fact that the amountless links between vehicles and ARECap. Letz(f,a,a)
of file the vehicle can download from an AP cannot ex- denote the amount of content to replicate from &Ro a
ceed what AP already has plus what will be replicated to the for file f through the mesh network. L&TX(a',a) de-
APs through the wireline network during the current inter- note the average number of transmissions required to send
val. Constraint C4 indicates that the total replicatiorfficra a packet froma’' to a through the mesh and can be eas-



ily estimated by measuring link loss rate using broadcast the vehicle arrives so that the vehicle can enjoy high wazle

probes as in [16]. Our modifications include (1) adding
—YY 3 (a.aemestZ( T, &, @) to the objective function to pre-

bandwidth during its download. Predicting mobility for ve-
hicles is challenging because (i) vehicles often move 4dt hig

fer the replication that uses less wireline and mesh replica speed, which implies that there can be many possible next
tion traffic among the ones that support the same traffic de- states and it is difficult to accurately predict transitions

mands, (2) adding- ¥ (z a)e mestZ( f, &, @) to the right hand-
side of [C3] to indicate a node can download from AP
any content that is already availableaabr replicated tca
through either the wireline or mesh network, (3) adding the
following two new constraintsz(f,a,a) < haga, f) and

ETX@,a)z(f,d,a .
2 f(aa)e meshﬁ < 1. The former constraint en-

sures APa’ cannot replicate more content than it has. The
latter is interference constraint, which enforces thatltat-
tive time of all mesh nodes cannot exceed 100% assuming all
nodes in the mesh network interfere with each other. Note
that its left-hand side computes activity time by multiplyi
the replicated content by the expected number of transmis-
sions normalized by the wireless capacity.

To support (ii), when ARa receiving a request for a file
that it does not have locally, it first tries to get from APin
the same mesh if the end-to-end throughput (approximated
asMCap(a',a)/ETX(a',a)) is higher than the wireline ac-
cess link; only when no such AP is found, does it fetch using
the wireline access link.

2.4 Opportunistic Vehicular Replication

In addition to wireline and mesh replication, content can
also be replicated using vehicles — a vehicle can carry con-
tent from one AP to another as it moves. This new form
of replication is more effective than traditional vehitte-
vehicle (V2V) replication, because V2V needs a very large
number of vehicles to be effective whereas even a small num-
ber of APs can significantly enhance the performance by
leveraging the Internet and mesh connectivity among thém [8

One way to support this new vehicular replication is to
augment the LP formulation in Figure 2 with vehicular repli-
cation terms, which can produce wireline, mesh and vehic-
ular replication as the final output. However, due to unpre-
dictability in vehicular relay opportunity, we find the effe
tiveness of such optimization is rather limited. Intenegily,
we find the following simple opportunistic vehicular repli-
cation scheme is effective.

Since the wireline fetch is bottlenecked by the slow ac-
cess link, the wireless link is not fully utilized. Thereéor
as mentioned in Section 2.1, parallel to the wireline fetch,
a vehicle can take advantage of local wireless connectivity
to exchange content with the AP. Such exchange has two
benefits: (i) the vehicle can upload content to the AP, which
can serve other vehicles later, and (ii) the vehicle can down
load files, which may serve its own demand in the future
or the vehicle can relay the content to other APs for future
service. To enhance effectiveness, we order the files to up-

large number of next states, (ii) the GPS updates often have
relatively low frequency (e.g., once per minute) and tend to
arrive at irregular intervals, and (iii) the road and traffan-
ditions are highly dynamic and difficult to predict.

To address the challenge, we develop a novel mobility pre-
diction algorithm for vehicular network$( Nearest Trajec-

tories (KNT) We also implement two existing algorithms

based on Markov mobility models [43, 36]. In Section 5, we
show thatKNT achieves better accuracy on our dataset.

Algorithm: We observe that the mobility of vehicles ex-

hibits unigue structure — a vehicle follows the roads ang onl
makes turns at the street corners or highway exits. This sug-
gests that a good predictor should take into account thelspee
and direction in the previous interval as well as the underly
ing road structure. OuKNT algorithm is able to account
for such information without requiring explicit knowledge
about the detailed road map. Given a vehigjend current
timetp, the algorithm predicts the set of APs visited\gyin
a future intervalto + A1, to+ Ay] (A2 > Az > 0) in two steps:
1. Finding K nearest trajectorieOur algorithm first finds
K existing mobility trajectories in a GPS location database
that best match the recent mobility history of the given
vehicle. Specifically, we maintain a database of past GPS
coordinate updates» = {(v,t,c)}, wherev is a vehicle,
t is the time for the update, amds the GPS coordinate.
For any vehicler and current time, we define its mobil-
ity history MH as the set of GPS coordinates reported by
vin the pas® secondsMH} = {c|(v,s,c) € D ASE [t —
o,t]}. We also define a distance function between two
trajectories:f (MH{, MHY) = 5 ey MiNgenany [e—dl2,

where ||c—d||2 is the Euclidean distance between the
two locations specified by GPS coordinateendd. Es-
sentially, this distance function reflects the total distan
from each point orM H\t,g to the closest point oMHY,.
We then findK pairs of(v,t) that minimizesf (MHQ, MHY),
i.e., theK nearest neighbors ¢¥p,to).

. Voting. For each oK nearest trajectorie@/t), we use
linear interpolation (i.e., using a line to connect two adja
cent points) to obtain its mobility trajectory in the future
interval [t + A1,t + Az]. Based on this, we obtain the set
of APs visited byv during that interval. We then report
all the APs that are visited by at ledstout of K nearest
trajectories as the predicted set of APs that will be visited
by v during future intervalto + A1, to + A2].

In step 1 above, to avoid computirfg{MH\t,g,MH\t,) for

all pairs of trajectories (which is expensive), we only com-

load based on the expected future demand for the file at thepute for the trajectory pairs that are nearby. To quicklyide

AP, which is estimated a§. y visits a Q(Y, f)demandy, f),
wheredemandy, f) is the expected size of filevehiclevis
interested in. While this vehicular replication is simpler o
evaluation shows that it is highly effective.

3. PREDICTING MOBILITY

If we can predict the AP that a vehicle will visit, we can
start replicating the required content to the AP well before

tify the trajectories that are close to the current one, e cr
ate an efficient index structure by (i) discretizing the GPS
latitude-longitude coordinate space int@@01 x 0.0002
grid squares, and (ii) storing all the,t) inside each grid
square. Giverjvp,tp), we start from its grid square and use
expanded ring search to fil@icandidate pointsv,t) resid-
ing in the same or nearby grid squares. We thenKintkar-
est neighbors among theGecandidate points.



To be general, our prediction algorithm intentionally does [Batch sizé 110 packets | 70 packets | 35 packets

: ; ; Device | Phong Desktog Phoné Desktog Phond Deskiop
not exploit external knowledge (e.g., certain vehiclesehav Encoding| 12,198 0.0228< 4,795 0.0088< T.185 0.0021S

similar trajectory on different days, which may hold for 8m -5ec5qing—8.725[0.0175 | 3.275[ 0.00674 0.8094 0.00125
personal vehicles). When such information is available, our

prediction algorithm can potentially incorporate it wherdfi Table 1: Network coding benchmarks
ing nearest trajectories to further improve the accuracy. We implemented client on both Windows XP laptops and

Parameter setting: Our algorithm has four control param-  Smartphones. We use HP Ipaq 910 Business Manager smart-

eters: the number of nearest trajectoriesthe number of phones with Windows Mobile 6.1 Professional operating sys-
candidate point€, the voting threshold, and the mobility ~ t€m, Marvell PXA270 416 MHz Processor, 128MB RAM,

onds. Our results show thé = 4,T = 2,C = 32,H = 60) OpenNet API, and that on Windows uses Managed Wi-Fi

the results under this parameter setting. lenges: (i) limited APIs and often inconsistent implementa
tions, (ii) expensive I/0, (iii) limited system resourcesd
4. VCD IMPLEMENTATION (iv) many existing wireless optimizations cannot be imple-

We implement VCD in both Emulab [21] and our real Mented due to lack of low level access, which we address.

testbed with smartphone and laptop clients. VCD consists Handling expensive 1/0:Since I/0 on smartphones is around
of a controller, APs, content servers, and clients in velsicl  an order of magnitude slower than desktops, packets cannot
Emulab and testbed use the same controller, AP, and con-be stored on the disk and read back on-demand for vehicu-
tent server implementation, all of which are implemented as lar replication. For simplicity, we use an in-memory packet
multi-threaded C++/Linux programs. They differ in client buffer with FIFO replacement policy. We further limit disk
implementation. In Emulab, we implement a virtual vehi- access during the contact with APs and push data to the disk
cle program, which can emulate multiple vehicles, allowing only after the contact is over so that we can fully utilize the
us to conduct a trace driven emulation of all the vehicles short contact time for data transfer.

in our trace using a few virtual vehicles. The client in the Handling network coding cost: Due to the slow processor,
real testbed is implemented on both smartphones and lappread scheduling and dynamic assignment of priorities are
tops, which is described in Section 4.2. important. For example, network coding incurs much higher
4.1 System Overview cost on the smartphone than on the desktop as shown in Ta-
L ble 1. We use packet size of 1230 bytes (i.e., the packet
Communication between APs and controller: The APs  pavioad in our testbed implementation to ensure the maxi-
and controller communicate with each other using TCP. As mum packet size is still within 1500 bytes (Ethernet MTU)).
noted in Section 2.1, at the beginning of every interval the Quyr evaluation uses file sizes of 35, 70, and 110 packets,
controller collects inputs, computes the replicationtsgg, which correspond to minimum, median and maximum file
and instructs content servers or APs to perform wireline and gjzes used in our experiments. To minimize the impact of
mesh replication at the desirable rates. decoding, we schedule the decoding thread at a low priority
Communication between AP and vehicleThe communi- during a contact and increase its priority after the contact
cation between APs and vehicles uses UDP that sends dat@onnection setup: The ability to quickly establish connec-
at close to the PHY data rate. When a vehicle contacts antjon to an AP is crucial. [10, 25] examine this problem

AP, it sends a HELLO message that includes (i) a list of files jn greater detail. In the context of smartphones, the prob-
and their sizes that it already has, (i) the files it is intéee  |em becomes even harder since NDIS does not provide ac-
in during the current and next intervals. Upon receiving the cess to many low level parameters to implement the asso-
first HELLO message from the vehicle, the AP initiates data cjation optimizations proposed in the literature. Windows
download to the vehicle according to the four steps desdribe nobile provides two ways to initiate connection to a Wi-Fi
in Section 2.1. Meanwhile, the vehicle alSOlsendS buffered network programmatica”y, either through the wireleszer
GPS updates (generated every 20 seconds in the testbed angbnfig (WZC) interface or by setting the appropriate NDIS
every 1 minute in Emulab). In step 4, the AP determines Q|Ds. The association times using the WZC interfaces were
a list of files for the vehicle to Upload sorted in Increasing around 3.0 sec, which is unacceptab|e in the vehicular net-
Ut|||ty as described in Section 2.4. The AP sends this list work context. We therefore disable WZC and imp|ement
in a REQ message. Upon receiving the first REQ message NDIS based association, which yields significantly lower as
the vehicle initiates data Upload to the AP. Both HELLO and sociation times. We also imp|ement our own DHCP client
REQ messages use soft state and are sent periodically oncgnd use the DHCP caching mechanism described in [10].
every control interval (100ms in testbed and 1s in Emulab).  Our connection setup procedure is as follows. The smart-
These messages also serve as heartbeats to the other paryhone scans for APs every 100 ms. When an AP is discov-
To achieve efficiency and reliability for data traffic, an AP ered, the smartphone waits for 3 RSSI readings greater than
applies network coding before sending the data it receives..91dB before trying to associate. We do not associate imme-
In addition, we use multiple content servers and leverage diately because an association failure is expensive. The as
a central dispatcher to distribute requests to an apptepria sociation procedure is retried up to 7 times with a shortydela
content server for load balancing. of 50ms between consecutive attempts. The various thresh-
4.2 Client Implementation old values used in the scheme were chosen empirically. We
report the association time and failures in Section 8.
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Mobility traces: We obtain real vehicular mobility traces

from Cabspotting [11] and Seattle [41]. The former contain
over 10 million GPS longitude and latitude coordinates for
approximately 500 taxis in the San Francisco Bay Area over

the course of 30 days (December 13, 2008 — January 13,

2009). The latter contains several week-long traces of city
buses in Seattle during 2001. The bus system consisted o

over 1200 vehicles covering a 5100 square kilometer area.

The algorithm is based on a second-order Markov mobility
model. Each state has two sets of coordinates: the vehicle’s
location at timer ago, and its current location. In our evalu-
ation, T is either 1 or 2 or 3 minutes. We deal with irregular
GPS update intervals through linear interpolation. To @voi
state space explosion, the algorithm discretizes the iodgi
and latitude coordinates inta@1° x 0.001° grid squares.
The algorithm uses past mobility traces to learn the prob-
ability for a vehicle to transition into any new grid square
given its last and current grid squares. Based on the tran-
sition probabilities, the algorithm identifies the grid agel
that the vehicle is most likely to visit next, and uses the-cen
ter of this grid square as the predicted new location for ve-
hicle after timet. This procedure is repeated to make pre-
dictions further into the future. Based on the predicted lo-
cations, the algorithm applies linear interpolation toaitt
the entire mobility trajectory and then computes the set of
APs the vehicle is predicted to visit during a future inter-
val. As in [36, 43], the algorithm falls back to a first-order
Markov model when the second-order Markov model fails to
make a prediction. Finally, we also implement the first-orde

1l\/larkov model as another baseline algorithm.

Metrics: We quantify the prediction accuracy using two

The GPS coordinates are updated approximately once peimetrics: (i) precision i.e., the fraction of APs predicted by
minute for both Cabspotting and Seattle traces. Figure 3 (a)our algorithms are indeed visited by the vehicles in a future

and (b) illustrate the vehicle locations along the highwag a

interval, and (iiyecall, i.e., the fraction of APs visited by the

inside San Francisco. One can clearly observe the under-vehicles in a future interval are correctly predicted by @lur

lying street structure from taxis’ GPS. Similar pattern was
observed in Seattle traces.

AP locations: We consider two sets of locations for placing
APs: (i) gas stations and (ii) coffee shops. We use Yahoo's
Local Search API (version 3) [50] to obtain the longitude

and latitude coordinates of 1120 gas stations and 1620 cof-

gorithms. In addition, we integrate precision and recat in
a single metric calledr-score[48], which is the harmonic

. . - _ 2
mean of precision and recalE-score= T/precision T /recall

For all three metrics, larger values indicate higher aaoura
Evaluation results: We consider the following prediction

fee shops in San Francisco Bay Area, as well as 618 ga§cenario as required by our replication optimization algo-

stations and 738 coffee shops in Seattle. The average dis
tance between two closest APs in the traces ranges betwee
345—589mand the median distance is 15433m. There
are quite a few APs whose distance exceeds 3600 all

the four traces. The communication range between an AP

rithm: per-interval predictionwhich divides time into fixed

iptervals and the goal is to predict the set of APs that will be

visited by a vehicle in the next interval. The predictioreint
val is set to 3 minutes, which matches the interval for peri-
odic replication optimization. For each prediction algjom

and a vehicle is set to either 100 or 200 meters. We use thesdV€ évaluate, we consider multiple parameter configurations

values because they approximate the communication range

we measured from our vehicular testbeds using 802.11b and

802.11q, respectively. To determine the contact period be-
tween a vehicle and an AP, we use linear interpolation to ob-
tain the vehicle’s mobility trajectory between two adjaicen
GPS location updates.

Trace statistics: We analyze the traces and find that 23%
— 40% of time the vehicles were parked or moved within
1 mile/hour, 70% of time they moved less than 11 — 15
miles/hour, and 90% of time they moved less than 25-27
miles/hour. Since most of the cabs are in the downtown

nd choose the configuration that yields the destcore

he results from Cabspotting traces use seven days of train-
ing data to predict the mobility on the eighth day, and rasult
from Seattle bus traces use 5 days of training data to predict
the sixth day as these traces have shorter duration.

Figure 4 shows the prediction accuracy when APs are placed
at either gas stations or coffee shops and the communication
range is either 10@ or 200m. For the San Francisco taxi
mobility trace (Figure 4 (a)—(d)), thie-scoresof our algo-
rithm (KNT) are 25-85% higher than those of the first-order
Markov model Markovl) and second-order Markov model
(Markov?. For the Seattle bus mobility trace (Figure 4 (e)—

area, they are bounded by the speed limits of the downtown i)y ' KNT outperformsMarkov1 and Markov2 by 25-94%
area. We further study the contact duration and observe 70%, terms ofF-scores In general, the absolute prediction ac-
of the contacts between a vehicle and an AP last less thangracy for all three algorithms is higher for the bus moilit

39-51 seconds when the communication range is 100 me-yace "hecause buses tend to follow fixed routes and are thus
ters, and less than 54-82 seconds when the range increasg$,gre predictable.

to 200 meters. Such short contacts highlight the importance Finally, it is worth noting that in contrast to findings in

of replicating data in advance.

Baseline algorithms: For baseline comparison, we imple-
ment a variant of the mobility prediction algorithm in [36].

[36, 43],Markov2does not significantly outperforMarkovl
in our evaluation. This suggests that with higher speed and
less frequent GPS location updates, mobility prediction is
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Figure 4: Accuracy comparison of different mobility prediction algorithms.

more challenging in vehicular networks. As a result, solu- vehicular replication, (v) wireline, vehicular, and mespli-
tions that perform better in less mobile environment do not cation (VCD). In all the schemes, a vehicle downloads con-
necessarily perform better in vehicular networks. tent remotely from the Internet whenever the AP has Internet

Summary: The above results clearly show that dGNT connectivity and the content is not available locally atAlre

mobility prediction algorithm consistently achieves gamd ~ OF mesh network. . .
curacy in vehicular networks. Later in Section 6, we further 10 Study the impact of traffic demands, we generate traffic

show that optimization based on our prediction resultsigiel ~démands following either uniform or Zipf-like distributio
good performance in practice. In both cases, for every interval, a vehicle randomly select

a specified number of files to request. In the uniform distri-
6. TRACE-DRIVEN SIMULATION bution, a file is uniformly drawn from the pool of the files
6.1 Simulation Methodology that the vehicle has not requested previously. In Zipf-like

We develop a trace-driven simulator for evaluation as fol- distribution, fhe probability of requesting the# file is pro-
lows. We first generate the contact traces based on the mobil-Portional to, wherei is the popularity ranking of the file

ity traces, AP locations, and wireless communication range 2ndi = 1 indicates the most popular file. We set= 0.4 so
When multiple vehicles contact an AP at the same time, we that we can generate similar traffic load using both Zip&-lik

divide the original contacts into non-overlapping corgact and uniform distributions and the performance differersce i

each of which has only one vehicle in contact with an Ap. Solely due to the difference in the distribution.

Such contact partitions can be easily realized in practice b __For delay sensitive applications, such as video, their per-
letting the AP serve the new vehicie only after it finishes formance depends on the amount of data received before the

serving the previous one. Similarly, when a vehicle is withi déadline. Therefore, we use average throughput per vehicle
the communication range of multiple APs, we also partition &S our performance metric, which denotes the total demand
the contact into multiple non-overlapping intervals, eagh  thatis satisfied before the deadline divided by the prodtict o
which involves one AP. Another way to partition a contact the number of vehicles and the entire trace duration (irclud
between multiple vehicles and an AP or between multiple " the time without contacts with APs). The deadline is set
APs and a vehicle is to equally divide the contact time among © the end of the interval in which the demand is generated.
multiple vehicles or multiple APs that are involved in the  Our evaluation uses 2-hour trace, which exhibits simi-
contact to mimic round-robin scheduling. The performance 1&r contact characteristics as in the 1-day trace, shown in
of these two types of partitions is similar, and we use the firs Section 5. Other default settings used in our evaluation in-
partition in our evaluation. clude: 100-meter communication range between APs and
We then feed the actual contact traces (after the above post€nicles, 500-meter communication range among APs (well
processing), predicted contacts, and traffic demands to theVithin reach by many mesh routers [4, 33]), Zipf-like traf-
simulator. The simulator updates the content at APs and ve-fi¢ démands, placing APs at coffee shops, all APs having
hicles based on the actual contacts, traffic demands, repli-22 Mbps wireless link, half of the APs having Internet links
cation schemes, and wireless and wireline capacity at APs.With 2Mbps while the other half have no Internet connec-
We implement network coding for all data transfer to ensure tion. The content server has a 1 Gbps Internet link and zero
only innovative packets (i.e., whose coding coefficients ar Wireless capacity to indicate that it is not directly realba
linearly independent) are exchanged between APs and vehiPY vehicles. There are 1200 files in total. Each user requests
cles or among APs. We have a content server on the Internet20 files every 3-minute interval, each file has 2K packets,
which has all the content, whereas all APs and vehicles areWhich contains 1000 bytes. Every file represents either a
initialized with no content. video clip or one chunk in a larger video file (e.g., We divide
We compare (i) no replication, (ii) wireline replication & large video file into smaller chunks and generate random
alone, (iii) vehicular replication alone, (iv) both wireé and linear combinations of packets within each chunk for effi-
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cient replication). We further evaluate the effects of gran  _ o W§ *
ing these parameters. g £ g% A
6.2 Simulation Results : w o i, (VSR
Varying wireless bandwidth: In Figure 5, we plot the total £ 0 MR E | T L ¥
downloaded content as we vary wireless bandwidth from 5, = e e B
11, 22, 54, 120, and 150 Mbps. We make the following ob- e w B omomowowoa o5 obo®owoEwow
servations. First, in all cases VCD significantly out-perie () All APs have Internet  (b) 10% APs have Internet

the other schemes and its benefit increases rapidly with wire ) e : .
less capacity. Second, as we would expect, no replicationFigure 9: Cross validation: comparing performance in
performs the worst. Interestingly, its performance remmain Emulab and simulation

the same as we increase wireless capacity. This is becausges. However, a further increase degrades performance due
without replication APs often do not have content locally tg increased contention for limited wireline and wireless r
and the wireless download is bottlenecked by slow Internet soyrces. Third, the benefit of mesh replication increasts wi
access capacity. This further demonstrates the need of repl the number of vehicles. When we use all the vehicles in the
cation. Third, the performance of both wireline and vehicu- two-hour traces, we find that the mesh replication helps to
lar replication alone initially improves with increasingrer increase throughput by 17-22%. This is because increasing
less capacity and then tapers off. This is because limited In the number of vehicles increases vehicular relay opportuni

ternet capacity prevents fully taking advantage of largewi  ties and makes it more likely to have content available at
less capacity. In comparison, harnessing both wireline and nearby mesh nodes.

vehicular replication opportunities can effectively @ the . ing traffic demands: Figure 8 shows the performance
large wireless capacity when available. Adding mesh repli- for uniformly and Zipf-like distributed traffic demand, re-

cation further increases average throughput by 14-20% un-¢ : :

; . . : pectively. As before, VCD performs the best in all cases.
gg;?;ﬁh Arf]gigﬂgit(%?%(;ssrfcr)g’ ‘Ifjilggtitc% Eggr?(ﬁ)emirﬁ\pégsz dThe performance of uniform and Zipf-like distributt_ad traffi
furtheyif APs use high qain anter?nas or MIMO. Overall. at "€ceives similar performance. Moreover, decreasing the to
22Mbps Wi-Fi capagitygVCD achieves 70 — 30'0 Kbps ’av_ tal number of files tends to improve performance as demands

e . .. are more concentrated and less replication is requiredto sa
erage throughput per vehicle depending on the AP density, isfy them. Finally, the replication benefit tends to inceeas

Whlc,h can su.pport video §tream|ng appllcatl(.)n.s. with an increasing number of files requested by each user.
Varying fraction of APs with Internet connectivity: Next  This is because when a user is interested in more content,

we vary the fraction of APs with Internet connectivity. Fig- jt is more likely to have some locally available content that
ure 6(a) and (b) plot the average downloaded traffic in San gatisfies the user.

Francisco and Seattle traces, respectively. As we can see

VCD continues to significantly out-perform the other scheme 7. TRACE-DRIVEN EMULATION

In addition, the benefits of all types of replication increas The goal of our Emulab implementation is twofold: (1)
with the fraction of APs that have Internet connectivityeTh  validate simulation results, and (2) evaluate the perfoicea
rate of such increase is faster for the replication schehatst of VCD at scale, which is hard to do in testbed experiments.

involve wireline replication, since they explicitly take\ean- Validation: To validate the simulation results, we compare
tage of the new wireline capacity to push data. them against those obtained from Emulab under identical
Varying number of vehicles: To further evaluate the impact  settings. We consider the 30 most interactive APs from the
of degree of deployment, we vary the number of vehicles by trace contacting 100 vehicles. The radio range is 200m.
randomly selecting a subset of vehicles from the traces. Fig Given limited machine availability on Emulab, we emulate
ure 7 summarizes the performance results. We make the fol-multiple APs and vehicles on each machine. This limits the
lowing observations. First, VCD continues to perform the link capacity we can select per AP or per vehicle. Hence,
best in all cases. Second, increasing the number of vehi-our evaluation uses 1Mbps and 6Mbps as the Internet and
cles initially improves the average throughput becauseemor wireless link capacities, respectively.

content are available locally at APs due to previous reguest  Figure 9 shows the average throughput for each interval
coming from other users. In addition, increasing the num- in Emulab and simulator. In Figure 9(a), we consider that all
ber of vehicles also creates more wireless relay opportuni- APs have Internet connectivity and compare the simulation
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[_Packet type | AvgKB [ % of fofal traffic | 33 MB of memory. Therefore it is light-weight.
Controller to APs 192 0.006
APs to controller 1483 0.048 8. TESTBED EXPERIMENTS
\C/;)}:‘iﬁgisrxle__’:o AP datasozgsfgg gi‘zgg We evaluate our approach using two testbeds to under-
APs 1o vehicles data 3023100 98401 stand its feasibility and effectiveness under realistieigiss

- conditions. The first testbed consists of 9 APs deployed in
Table 2: Average control message overhead per interval.  office buildings near the road. The APs are Linux desktops
and emulation performance under no replication and wire- equipped with 802.11b radios, which are set to a fixed data
line replication alone. We observe that the simulationltesu  rate of 11Mbps. The second testbed consists of 4 APs de-
closely follow that of Emulab and the discrepancy between ployed outdoor equipped with 802.11n radios that use auto-
them is below 10%. Next we consider only 10% of the APs rate. 802.11n radios use 2.4GHz frequency with a 20MHz
have Internet connectivity and compare the performance forband. In both testbeds, the APs have 1Mbps wireline ac-
vehicular replication alone and VCD in both simulator and cess link connecting to the back-end content server. In the
Emulab. In this case, since most APs are not connected t0802.11b testbed, 3 out of the 9 APs forms a mesh network
the Internet and there is no mesh connectivity, most contentas a 2-hop linear chain, whereas the 4 APs in the 802.11n
is replicated via vehicles. Figure 9 (b) shows that the sim- testbed forms a mesh network with pairwise connectivity. In
ulation results match well with Emulab results: within 10% both testbeds, mesh communication takes place using addi-
difference for both vehicular replication and VCD. tional 802.11b radios. We implement clients on both Win-
Micro-benchmarks: The following micro-benchmark re- ~ dows Mobile Smartphones and Windows XP Laptops. Smart-
sults show that our implementation is efficient and light- Phone clients are used in 802.11b experiments and laptop
weight even when operating at scale. We emulate the 120clients are used in 802.11n experiments. Both clients ran
most interactive APs and 317 vehicles from the trace. a video streaming application during the car ride. The cars
Table 2 shows the per-interval control message overhead travelled around the testbed at 15 mph (speed limit). We
We observe that control messages constitute only 0.054%€xpect that the driving speed does not significantly affect
of the total wireline traffic exchanged amongst APs and be- the performance when association time is small, because in-
tween APs and the controller, and constitute only 1.6% of creasing speed reduces both on-time (i.e., contact ting) an
the total wireless traffic between APs and vehicles. off-time (i.e., the time between two consecutive contacts)
Next we evaluate the efficiency of the controller. On a Connection setup:Due to deployment constraints, the place-
2.133GHz Xeon machine with 3GB RAM, average CPU and ment of our 802.11b APs is not ideal: 4 of our APs were
memory utilization of the controller is 2% and 38 MB re- placed on the 3rd floor of buildings, limiting their rangedan
spectively. The average latency at the controller is 7.8s, 3 APs were placed in high AP density areas, with 50-70 APs
which is a small fraction of the 3-minute interval. Out of within their range, causing heavy interference. This dgplo
7.8s, the LP computation takes 6.5s. Itis performed on Emu- ment stress-tests our system. In our experiments during car
lab usingp_solve[31] due to licensing issues witplex[17], rides, we were able to associate successfully for 65.2% of al
and the time can be further reduced if cplex is used instead. attempts. Most of the failures came from the 3 APs deployed
Finally we evaluate the scalability of APs by running 120 in the high AP density area: association success percentage
instances of the AP on 2.133GHz Xeon machines with 3GB was only 33.3% for these APs. In fact, even the Windows
RAM. We find that all APs have roughly the same usage, Mobile Wi-Fi manager utility experienced problems such as
with each AP instance consuming only 0.01% CPU load and very long connection time and adapter freezing near these



| [ Download (kB) | Play time (sec)] Vehicular replication: To show the benefit of vehicular repli-

No replication 29297 3662 cation, we use the following setup. Car 1 follows the route
ireline LY 8. APL—AP2, and Car 2 follows the routaP2 — AP1. Car 1
Wireline + Mesh 79440 9930 — APz, and Lar 2 10llows e rouriz —AFL. Lar
Full replication 92493 11562 possesses files 1-20 and is interested in files 21-40, while ca

2 has files 21-40 and is interested in files 1-20. B and
AP2 lack Internet and mesh connectivity. Therefore, without
vehicular replication, neither car can get the contentiitis

Table 3: Throughput of wireline and mesh replication in
the 802.11b testbed

l [ Download (kB) | Play time (sec)| terested in and the total throughput is 0 under no replinatio
No replication 16857 2107 wireline replication alone, and mesh replication alone.
w::g::z: —esh L et In comparison, VCD exploits the vehicular replication op-
Full replication 136479 17060 portunity. When_ car 1 mee#sP1, VCD finds that flles_, 1-20
o . have highest utility because it predicts car 2 will viail
Table 4: Throughput of wireline and mesh replication in soon and need these files. 8B1 instructs the car to upload
the 802.11n testbed them first. Similarly, car 2 uploads file 21-40/A@2. When

APs even without any movement. The other access pointscar 1 reachesP2 |t can download these- files. Slmllarly, car

can successfully associate for 85.7% of the time. The as-2 can download files 1-20 fromP1, leading to much higher

sociation time in our experiments has minimum, median and throughput. Table 5 shows that both cars download their in-

maximum of 36ms, 844ms, and 14867ms, respectively. 70% terested files in the actual road experiments.

of the associations finish within 2 seconds. We retry associ-

ation up to 7 times and the median retry count is 1. 9. RELATED WORK
In our 802.11n outdoor testbed, association success rate We classify related works into three areas: (i) vehicular

was 89.58% out of 48 attempts. The minimum, median and networks, (ii) disruption tolerant networks (DTNs), anid) i

maximum association times were 48 ms, 162 ms, and 4086mobility and demand prediction.

ms, respectively. 80% of the associations finish within 246 \ehjcular networks: A variety of novel techniques have

ms and the median retry count V\!as 1. The better reSU|t$ forbeen proposed to Optimize various aspects of communica-
802.11n testbed were because (i) we used laptops as clientsjons in vehicular networks. One class of works focuses on
(if) APs were placed outdoor closer to vehicles, and (iii) techniques for optimizing one-hop communication between
MIMO in 802.11n improves received signal strength. a vehicle and nearby APs. For example, CarTel project [14]

Wireline and mesh replication: We implemented a video ~ Proposes architectures for vehicular sensor networks, and
streaming application that can play H.264 videos (down- develops a series of technigques to optimize associatian; sc
loaded from APs) encoded at 64Kbps. We divide every video hing, data transport protocols, and rate selection. ViFi [7
into multiple files and use network coding to generate ran- Proposes to take advantage of multiple nearby APs to im-
dom linear combination of packets within a file. Once enough prove communication with passing vehicles. [12] conducts
packets are received for the file, the file is decoded and gassein-depth study of various rate adaptation schemes in vehicu
to the video player on the smartphone/laptop to play in prope Igr ngtworks and proposes to select data rate basedona com-
order using the Windows Mobile media player plugin. blna}uon of RSSI and chan'ne'l coherence time. [35] uses di-
Tables 3 and 4 compare the performance of our optimized rectional antennas to maximize the transfer opportunity be
wireline and mesh replication with no replication and full tween the vehicle and the AP. These works are complemen-
replication at all the APs in 802.11b and 802.11n testbeds, tary to our work, which focuses on end-to-end performance
respectively. We consider two performance metrics: total of contentdistribution. We can potentially leverage these
download size and total amount of time the video can play proaches to improve the performance of the last hop. With
(which is proportional to the download size). We report the these enhancements, the gap between Internet and wireless
averages over 3 runs. The full replication assumes every APcapacity will further increase and make replication evenemo
has all the files and serves as an upper bound. In both experiimportant. Another class of works consider changes to appli
ments, we follow the planned trajectory, which was fed as in- cations to support vehicular networks. For example, Thégiu [
put to the controller. In 802.11b testbed, wireline replima transforms interactive Web search into one-shot request an
alone and wireline plus mesh replication performs 2.45x and response process to reduce access delay. While Thedu still
2.7x that of no replication, respectively. In 802.11n testb ~ requires connecting with the remote server, we replicate co
the throughput of wireline and wireline plus mesh replica- tent to APs to eliminate the Internet bottleneck. The third
tion is 7.3x and 7.8x that of no replication, respectivelgisT  class of work studies protocol issues. [19] proposes fast co
demonstrates the effectiveness of replication. Moredkier, ~ nection establishment, scripted handoffs, and prefegcatn
benefit increases with wireless capacity. There is a gap be-APs using HTTP range requests. Finally, there are a few
tween the performance of VCD and full replication, since Works on vehicle-to-vehicle communication. For example,
the Internet bottleneck prevents complete replicationllof a SPAWN [18] uses gossip for file transfer and CarTorrent [28]
the required files. extends SPAWN and is implemented in a testbed. [15] treats
vehicular networks as a special type of DTNs and focuses
on leveraging vehicle to vehicle (V2V) communication to

go ripliéatign - 1Wireless replication - deliver content. As mentioned earlier, inspired by the anal

ar ar ar ar H H H

AP1 0 0 Upload 780 pkts Download 780 pkts,20 filgs ySIS, In .[8]’ we leverage APs a§ the rendezvous pom_ts .fOI‘
APZ | 0 0 Download 1159 pkts, 20 filds _ Upload 1159 pkis replicating content among vehicles. We focus on optimiz-

Table 5: Comparison between performance with and ing content replication given limited wireline and wiredes

without vehicular replication.



resources, which has not been studied earlier.

Disruption tolerant networks: Vehicular networks can be
considered as a special type of disruption tolerant netsvork
(DTNs) and benefit from advances in this area. Different
from traditional DTNs, which focuses on communicating
with a specific node, we focus on content delivery. Epi-
demic routing [46] was initially proposed for DTNs, where
any two nodes exchange messages whenever they meet. Rél0l
cently, utility-based replication was proposed, whereasod
replicate data over the best contacts according to sonity util
(e.g., mobility history [27] or delay [5]). We leverage both
utility-based optimization for wireline/mesh replicatiand
target wireless replication to maximize effectiveness.

Mobility and demand prediction: There is a large body
of literature on mobility prediction, ranging from coarse-
grained prediction in cellular networks (e.g., [1, 2, 29, 30 i
38]) to more fine-grained prediction in Wi-Fi networks (e.g. 1l
[36, 42]). In particular, [43] compares various predictors ~ [19]
literature and suggests that 2nd order Markov with a simple [20]
fallback mechanism (when there is no prediction) performs 1]
well. [23] builds mobility profiles for users and statistiga [22]
predicts the next social hub the user will visit. [36] builds |55
the user’s customized mobility models on the devices them-
selves, and uses a second order Markov model to predict thd?”
connection opportunity and its quality of the device with an [25]
AP. [32] uses the past history to identify opportunities for [26]
media sharing in ad hoc DTNs. These works focus on low
speed (e.g., personal mobility). Vehicles travel muchefast
and make mobility prediction more challenging. 2
In this paper, we do not study demand prediction, since it
is a well-researched topic (e.g., [37, 6]). We can leverhge t [29]
existing work to enhance the effectiveness of VCD. [30]

10. CONCLUSION (31

We present the VCD system that provides high-bandwidth 2
content access to vehicular passengers by utilizing oppor-[33]
tunistic connections to Wi-Fi access points along the road. 34
VCD predicts which APs a vehicle will encounter in the fu- [35]
ture and proactively pushes content to these APs by lever-
aging both wireline and wireless connectivity. Using trace
driven simulation and Emulab-based emulation, we show
that VCD is capable of downloading 3-6X as much content
as no replication and 2-4X as much content as wireline or [38]
vehicular replication alone. The benefit further increases  [3q
the ratio between wireless and wireline capacity increases
We further develop a full-fledged prototype of VCD using 4]
two testbeds: a 9-AP 802.11b testbed and a 4-AP 802. 11n[ 21]
testbed. Our experience suggests that VCD is an effective
approach for vehicular content distribution. 4
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