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Abstract — Wireless spectrum is a precious resource and
must be allocated and used efficiently. The conventional spec-
trum allocation lets a government (e.g., FCC) sell a given
portion of spectrum to one provider. This is not only restrictive,
but also limits spectrum reuse and may lead to significant
under-utilization of spectrum. In this paper, we develop a novel
truthful double auction scheme to let any resource owner (e.g.,
a cellular provider), who has spare spectrum at a given time,
sell to one or more providers that need additional spectrum
at that time. Spectrum auction is fundamentally different
from conventional auction problems since spectrum can be
re-used and competition pattern is complex due to wireless
interference. We propose the first double auction design for
spectrum allocation that explicitly decouples the buyer side and
seller side auction design while achieving (i) truthfulness, (ii)
individual rationality, and (iii) budget balance. To accurately
capture wireless interference and support spectrum reuse, we
partition the conflict graph so that buyers with strong direct and
indirect interference are put into the same subgraph and buyers
with no or weak interference are put into separate subgraphs
and then compute pricing independently within each subgraph.
We develop a merge scheme to combine spectrum allocation
results from different subgraphs and resolve potential conflicts.
Using conflict graphs generated from real cell tower locations,
we extensively evaluate our approach and demonstrate that it
achieves high efficiency, revenue, and utilization.

I. INTRODUCTION

Motivation: The explosive growth and dynamic nature of
wireless traffic make it costly for a single wireless service
provider to buy enough spectrum based on a long-term contract
to sustain its peak load, which may only last for brief periods.
This inefficiency of long-term spectrum allocation, prevalent
today, motivates the need for dynamic spectrum access —
wherein a wireless service provider only obtains sufficient
spectrum to support the “typical” traffic demands and can (i)
purchase additional spectrum on-demand from other providers
to satisfy higher traffic demands, or (ii) offer the spare spec-
trum to other providers for profit when there is lower demand.

While dynamic spectrum access is attractive and it is now
technically feasible to dynamically change the spectrum to use
on-the-fly [5], [19], [25], an important open issue remains —
how to allocate spectrum across multiple parties. It is essential
to have an incentive framework that can effectively foster
collaboration while guarding against dishonest behaviors.

Design objectives: We aim to achieve the following properties
for the spectrum double auction, where the first three properties
are necessary economic properties for a good double auction
and the remaining three quantify the effectiveness of the
auction: (i) Truthfulness: Bidders cannot benefit from bidding
differently from their true valuation; (ii) Individual rationality:
Bidders get non-negative utilities, i.e., sellers are paid no less
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than their asks and buyers do not pay more than their bids; (iii)
Budget-balance: The total amount paid to the sellers is no more
than the total amount received from the buyers. This prevents
the auctioneer, who runs the auction, from losing money;
(iv) Efficiency: It is the difference between the sum of the
winning buyers’ valuations and the sum of the winning sellers’
valuations. To achieve good efficiency, the goods should be
sold to the buyers that value them the most and be sold
by the sellers that value them the least. [14] shows that it
is impossible to simultaneously achieve truthfulness, budget-
balance, and maximum efficiency. Thus in this paper we aim
to achieve truthfulness, budget-balancing, and high (but not
maximum) efficiency. (v) Revenue: It is the total amount of
payment from all winning buyers. A winning buyer may pay
different amount from its bid, depending on the auction design.
A higher revenue gives sellers stronger incentive to participate.
(vi) Utilization: Unique to spectrum auctions, we seek to
maximize the spectrum utilization by allowing as many buyers
as possible to reuse the spectrum. We quantify the utilization
based on the total number of buyers that are assigned spectrum.

Challenges: Designing a good double auction for spectrum
reuse poses the following significant challenges. (i) How to
accurately capture wireless interference among the buyers?
This is necessary to support spectrum reuse, where multiple
buyers may share the same spectrum. Achieving spectrum
reuse is the key property that distinguish spectrum auction
from traditional auction, which assumes all entities compete
against each other for an item. (ii) How to design a truthful
double auction? Simply applying truthful auctions for the
sellers and for the buyers does not lead to a truthful double
auction. It is critical to ensure participants cannot gain by
manipulating the interaction between the two sides. This is
especially challenging in a spectrum auction because the buyer
side auction differs from the seller side in that we need to take
into account wireless interference between buyers in order to
support spectrum reuse. (iii) How to maximize the spectrum
utilization while preserving budget balance? To maximize
spectrum utilization, we need to sell as many channels as
possible and let them be concurrently used by as many buyers
as possible. However, this goal conflicts with budget balance,
as selling more channels means a lower average price and
a possibly lower revenue (as the price is determined by the
loser’s price). Lower revenue means that fewer channels may
be sold due to the need to preserve budget balance. We will
further elaborate these challenges in Section II-B.

Limitations of existing spectrum auctions: The advan-
tages of double sided spectrum auctions have attracted lots
of research attention. Despite considerable previous work,
significant challenges remain. In particular, some works fail
to support spectrum reuse while preserving truthfulness [20],
[23]. The first work that satisfies all economic properties
and supports spectrum reuse is TRUST [27]. It follows the
classic McAfee’s double auction [12], which jointly computes
the auction result for buyers and sellers. However, to apply



the classic design, it makes several simplifications that could
sacrifice performance. Specifically, it randomly groups non-
interfering buyers and requires buyers in the same group to
win or lose together. So the fate of a group is determined
by the lowest bidding buyer. A group can lose even if it has
many high bidding buyers, which results in unfairness and
low efficiency. It also enforces uniform pricing for all buyers
that win the same channel, in which case the price can be
no more than the lowest bid of these buyers. This limits total
revenue and further hurts the auction performance because few
channels can be traded in order to preserve budget balance.
Several follow-up works share similar problems [24], [2].

Our approach. We develop a novel double auction for
dynamic allocation of spectrum (DA?) in Section III. DA?
uses separate designs of the buyer and seller side auctions
while achieving truthfulness, budget balance, and individual
rationality. Compared to the classic joint design strategy (i.e.,
McAfee [12]) used by most existing spectrum double auction
designs [27], [24], a unique advantage of our separate auction
designs for the buyers and sellers is that this enables flexible
combinations of different buyer/seller side designs. This signif-
icantly increases the design space and can immediately benefit
from future enhancement to auction design on either buyer or
seller side. Moreover, it also allows different properties of both
sides to be captured accurately, which is especially important
for spectrum double auctions since the buyer side is much
more complicated due to wireless interference. We show how
to combine the design of two sides to ensure budget balance
and identify the necessary properties of a single side auction
in order for the double auction to be truthful.

DA? consists of three components: (i) seller side auction
design, assuming N channels sell, (ii) buyer side auction
design, assuming N channels sell, and (iii) determining the
number of channels, IV, to sell to satisfy budget balance.

Among them, the buyer side design is the most challenging
component due to complicated wireless interference. We pro-
pose to partition the graph into subgraphs based on the wireless
interference among the buyers. Graph partition enables us
to compute allocation independently in each subgraph and
then combine the results. Moreover, within each subgraph,
in order to support frequency reuse, buyers are grouped into
independent sets, where buyers in the same independent set do
not interfere. The performance is sensitive to the independent
set construction. The independent sets should be constructed
in a bid-independent fashion to ensure truthfulness [27]. Graph
partition reduces the randomness of independent set construc-
tion, and allows us to better capture the different competition
patterns in each subgraph to achieve higher revenue by com-
puting prices in each subgraph independently.

We identify important requirements og a good partition
algorithm: cutting as few edges as possible while yielding
balanced partitions. These two requirements correspond to
the well known metric, called the Normalized Cut. We apply
spectral clustering [15], which is an effective approximation
algorithm to minimize the Normalized Cut. We then use the
group bid definition in [24] to sort the groups and determine
potential winners in a subgraph. We develop a novel pairwise
merge procedure to combine the allocation results from sub-
graphs and preserve truthfulness. It merges the results from two

subgraphs at a time and reduces the efficiency and revenue
loss due to conflicts between subgraphs. In addition, we
discuss practical issues of applying DA? in Section IV, such
as incorporating quality of service, leveraging prior knowledge
about bid distributions and how to avoid starvation.

We extensively evaluate our approaches using conflict
graphs generated from real cell tower locations derived from
a major US cellular provider (Section V). Our results show
that DA? consistently yields high efficiency, revenue, and
utilization, and out-performs the existing approaches by up
to 62x in efficiency, 126x in revenue, and 65x in utilization.

II. BACKGROUND
A. Spectrum double auction

A double auction implements a double-sided market. The
market consists of three types of entities: buyers, sellers and
an auctioneer. Buyers submit bids which specify the item they
are interested in and their maximum willingness to pay. Sellers
submit asks which include the item they offer for sale and
their asking price. The auctioneer evaluates the bids and asks
and determines the winners and the items that are traded. The
auctioneer also determines the amount to pay to the sellers and
the amount to charge the buyers. All payments from buyers are
paid to the auctioneer and the auctioneer pays the sellers. A
buyer’s utility is then the difference between his valuation of
the item he wins and the amount he pays to the auctioneer.
Similarly for the sellers.

Seller: 1
Channel: 1

=7
v

Auctioneer

Seller: 2
Channel: 2

Seller: n
Channel: n

Bids

Fig. 1. Double Auction: Spectrum Market

Figure 1 shows a spectrum double auction. Here the sellers
are spectrum resource owners (e.g., cellular service providers
or organizations that own spectrum resource). The buyers
can be any entities that need more spectrum. To capture
interference relationships among the buyers, measurement can
be conducted by the buyers, sellers, auctioneer, or a third
party to derive the conflict graph. We can leverage existing
approaches to either actively or passively measure the conflict

graph (e.g., [17], [1], [18], [26]).

After winning the auction, buyers then start using the new
spectrum by switching some of their clients onto the new
spectrum. Techniques in intra-cell handover (e.g., [3], [4])
and spectrum virtualization (e.g., [5], [19]) can be applied to
efficiently and seamlessly switch users to the new spectrum.

Basic auction settings: We consider a double-sided spectrum
market where the goods of interest are wireless channels
(frequency bands) and the players are spectrum resource users,
such as cellular service providers. We assume a seller offers
one channel for sale and a buyer seeks to buy one channel as in
previous works [27], [24]. Multi-unit double spectrum auction
is more challenging and is left for future work. A seller can sell



to any buyer in the market. The auction runs periodically to en-
able spectrum reallocation in a dynamic fashion. The frequency
of the auction depends on the volatility of demands and the
cost of running an auction, which may include gathering inputs
for the auction, computing the auction solution, disseminating
auction outputs, and collecting payments.

Critical value is the lowest value that a buyer can bid and
still win. Monotonic allocation means that a buyer who wins
by bidding = will still win if it bids y where y > z. The
definitions are similar for the seller side.

B. Challenges in Spectrum Double Auction

Challenges in supporting spectrum reuse: Spectrum auction
is fundamentally different from a conventional auction in that
an item in a conventional auction can be won by one buyer
whereas spectrum can be reused by multiple buyers as long as
they do not interfere with each other.

Wireless interference dictates how spectrum can be reused,
so it has significant impact on the design of spectrum auction.
Conflict Graph [8] is commonly used to capture the interfer-
ence relationship between the buyers, where each node in the
conflict graph denotes a buyer and there is an edge between
two nodes if the corresponding buyers interfere.

Wireless interference has the following major impacts on
the spectrum auction. First, conventional auctions do not allow
an item to be bought by multiple buyers. However it is
important to support spectrum reuse in spectrum auctions to
maximize the utilization of the spectrum resource. Second, the
conflict graph significantly complicates the competition among
buyers. A buyer only directly competes with nearby interfering
buyers, but at the same time a buyer’s competition is coupled
with other buyers’ competition depending on their interference.
Specifically, a buyer’s auction outcome not only depends on
its competitors’ bids, but also depends on its competitors’
competitors’ bids and so on. This significantly complicates the
auction design.

Challenges in designing a truthful double auction: As
mentioned in Section I, it is challenging to achieve truthfulness
in a double auction. Combining a truthful seller side auction
and a truthful buyer side auction does not necessarily lead
to a truthful double auction. This is because the single sided
auctions do not need to consider budget balance, whereas in a
double auction a participant may try to improve his utility by
manipulating the point where budget balance is achieved and
changing the number of traded items.

C. Related works

There are a few previous works on this topic. The pio-
neering and most representative work is TRUST [27] thus we
focus on TRUST in our discussion. TRUST follows the classic
McAfee’s double auction design [12] to achieve the economic
properties. To use McAfee’s design, TRUST divides buyers
into multiple independent sets or groups, where the buyers in
each independent set do not interfere with each other. For each
group, TRUST computes the group bid as the lowest bid in the
group multiplied by the group size. Then McAfee is applied
by treating each group as one virtual buyer. As in McAfee,
all winning groups pay the group bid of the group in the

sacrificed match. Within the group, all members share the price
equally. TRUST enables spectrum reuse by grouping buyers,
and achieves truthfulness by applying McAfee’s design. It has
several weaknesses:

e Low efficiency: The independent sets are constructed in
a random fashion. It is possible that a high bidding buyer
loses just because it is put into a bad independent set. As
a result, the final winning groups can be suboptimal.

e Low revenue: The group bid only depends on the lowest
bid in the group, and all higher bids are ignored. So the
group payment is significantly limited by the lowest bid,
which can be much lower than other bids in the group.

e Unfairness: TRUST uses uniform price for the buyers that
are assigned the same channel. But buyers assigned the
same channel may have different interference (competition)
patterns. The uniform pricing forces some winners to pay
for other winners’ competition.

There have been several works on improving TRUST [22],
[6], [24] and alleviating some problems in TRUST. However,
they are still similar in spirit in that they still use random
independent sets and enforce uniform price for buyers assigned
the same channel, so they still suffer from low efficiency
and poor fairness. For example, [22] improves on TRUST to
sacrifice fewer buyers. However, it uses a single sided auction,
a much simpler problem. [6] builds on [22], but focuses on
the privacy aspect instead of auction design. [24] proposes
a new definition of group bid which achieves better auction
performance and preserves all economic properties. So our
evaluation also compares with [24].

There are also some spectrum double auction designs
that are not based on TRUST. However, they are either not
truthful or do not support general conflict graphs. For example,
[20] proposes an online double sided spectrum auction where
buyers can come and request for resource at different times.
It assumes a complete conflict graph (i.e., everyone interferes
with everyone else), which simplifies the competition pattern
and disables spectrum reuse. [23] proposes a single unit
double auction with discriminatory pricing, but their auction
is not proven to be truthful. A few works consider practical
issues in spectrum auction. [2] proposes a double auction
similar to TRUST, but takes buyers’ frequency preference into
consideration while forming groups. This is complementary
to our work. [21] focuses on incorporating market locality.
In addition, [7] proposes a double auction based approach
for mobile data offloading, but it does not consider wireless
interference as in spectrum auctions.

III. OUR SOLUTION

A. Overview

Design strategy: We develop a novel double auction for
dynamic spectrum allocation. It consists of the following three
parts: (i) seller side auction design, assuming /N channels sell
(ii) buyer side auction design, assuming N channels sell, and
(iii) a procedure to determine the number of channels N to
sell to satisfy budget balance.

To the best of our knowledge, our solution represents the
first double auction design for spectrum allocation that explic-
itly decouples the buyer side and seller side auction design



while achieving (i) truthfulness, (ii) individual rationality, and
(iii) budget balance. Previously, seller and buyer side auctions
were designed jointly in order to satisfy all three properties
(e.g., McAfee’s principle used in TRUST and all its variants).

Decoupling seller side and buyer side design is crucial for
dynamic spectrum allocation for two reasons. First, using sep-
arate auction designs for the buyers and sellers, we no longer
require groups of buyers that share the same channel to be
formed in advance to match with sellers one by one. Instead we
can make more informed decisions based on the bids to select
a stronger set of winners and improve efficiency, revenue, and
utilization. Second, it enables flexible combination of different
buyer/seller side designs. This is especially beneficial in our
context since the two sides have rather different properties. For
example, it is commonly assumed that a seller can sell to any
buyer in the auction. Competition between sellers is similar to
traditional auctions, whereas the buyers’ competition is much
more complicated due to complicated wireless interference.

Proof strategy: The key to our ability to design two sides sep-
arately is a new proof strategy for establishing truthfulness in
a (decoupled) double auction. Formally we have the following
theorem:

Theorem 1: A double auction for dynamic spectrum al-
location is truthful if the following two conditions hold: (i)
both seller side and buyer side auctions are truthful when the
number of channels that are sold, denoted as [V, is fixed, and
(i1) no seller or buyer can improve its own utility by unilaterally
modifying its own bid and causing /N to change.

The correctness of this theorem is easy to see: When a
bidder lies but does not change N, he cannot gain because
both sides are truthful when N is fixed. When a bidder lies
and changes N, it can not gain either because no seller or
buyer can improve its own utility by unilaterally modifying its
own bid and causing /N to change. Thus a bidder never gains
by lying and the auction is truthful.

We use the following theorem from [9] to assist our design:

Theorem 2: If every losing bidder (i.e., unallocated) in an
auction pays nothing, it is truthful if and only if its allocation
algorithm is monotonic and it uses critical value as payment.

Design overview: Below is an overview of our design. The
buyer side auction is complicated since buyers’ competition is
determined by the complex conflict graph and buyers without
interference can share a channel. Therefore this paper focuses
on the buyer side auction design.

The seller side auction is a standard auction, since a seller
can sell to any buyer in the auction. Therefore we can apply
uniform pricing or VCG for single-unit auction. We prove it
satisfies the properties specified in Theorem 1.

To determine the number of channels IV, we start by setting
N as the total number of channels that sellers collectively
have. We run seller and buyer side auctions separately, and
then check if budget balance is satisfied (i.e., the payment
collected from the buyers is no less than the payment to be
paid to the sellers). Note the payment is determined by our
seller side and buyer side auction design described below and
not the sum of winning bids/asks. If budget balance is already

satisfied, we terminate. Otherwise, we decrease N by 1, and
run the auction again. By reducing N, it requires buyers to
bid even higher to win and sellers to ask even lower, thus
reducing the gap between revenue and payment. We stop when
the budget balance is satisfied and N channels are then traded.
This procedure always terminates because budget balance is
satisfied when N drops to 0. Thus we guarantee budget
balance, which is formally stated in the following theorem.

Theorem 3: Our design satisfies budget balance.

Note that McAfee’s design is a special case of our frame-
work, where both the buyer side design and the seller side
design use uniform pricing. This shows that our framework
is general and under our framework it is possible to design
a double auction that satisfies all three economic properties.
Below we describe our design in detail.

B. Seller side design

The seller side design is a standard auction since there
is no need to consider interference among sellers. Thus we
simply use the traditional uniform price design. Assuming N
channels are sold, the N sellers with the lowest asking prices
win, and they each get paid at the N + 1-th seller’s asking
price. This uniform price design is known to be truthful in a
single unit auction when N is fixed. Moreover, since sellers
are paid higher than their asking price, individual rationality is
satisfied. In Appendix, we further prove theorem 4 to ensure
this design is truthful when applied to a double auction.

Theorem 4: This seller side design, when applied to double
auctions, does not allow a seller to unilaterally manipulate NV
(i.e., the number of channels that can be sold) and gain.

C. Buyer side design

Overview: To ensure fairness and achieve high revenue, it
is important for the buyer side auction to explicitly take into
account the fact that different buyers face different levels of
competition depending on their locations and interference pat-
tern. Existing approaches do not account for such individuality
and apply uniform pricing, where all buyers that share the
same channel pay the same amount. This is not only unfair,
but also reduces revenue since a buyer’s payment is limited by
the lowest bids among the buyers that share the channel.

Our key idea is thus divide-and-conquer. Specifically, we
first partition the conflict graph into subgraphs. Independent
sets are then constructed within each subgraph and pricing
is computed independently in each subgraph. We then design
a merge strategy to combine the winners from different sub-
graphs while preserving truthfulness. Note that when comput-
ing the allocation within each individual subgraph, we ignore
the inter-subgraph conflict edges. During the merge procedure,
we need to add back the inter-subgraph conflict edges. As
a result, some winners from individual subgraphs may have
to be removed due to the inter-subgraph conflict edges. The
challenge is how to do so without compromising truthfulness.

Benefit of graph partition: Before going to the details of our
design, we first show the two major benefits of graph partition:
(1) better independent set construction, and (ii) higher revenue
due to the removal of the uniform pricing constraint.
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Fig. 2. Benefit of graph partition

We illustrate these benefits using an example in Figure 2. It
shows a conflict graph involving 6 nodes. We ignore the seller
side in this example and assume we want to allocate 1 channel.
To see the benefit (i), Figure 2(a) shows the groups constructed
by TRUST: G1: (a, e, f) and G2: (b, ¢, d). The group bids of
G1 and G2 are 20 x 3 = 60 and 10 x 3 = 30, respectively,
which are the lowest bid times the group size. So in TRUST
G1 wins and pays the first losing group’s bid, which is 30.
The efficiency on the buyer side is the sum of all winning
buyers’ bids, which is 20 + 20 + 30 = 70, and the revenue is
30. Now if we treat each subgraph independently as shown in
Figure 2(b): a, b and ¢ win in their subgraphs and they each
pays the first losing buyer’s bid, which are 10, 20, and 30,
respectively. Then we get the efficiency of 20 4 30 + 40 = 90
and revenue of 10 + 20 + 30 = 60, both of which are much
higher than TRUST.

To demonstrate the benefit (ii), we consider TRUST hap-
pens to construct the same groups as ours, namely G1': (a,
b, ¢) and G2': (d, e, f). The group bids of G1’ and G2’ are
20 x 3 = 60 and 10 x 3 = 30, respectively. So G1’ wins, and
pays the first losing group’s group bid, which is 30 and still
lower than the revenue in our scheme, because the revenue of
TRUST is limited by the uniform pricing (i.e., the lowest bid
times the number of buyers). The difference in revenue may
have even bigger impact when we take the seller side into
consideration. If the revenue is lower than the amount sellers
should get, some channels cannot be traded because it violates
budget balance, which further reduces efficiency and revenue.

Essentially partitioning allows us to decouple nodes with
no or weak interference into different subgraphs to improve the
independent set construction and avoid unnecessary coupling
in different buyers’ pricing even though they interfere with
different sets of nodes. Note the example shows a disconnected
conflict graph but the idea also works on realistic, densely
connected conflict graphs as shown in Section V.

Design questions: Several important questions should be
addressed in order to realize the benefits of graph partition:

e How to partition the graph to retain important interference
relationships within a subgraph and decouple nodes with
weak and no interference into different subgraphs?

e How to compute auction results within each partition?
e How to merge the auction results from different partitions
to achieve truthfulness and budget-balance?
Below we answer each question in turn.,

1) Graph partitioning: Given a graph A, a graph parti-
tioning algorithm strives to find a partitioning Ay, As, ..., Ak
that minimizes a certain objective. For the purpose of dynamic
spectrum allocation through double auction, a good graph

partitioning algorithm should balance two key requirements:
(1) the number of inter-subgraph edges should be small, and
(i1) different subgraphs should be similar in size. If a subgraph
is too small (e.g., having only one buyer), a small number of
channels can satisfy all its buyers, leaving no losing buyers and
no revenue from the subgraph. On the other hand, a too big
subgraph may lead to poor independent set construction and
poor performance due to the uniform pricing in each group.

Two common objectives have been proposed for graph
partition: RatioCut and Normalized cut (NCut). The former
normalizes the weights of the edges on the cut by the number

. . .. . e k W(A;,A;)
of vertices in each partition (i.e., minimizes ) ;_, —a
where W (A;, A;) is the total weight of all edges between A;
and the remaining nodes A;, and |A;| denotes the number of
vertices in A;). The latter normalizes the weights of the edges
on the cut by the sum of node degrees in each partition (i.e.,

minimizes Zle %, where vol(A;) denotes the sum
of degrees of all nodes in the partition A;). It is easy to see
ﬁ and m are minimized when either the number of
vertices or the sum of node degrees within each partition is
the same. This captures our goal of finding balanced cuts while

minimizing the weights of edges on the cut.

Minimizing either RatioCut or NCut is a NP-hard problem.
Spectral clustering is a well-known effective scheme to find
approximate solutions to this NP-hard problem (see [11] for
a nice tutorial). There are many variants of spectral clus-
tering [11], [13], [15]. In this paper, we use the Meila-Shi
algorithm [13] to minimize NCut, which is the recommended
algorithm in [11] due to its excellent performance and solid
mathematical foundation. Let W be the adjacency matrix with
weight w;; on its i-th row and j-th column. Let D be the
degree matrix, which is a diagonal matrix with the node degree
di =3 j wij on the diagonal. The Meila-Shi algorithm takes
the eigenvectors corresponding to the k smallest eigenvalues
of the normalized graph Laplacian matrix Lyw = I — D~'W
(where I is the identity matrix) and then invokes another
algorithm (e.g., k-means clustering [10]) to cluster points by
their respective k£ components in these eigenvectors.

To automatically determine the number of clusters to create
(i.e., k), we follow the suggestion of [11] and apply the
eigengap heuristic. Specifically, let A\; < Ay < --- be the
eigenvalues of the normalized graph Laplacian matrix Lrw
sorted in an ascending order. The eigengap heuristic computes
all the eigengaps (i.e., difference between two successive
eigenvalues) and chooses the number of clusters & such that
(Mg+1 — Ag) is the largest eigengap.

Note that when the conflict graph is disconnected, we
first divide it into multiple connected components since nodes
in different connected components have no competition at
all. Then we apply spectral clustering to each connected
component to further partition the connected component.

2) Allocation within a subgraph: When a good partitioning
is found, we first compute the allocation in each subgraph
independently. For that we can apply existing algorithms,
such as TRUST. To further improve the performance, in our
implementation we apply the allocation algorithm proposed
in TDSA [24]. It is similar to TRUST but it defines a new
group bid and allows a subset of a group to win while the rest



for both A and B

Find all winning buyers on the cut

Merge buyers sharing the same channel into a virtual buyer

Put all winning buyers into Candidate
for each i in Candidate

Let degree; be number of i’s edges on the cut
flag = a feasible reordering function reorder(z) can be found,
where x can be any channel currently used in B.
Note reoder(x) is only defined for channels that need to be replaced.
8 while flag is false

NN R W —

9 Sort C'andidate in a decreasing order of degree;

10 Drop Candidate[0]

11 Update effective degrees

12 flag = a feasible reordering function reorder(x) can be found
13 for each winning buyer ¢ in B

14 if reorder(assignp(t)) is defined

15 assignp (i) = reorder(assignp(i))

16  assignap = assigna U assignp
17 return assignap

Fig. 3. Pseudo code for bid-independent merge.

lose. Consider a group k and assume its members are sorted
in a decreasing order of their bids. Denote members as 1 to
m, and the group bid as max{b; x i|i = 1...m}. This group
bid quantifies the maximum potential payment of a group if
we allow a subset of this group to win. For each subset, the
maximum potential payment is the lowest bid in the subset
times the size of the subset. Thus this group bid finds the
highest potential payment by enumerating all possible sizes of
the subset. For example, if a group contains bids (1, 3, 5), its
potential payment could be either letting 5 win alone, which
corresponds to payment of 5 X 1 = 5; or letting 3 and 5 win
together, which yields a payment of 3 x 2 = 6; or letting all of
them win, which yields a payment of 1 x 3 = 3. The maximum
payment achieved is 6 in this example.

To allocate N channels, the groups with the top N group
bids win. A winning group is then charged the first losing
group’s group bid and all members in the group share the price
equally. If a member ¢ cannot afford its fair share (i.e., b; i is
smaller than the first losing group bid, which is possible due to
TDSA-based group bid computation), ¢ does not win and the
price is shared among the remaining group members. Since the
winning group has a higher group bid than the losing group,
there always exists a subset of the group such that they all bid
no lower than their fair share. This automatically guarantees
individual rationality on the buyer side. We prove that this
procedure finds the critical value of a buyer under our partition
and merge framework in Theorem 6 in the Appendix.

We also make a temporary assignment by sorting the
channels in an increasing order of their asking prices and
assign the first channel to the first group and second channel
to the second group, and so on. However, this assignment is
subject to change in the merge procedure below.

3) Merge strategy: Next we describe how to merge alloca-
tion results from different subgraphs. We merge two subgraphs
at a time. The input of merge is the winners selected from
the two subgraphs, including their channel assignment. The
purpose of the merge is to find one way to reorder the channel
assignment in one subgraph such that winners on the cut do
not have conflict. If such reordering does not exist, certain
nodes on the cut may be dropped. We propose the following
bid-independent merge strategy to select a node to drop. We
prove this merge strategy preserves truthfulness.

Figure 3 gives the pseudo-code of the merge procedure. In
lines 1-4, we preprocess the buyers on the cut by combining the

buyers that share the same channel on each side into one virtual
node, because these buyers are always assigned the same
channel no matter how the assignment is reordered. Lines 5-6
compute the effective degree for each buyer i, which denotes
the number of edges that ¢ has on the cut. This information
is used in lines 7-12 to determine which buyer to drop when
a feasible reordering does not exist. We search for a feasible
reordering by enumerating all possibilities. The cost of this
procedure is acceptable because its complexity depends on the
number of channels (which is small) instead of number of
buyers. We drop buyers in a decreasing order of their effective
degrees in order to minimize the number of dropped buyers
and reduce loss in efficiency and revenue. Every time a buyer
is dropped, the effective degrees of the remaining nodes are
updated. We iterate until a feasible reordering is found, and
then use it to derive a joint assignment for the union of A and
B. Intuitively, our partition and merge framework preserves
truthfulness because both operations by themselves are bid-
independent and there is no incentive to lie. It is still possible
to lie to change the allocation in subgraphs, which changes
the input of the merge operation, but a buyer cannot gain this
way because of the use of critical value pricing. We formally
prove truthfulness in Theorem 5.
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Fig. 4. A simple example of the merge procedure

Figure 4 shows an example of merging two subgraphs. Let
A and B denote the left and right subgraphs, respectively,
and cl and c2 denote the channels to be allocated. The labels
next to nodes represent the channel assignments to the nodes.
Figure 4(a) shows the assignment to the winners in each
subgraph. If in one subgraph, some winning buyers on the
cut share the same channel, they should be merged to form
a virtual buyer before we proceed. There are no such buyers
in this case, so we go to the next step by adding back the
removed edges. In Figure 4(b), the three previously removed
edges are added back and there is conflict between nodes 3
and 4 and conflict between nodes 2 and 7. In Figure 4(c), the
algorithm tries to reorder the assignment in B by swapping cl
and c2 but there is still conflict between nodes 3 and 7. So in
Figure 4(d) node 3, which is the node on the cut with highest
degree, is dropped to resolve the conflict.

Theorem 5: DA? is truthful.

Proof: To prove this theorem, we first prove Theorems 6
and 7 in the Appendix, and then apply Theorems 1 and 4. H

IV. PRACTICAL ISSUES

Next we discuss practical issues involved in applying D A2,



Reputation score: The auctioneer maintains a reputation
score r; (0 < r; < 1) for both buyers and sellers to reflect
their quality. For a seller, the score can be based on his
channel quality. For a buyer, it can be based on whether this
buyer uses wireless resource carefully without causing extra
interference to other buyers. The higher the score, the better
the reputation. When computing the allocation, we divide every
seller’s asking price by its reputation score so that it is harder
for a seller with a bad reputation to win. We then multiply
a seller’s reputation score with its critical value to compute
its final payment. Since the critical value is computed based
on the reputation weighted asking prices and is greater than
a winner’s asking price divided by its reputation, individual
rationality is achieved. Similarly, for buyers we can multiply
their bids by their reputations when computing the allocation,
and then divide its critical value by its reputation score to get
the real price they need to pay to ensure individual rationality.
Truthfulness is preserved as the reputation scores do not
depend on bids. Moreover, budget balance is still satisfied
because we determine N based on the the real selling price
and payment (after multiplying/dividing the reputation scores).

Leveraging prior knowledge: The independent set con-
struction is critical to the performance. Our solution mitigates
the randomness but the construction can be further improved
if the auctioneer has prior knowledge, e.g., distributions of
buyers’ valuations. Specifically, we can maximize the expected
valuations in winning groups, which directly relates to auction
efficiency by formulating the construction as a maximum
weight independent set problem (MWIS). The expected val-
uation of an independent set is simply the sum of expected
valuations of all the members. The MWIS problem on conflict
graphs can be approximated in polynomial time, e.g., [16].
When the error of prior knowledge with respect to the actual
bids is up to 10%, the efficiency improves by 16% over our
current scheme on average; and when the error increases to up
to 50%, the average improvement becomes 6%.

Avoiding starvation: Our conflict graph partition is designed
to minimize the number of inter-subgraph edges, while balanc-
ing the subgraphs. However in extreme cases it is still possible
that well connected nodes are on the cut of two subgraphs.
These nodes may consistently be dropped even if they win in
their subgraph due to their large degrees and get starved. To
address the starvation issue, we can introduce randomness in
the merge procedure by dropping a buyer with a probability
proportional to its degree. So well connected nodes are more
likely to be dropped, but they are not always dropped and
will not starve. This new procedure is still bid-independent, so
truthfulness is preserved.

V. EVALUATION

Simulation setup: In order to experiment with realistic
conflict graphs, we use the location data of cell towers from a
large US service provider. We consider there are buyers at each
tower/location looking for spectrum resources at that location
and that they do not collude. We construct the conflict graph
for three cities: New York City (NYC), San Francisco (SF)
and Chicago. In each city, we pick a grid (approximately 5km
by 5km) encompassing the downtown area and use all the
cell towers in the grid to generate the conflict graphs. We

consider that two nodes conflict if the inter-node distance is
smaller than 500m, which is considered a typical cell range.
We also vary the range to see how the network density impacts
the performance. We only present results with conflict graphs
generated based on real locations, but we also experimented
with random conflict graphs and observed similar benefits.

We use 5 sellers by default, and also vary the number
from 3 to 7 to see the impact. The small number of sellers
is consistent with the reality where there are only a few large
spectrum owners. The number of winning sellers is constrained
by the conflict graph and increasing the number of sellers
further has little impact on the result. For the sellers’ asks
and buyers’ bids, the absolute values do not matter and only
their ratio matters. We generate the buyers’ bids drawn from a
uniform distribution between 0 to 100. We also use a uniform
distribution to generate the asking prices. Since each grid can
cover at most 25 buyers and we assume buyers and sellers
value the spectrum resource similarly such that the price from
the two sides compare fairly, we generate the asking prices to
be between 0 to 2500 such that the mean is 25 times of the
mean of a buyer’s bid. We also scale the sellers’ asking prices
to see its impact in our evaluation.

We compare our scheme with TRUST and TDSA [24] in
terms of the following three metrics: (i) Efficiency: This is
widely used to quantify auction performance. It is defined
as the difference between the sum of all winning buyers’
bids and the sum of all winning sellers’ asks. (ii) Revenue:
It is defined as the total payment from all winning buyers.
Revenue is different from efficiency on the buyer side since
revenue depends on critical values whereas efficiency depends
on bids. A higher revenue gives a stronger incentive for sellers
to participate. (iii) Utilization: This is defined as the number of
winning buyers. This is a unique metric in spectrum auctions
because the spectrum resource is precious but reusable, and a
higher utilization means more winners can utilize the spectrum
at the same time, which is preferred. Utilization cannot be
derived from efficiency since the winning buyers may not be
the ones with the highest bids and it is impossible to tell the
number of winning buyers just from the efficiency value. For
every setting, we run 20 times with different random asking
prices and bids, and report the average.

Performance at different locations: We first compare the
performance in all three cities. As shown in Figure 5, the
performance varies significantly across cities. Specifically, SF
gives the highest values in all three metrics while Chicago
gives the lowest and NYC lies in between. The performance
difference is primarily due to difference in the number of
buyers. SF has 16% more buyers than NYC, while the number
of buyers in Chicago is only around half of that in NYC. In
general, more buyers tend to generate higher revenue, thus
more channels can be traded. Among all the schemes, DA?
achieves the best performance in all three metrics and for all
three cities. It improves efficiency to 22x to 62x of that of
TRUST, revenue 27x to 126x, utilization 42x to 65x. TRUST
does not perform as well because it is limited by the uniform
pricing and the lowest bid in each group. As a result, its
revenue is low and only few channels can be sold. TDSA
performs better than TRUST because it searches for the best
subset of a group to win and is thus more robust to the lowest
bid in a group. D A? still outperforms TDSA by 51% to 101%



in efficiency, 57% to 115% in revenue, and 47% to 93%
in utilization. This is because DA? (i) decouples pricing in
different subgraphs to better capture the competition, and (ii)
combines the top groups from different subgraphs to reduce

randomness and find a set of winners with higher valuations.
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Fig. 5. Performance at different locations
In the remaining evaluation, we use the NYC conflict graph

as default and study the impact of other parameters.

Impact of the number of sellers: Next we vary the number of
sellers. Figure 6 shows that as the number of sellers increases,
more channels become available and the price reduces due to
increased seller-side competition. As a result, more channels
can be traded and all performance metrics improve. DA?
consistently out-performs the existing approaches. Its improve-
ment is highest when there are only 3 sellers, in which case
they achieve as much as 3x times the performance of TDSA
in all three metrics. TRUST does not sell a single channel
in the 20 runs with 3 sellers because its revenue is low and
it is more challenging to sell a channel while ensuring budget
balance when the number of sellers is small. When the number
of sellers increases to 7, DA? out-performs TRUST by 27x
in efficiency, 71x in revenue, and 23x in utilization; and out-
performs TDSA by 85% in efficiency, 97% in revenue, and
86% in utilization.
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Impact of network density: Next we vary the network
density by changing the buyer communication range from
250m to 750m. A longer range indicates more competition

among buyers and fewer buyers can reuse a channel. As shown
in Figure 7, the benefit of our scheme increases with the range
since it is harder to sell a channel and a good auction design
becomes even more important. For example, when the range is
250m, our scheme out-performs TDSA by 29% in efficiency,
55% in revenue, and 30% in utilization. The corresponding
numbers for a range of 750m are 152%, 172% and 173%. The
performance trend in TRUST is less clear because TRUST
heavily depends on the random independent set construction.
However, under all three ranges, DA? achieves 14x the effi-
ciency, 22x the revenue, and 13x the utilization of TRUST.
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Impact of bid distribution: To understand the impact of
bid distribution, we scale all the sellers’ asking prices by a
factor between 0.5 to 1.5 after the initial ask is drawn from
a uniform distribution between O and 2500. This changes
the ratios between sellers’ valuation and buyers’ valuation. A
higher asking price requires a higher revenue from the buyer
side in order to sell the channels, and is more challenging for
an auction. This trend is shown in Figure 8. Moreover, in all
cases DA? outperforms the existing schemes. The benefit of
DA? increases with the asking price. For example, when we
scale the asking price to 1.5 times, our approach out-performs
TDSA by 3 times in all three metrics. The improvement over
TRUST is even larger, as TRUST does not sell anything and
all its metrics are 0.
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VI. CONCLUSION

In this paper, we develop a truthful spectrum double auction
to allow different providers to buy and sell spectrum to each
other dynamically. We explicitly decouple buyer side design
and seller side design to capture the different properties of
the two sides. To overcome the challenges due to complex
interference patterns on the buyer side, we partition the conflict
graph to decouple nodes with no or weak interference while
putting nodes with strong interference in the same subgraph
so that group bids and critical values can accurately capture
the real competition among different buyers. We design a novel
merge strategy that combines the auction results from different
subgraphs to achieve truthfulness. Using real cell tower topol-
ogy traces from a large US wireless provider, we show that
our approach achieves high efficiency, revenue, and fairness,
and significantly out-performs the existing approaches.
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APPENDIX
Proof of Theorem 4:

Proof: To change N by lying, a seller ¢ needs to change the point where
the budget balance is satisfied, which requires the seller to change the total
selling price. Let S(IV) be the total selling price when N channels sell and
R(N) be the total revenue. Let U;(x, N) be the utility of seller ¢ when it
asks x and IV channels sell. Since the seller side design is truthful, we have
U;(vi, N) > U;(x, N), where v; is i’s true valuation and z can be any value.
We consider the following cases:

(1) ¢ is a winning seller: ¢ cannot change N as long as it still wins. If it
changes N and now loses, its utility does not improve.
(2) 7 is a losing seller. We consider the following cases:

e Lie by asking higher. Obviously, N cannot increase in this case, since
S(N) does not reduce for any N. 4 is a losing seller in the original case
s0 it is not within the top N. i cannot become the top N by asking higher.

e Lie by asking lower. We only consider when 7 becomes a winner, because
its utility is still O if it still loses. We consider the following cases.

e Case 1: N does not change: ¢’s utility cannot improve because
Ui(vi, N) > U;(z, N).
e Case 2: N reduces to M: ¢ is not in the top M when it bids truthfully,

so U;(v;, M) = 0. Thus i either receive 0 utility or negative utility
because U;(v;, M) > U;(z, M)

e Case 3: N increases to M. We consider the following cases:

4 is in the top M when it bids truthfully, and the M 4 1-th asking price
does not change. So S(M) does not change. In the original case, only
N channels sell, so we know S(M) > R(M). So budget balance is
not satisfied and this case cannot happen.

i is not among the top M sellers when it asks truthfully. So
Ui(vi, M) = 0. i’s utility cannot increase in this case because
Ui(vi, M) > U;(z, M). [ |

Theorem 6: Our buyer side design is truthful when [V is fixed.

Proof: It is easy to see that the design is monotonic, i.e., if a winner
wins at v, it still wins if it bids b > v, as bidding higher does not reduce
the group bid and all other decisions are bid-independent. Next we verify that
the price we charge is the critical value. Specifically we charge a winner the
first losing group bid in its subgraph divided by k, if & members of its group
bid higher than that. We find the maximum k, so no more members can be
admitted and still afford the fair share. To prove it is the critical value, we
should show (1) a buyer still wins if it bids higher, and (2) a buyer loses if
it bids lower. (1) holds because the buyer’s group bid (which is greater than
k times of the critical value) is still higher than the first losing group and the
merge process is bid-independent. To see (2), we consider three cases: (i) k
remains the same, (ii) k increases, and (iii) k decreases. For (i), if a buyer
bids lower than that value, it cannot afford its fair share for the same k even
if its group still wins. (ii) cannot happen because other members’ bids do
not change and no new members can afford the fair share. In (iii), the fair
share is even larger as k decreases, so the buyer does not win either. Thus
a buyer never wins if it bids lower than the price we charge. Therefore the
buyer side with bid-independent merge is truthful when N is fixed according
to Theorem 2. ]

Theorem 7: Bid-independent merge based allocation does not allow a
buyer to unilaterally change N and gain.

Proof: The proof has same structure as the proof to Theorem 4 but from
a buyer side. ]



