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Abstract—Recently there has been an increasing deployment of conten alistic — for example, a CDN such as Akamai would, in general,

distribution networks (CDNSs) that offer hosting services b Web content
providers. CDNs deploy a set of servers distributed througbut the Internet
and replicate provider content across these servers for btr performance
and availability than centralized provider servers. Exising work on CDNs
has primarily focused on techniques for efficiently redire¢ing user requests
to appropriate CDN servers to reduce request latency and bahce load.
However, little attention has been given to the developmentf placement
strategies for Web server replicas to further improve CDN peformance.

In this paper, we explore the problem of Web server replica phcement in
detail. We develop several placement algorithms that use wikload infor-
mation, such as client latency and request rates, to make iafmed place-
ment decisions. We then evaluate the placement algorithmssing both syn-
thetic and real network topologies, as well as Web server trees, and show
that the placement of Web replicas is crucial to CDN performance. We also
address a number of practical issues when using these algtiims, such as
their sensitivity to imperfect knowledge about client workoad and network
topology, the stability of the input data, and methods for oltaining the in-
put.

Keywords—World Wide Web, replication, replica placement algorithm,
content distribution network (CDN).

|. INTRODUCTION

havepartial replicas and direct clients to different replicas de-
pending on what content is accessed — it enables us to project
into the future when falling storage costs might make it itelas

for each replica to be aompletereplica. In such a setting, a
client may well be directed to a single replica for most oradll

its accesses.

We evaluate the performance of the various placement algo-
rithms by simulating their behavior on synthetic and redt ne
work topologies and several access traces from large commer
cial and government Web servers. As far as we know, this is
the first experimental study on this subject. We also address
a number of practical issues when using these algorithms on-
line in a content distribution network, and study the sénsit
ity of the placement algorithms to imperfect informatioroab
client workload characteristics. Based upon our resuksgon-
clude that a greedy algorithm for solving the Web servericapl
placement problem can provide content distribution nekaor
with performance that is close to optimal. Although the dsee

With the explosive growth of the World Wide Web, popula?lgorithm depends upon estimates of client distance amdl loa

sites have a competitive motivation to offer better sertoa@eir

clients at lower cost. To address the need, there has been ar?

creasing trend toward outsourcing content distributiondm-

Web sites receive an enormous share of Internet traffic. él-hggedmtlons, we find that it is relatively insensitive toas in

these estimates and therefore is a viable algorithm forruseei
neral Internet environment where workload informatioth w
always be imperfect.

mercial hosting services such as Akamai [2], Exodus [12§; Di The rest of the paper is organized as follows. In Section I,

ital Island [11], etc. Existing work on CDNs has primarily-fo

cused on techniques for efficiently redirecting user retsues

appropriate CDN servers to reduce request latency anddmlaf)
load. However, little attention has been given to the degwel
ment of placement strategies for Web server replicas thédur

0 i ;
+ and performance results. In Section VII, we discuss a number

we survey previous work. We describe graph theoretic foamul
tions of the replica placement problem in Section I, anesent
number of placement algorithms in Section IV. Then in Sec-
tion V and Section VI, we describe our simulation methodglog

improve CDN performance. Placement strategies are impiort&f practical issues when using the algorithms. We then colecl

because appropriate placement of server replicas benefits

tent providers by reducing latency for their clients, andddis
ISPs by reducing bandwidth consumption.

d’n Section VIII.

Il. PREVIOUS WORK

In this paper, we propose several algorithms that can aue®ma There has been a considerable amount of research on Web
the server placement decision. More specifically, we cansicperformance, ranging from Web workload characterizat®jn [
the following scenario. A popular Web site aims to improvit], [23] to developing techniques to enhance Web perforcean

its performance (e.g., reducing its clients’ perceivednay) by

Two primary techniques for enhancing Web performance are

pushing its content to some hosting services. The problém iscaching and replication. Previous work has studied many as-
chooseV! replicas (or hosting services) amoigpotential sites pects of caching and replication, such as object routingsabb
(N > M) such that some objective function is optimized undelistribution, object selection, inter-replica or intawepy com-

a given traffic pattern. The objective function can be miuzinnj
either its clients’ latency, or its total bandwidth consuiop, or
an overall cost function if each link is associated with a.cos

munication, and policy management [24]. However, lessatte
tion has been given to the placement of Web proxies or Web
replicas. The only prior work on the placement problem that w

In our study, we assume that each client uses a single repkeew of is [16] by Liet al. They approached the proxy place-
(of course, multiple clients can use the same replica). et ment problem with the assumption that the underlying networ
words, a client gets all of its content from the same replicipologies are trees, and modeled it as a dynamic progragnmin

So our analysis of replica placement focuses ortréiic load
generated by the clients while ignoring what content isabtu
downloaded by clients. While our assumption is not entirely

problem. Although an interesting first step, this approaah d
number of limitations. First, the Internet topology is ndtee,
and the paper does not evaluate how well the dynamic program-



ming algorithm based on tree-topologies works for Intefiket there are no costs for opening centers. Instead, a nudber

topologies. Our evaluation using real traces and topoto@ie is specified as an input that is an upper bound on the number

Section VI) shows that, although the assumption of a treeltopcenters that can be opened. Recently, Charikar and Guha [6]

ogy makes it possible to obtain an optimal solution to the@la gave a 4-approximation algorithm for this problem in thenicet

ment problem when the constraints are satisfied (i.e., ha&lto space.

ogy is actually a tree, and the clients can only direct retgues ) )

to proxies on its path toward the Web server, but not to gipli>- Capacitated Versions

proxies), in a more general setting it does not perform abagel  The formulations of the facility location problem and min-

the heuristics that work in general graph topologies. Meeeo imum K-median problem given above do not constrain the

its high computational complexityX(N31/?) for choosingl  amount of service that can be provided at any center. There ar

proxies amongV potential sites) prevents its practical use igapacitated variants that do constrain the service captaen-

topologies with thousands of nodes. ters, requiring that each facility serve no more requests the
Jaminet al. examined the placement problem for Internet incapacity defined at that location. The worst-case perfooman

strumentation in [14]. They investigated both graph th&orebound for the capacitated variants are considerably wiiese t

methods and heuristics for instrumenting the Internet taiab for the non-capacitated versions [8], [7].

distance maps. They showed that an Internet distance map seDepending on different constraints and cost functions to be

vice based on their placement techniques (including theeplaoptimized, replica placement can be formulated as eithemnan

ment heuristics that do not require full topological knotide) capacitated/capacitated facility location problem, onacapac-

can offer useful hints for server selection by clients. itated/capacitated minimudi-median problem.

I1l. GRAPH THEORETICAPPROACHES D. Summary

In this section we review two graph theoretic approachess than the rest of this paper, we consider the formulation of the
can help us determine the number and the placement of Welzapacitated minimudy -median problem. That is, we restrict
replicas given the network topology and the users’ demainds.the maximum number of replicas, but do not restrict the numbe
the following, we use the terms facilities, centers, andicap of requests served by each replica. We believe that thiséa-a r
synonymously. We study two variants of the center placemesinable formulation because increasing the number ofcaepli
problem: one is the facility location problem, and the oibéhe  sites is significantly more difficult than increasing the asity
minimum K -median problem. Both problems are NP-hard [22bf a site. The maximum number of replicas is usually given a
However, there are constant-factor approximation algoritfor priori for cost and administrative reasons, whereas thacap
the metric variants of both problems, where the metric vésia ity constraint on the replica can be overcome by adding more
require that the distance functieris non-negative, symmetric, machines?!
and satisfies the triangle inequality. We also ignore the cost of placing replicas for the following
reasons. If our objective function is to minimize networkta
width consumption, we can ignore the replication traffie.(i.

The facility location problem is defined as follows. Giverthe traffic associated with managing the replicas, distirigu
a set of locationg at which facilities may be built, building a content to the replicas, etc.) since it is typically ordermag-
facility at location: incurs a cost off;. Each clientj must be as- nitude smaller than the traffic generated by users’ requEats
signed to one facility, incurring a cost dfc;; whered; denotes thermore, since most content distribution networks (eAga-
the demand of the nodg andc;; denotes the distance betweemai) that replicate content have their own private highespe
1 andj. The objective is to find a solution (i.e., both the numberetworks, the bandwidth consumption incurred during tipdire
of facilities and the locations of the facilities) of the nmmum cation is usually not a major concern. On the other hand,rif ou
total cost. objective function is to optimize another performance ioetr

There have been a number of approximation algorithms diich as users’ perceived latency, then it is unclear how-to in
veloped for this NP-hard problem in the metric space. Thieugcorporate the replication cost (in the unit of network baittiia)
out the paper, g-approximation algorithnis a polynomial-time into the objective function in a different unit (such as timehe
algorithm that always finds a feasible solution with an ofdyec case of client latency).
function value within a factor of of optimal. The best approx- As in [16], we fix the origin server to be one of the replica
imation algorithm known today was developed by Charikar &ites. However, including or excluding the original serngeamot
Guha [6], who gave a 1.728-approximation algorithm. a fundamental choice and has little impact on our results.

A. Facility Location Problem

B. MinimumK-Median Problem IV. PLACEMENT ALGORITHMS

The minimumK -median problem is stated as follows. Given In this section, we present a number of algorithms for sglvin
n points, we must seledk” of these to be centers (facilities),the minimumi -median problem. The objective is to minimize
and then assign each input pojnto the selected center that isthe total cost of all the requests. We define the cost of a stque
closesttoit. If locatiory is assigned to a centgrwe incur a cost from nodei to node; as the distance between the two nodes,
djc;;. The goal is to select th& centers so as to minimize the | , , _

M f the assianment costs. The main difference between If the capacity of repllcas_ needs to be taken into accountcaveuse the

sumo . g o e - ] Egﬁacnated minimunk’-median problem formulation, and the algorithms de-
K-median and facility location problems is that, +median, scribed below will still apply.



where the distance can reflect any performance metric we wantSuper-Optimal Algorithm

to optimize, such as latency, hop counlts, or the.economic COSAg mentioned earlier, the minimuri -median problem is
of the path between two nodes (assuming there is a ost 8ssQ@i_harg. Computing the exact optimal solution is therefoce

ated with the links on th,e path). The algorithms work the SarE‘ca)mputationally intensive to be useful in practice. To e
regardless of what metric is used. how well the algorithms described above perform, we compute
A. Tree-based Algorithm a (fairly t_ig_ht)_ Iovyer bound on the cost of any feasible s_'miut

of our minimization problem. We do so usingsaper-optimal

Lietal. proposed a placement algorithm in [16] based on thyorithm based on Lagrangian relaxation with subgradient
assumption that the underlying topologies are trees, antt Mgmization [21]. As its name suggests, the solution produzg
eled it as a dynamic programming problem. The algorithm Wags algorithm may be better than optimal because it may aot b
originally designed for Web proxy cache placement, and it fgasiple. Nevertheless, it serves as a useful data poiroior
also applicable for Web replica placement. At a very higlelev parison.

they divide a tree/” into several small tree$;, and show thlat More specifically, thé<-median problem can be stated as the
the pest way of pIaC|ng> 1 proxiesin the tred is /to placet; following integer program, where the 0-1 variablg i € N,
proxies the best way in each small ttEewhere); t; = . The jhgicates whether the locatidiis selected as a center, and the 0-

algorithm is shown to find an optimal placement when the UAvariabler;;, i, j € N, indicates whether locatighis assigned
derlying topologies are trees, and clients request fronptbRy i, the center at:

on the path toward the Web server, that is, clients cannot T minimize
quest from a sibling proxy. However, these two assumptions
can prune possibly better placement choices. As shown in Sec

ijen dicijzij (1)
subjectto ), .y zi; = 1foreachj € N, (2)

. . . . i < y; foreachi,j € N, 3
tion VI, the optimal solutions under these assumptions ate u % =Y ok J € E4g
ally not as good as the solutions found by the greedy and hot . ?EEN{yO’ I} ]:OI‘ eachi,j € N, (5)
spot heuristics (without the assumptions), which are desdr Y " L '
Iar;er in this sectgon P ) Yi € {-O’ 1}, for eachi € N. (6) . .
' The set of constraints (2) ensures that each locatienV is
B. Greedy Algorithm assigned to some centee N, the set of constraints (3) ensures

o ) ] that, whenever a locatiohis assigned to a centérthen a cen-
The basic idea of the greedy algorithm is as follows. Sugsy must have been openediatind (4) ensures that at mdst

pose we need to choosé replicas amongV potential sites. anters are open.

We choose one replica a_t a t_ime._ In.the first iteration, yve—gval We then apply Lagrangian relaxation to the integer program-

ua_te e_e}ch of thé\f_potenual ;ltes individually to determm(_e 'tsming problem, where the constraints (2) are weighted byimult

suitability for hosting a replica. We compute the cost assogjiers and placed in the objective function as follows:

ated with each site under the assumption that accesses from a

clients converge at that site, and pick the site that yidldsdw- _ e , o

est cost. In thg second iteration,pwe search for aéecon’ntaepl Lieyu) = D djeijri =3 (3w —1)

site which, in conjunction with the site already picked,|gs

the lowest cost. In general, in computing the cost, we assumérhen we use the subgradient method given in Hlal. [25]

that clients direct their accesses to the nearest repliea ¢ine to compute the super-optimal bound. It is an iterative pdoce

that can be reached with the lowest cost). We iterate until whkeat begins with a specified multiplier valu& and generates a

have choser/ replicas. sequence of multiplier valueg’. On iterationk the Lagrangian

problem is solved with multipliers*~!, and a new value/*

C. Random is determined from/*~! and the Lagrangian solution using the
The random algorithm is oblivious to client workload, andule in [25]. At each iteration an upper bound on the optimal

randomly choosed/ replicas amongV potential sites from a value is available. In order to obtain the lower bound in our

uniform distribution. To improve performance, we exectie t minimization problem, we use the subgradient method-dn

algorithm several times — in our simulations, we execute ovi@ our simulations, we use 1000 iterations for 100 nodesltepo

10 times, and pick the random assignment that yields thedbwgies, and 200 iterations for all other topologies. To geghtér

i,JEN JEN i€EN

cost. bound, for a specific instance of problem we use three random
values to initialize the multiplier”, and obtain a super-optimal
D. Hot Spot bound from each value af’. The maximum of the three is used

The hot spot algorithm attempts to place replicas near tAe the lower bound.
clients generating the greatest load. It sortsthpotential sites
according to the amount of traffic generated within theiinsc
ity. It places the replicas at the tald sites that generate the Table I lists the computational time of various algorithros f
largest amount of traffic. We defind’s vicinity as the circle selectingM replicas amongV potential sites. If only a hand-
centered atd with some radius. In our simulations, we varyul of potential hosting sites is available, the cost of tioene
the radius from 0 to the maximum distance between any pairmitationally complex algorithms may not be significant. How
nodes in the graph, and report the best performance ovéreall éver, in our analysis, we consider clusters defined by addres
radii tested. prefixes, which will be explained in Section V-B, as potentia

F. Summary



Tree-based [16]] Greedy Random | Hot Spot Trace ID | Web Site | Period Duration
O(N3M?) O(N2M) | O(NM) | N%+ min(NlognN + NM) MSNBC | 8/3/99 - 8/5/99 9 am - noon
TABLE | MSNBC | 9/27/99 - 10/1/99 | All day

MSNBC | 10/7/99 - 10/14/99| All day
COMPARISON OF COMPUTATIONAL TIME OF VARIOUS ALGORITHMS ClarkNet | 9/4/95 - 9/10/95 All day

NASA 7/1/95 - 7/31/95 All day

TABLE Il
ACCESS LOGS USED

) B W N~

replica sites. In this casé is on the order of 100,000 (the num-
ber of address prefixes in the Internet), so clearly the caapu
tional complexity of the replica placement algorithm beesm i
very significant. To reduce the computational cost, we atesi (€S We Use are representative for the Internet topologjed,
only the top, in terms of requests generated, few hundrefgswor OUr goal is to make the generated topologies as rich as possi-
thousands of clusters. Since these top clusters generateofob!€ by using multiple models with a wide range of parameters.
the traffic, as shown in Section V-B, ignoring the requesisnfr AS We will show in Section VI, the performance of the place-
unpopular clusters has little effect on the results. ment algorithms is similar across different network modseid
In the following sections, we will compare the above aParameters. S
gorithms with the super-optimal algorithm using the realbWe We also construct a simplified model of the actual Inter-

traces and network topologies. net topology using BGP routing data from a set of seven
geographically-dispersed BGP peers. Each BGP routing ta-
V. SIMULATION METHODOLOGY ble entry SpeCifieS an AS patIA,Sl, ASQ, s ,ASn, to a des-

. . tination address prefix blockA(S; corresponds to the BGP
To evaluate the performance of the various algorithms prgaer andAs, corresponds to the destination address prefix

sented in this paper, we simulate the behavior of the alyost block). We construct an AS-level topology graph of the net-
on a variety of network topologies and Web workloads. In thig using the AS paths. The AS pathS, AS,- -, AS,

section, we discuss the network topologies and Web worklogaqs edges between adjacent nodes (AS's) in the path (e.g.

that we use in our evaluations. We then describe the perfgpgghASg), (AS2, ASy), (AS2, AS3), ete.). We map individ-
mance metric that we use as a basis for comparing the algQy cjients and address prefix blocks to their correspondiBg
rithms. nodes in the topology graph, and assign the distance between
two nodes as the AS hop counts between the two nodes.

While not very detailed, an AS-level topology at least par-

In our simulations, we use both randomly generated netwdislly reflects the true topology of the Internet. Furthermae-
topologies and the real Internet topologies derived fromPBQent study [17] has shown the AS hop count of a path is a decent
routing tables. indicator of the path’s proximity, reliability, and staibjl

We generate two types of random network topologies: ran-
dom trees and random graphs. The primary reason for studyfg\Web Workload
performance on the tree structure is to determine how thie opt To evaluate the algorithms on realistic traffic patternspse
mal tree-based algorithm compares to the other algoritiims. the access logs collected at the MSNBC server site [19], dur-
generate random trees, we wrote a simple program that takegthree periods, as shown in Table Il. MSNBC is a large and
3 parameters: the total number of nodes, the maximum distapopular commercial news site in the same category as CNN [9]
between any two nodes, and the maximum degree of a tree negiel ABCNews [1], and is consistently ranked among the busi-
Starting from the root node, we recursively create randoiln chest sites in the Web [18]. For diversity, we also use the gace
dren until the total number of nodes specified is reacheduin @ollected at ClarkNet [10] and NASA Kennedy Space Center in
simulations, we use 100-node and 300-node trees, and weRetida [20] during 1995. Table Il shows the detailed trate i
the maximum distance to 10 and the maximum node degregdemation. We use the workload in one day or 3 hours (for the
10, 15, and 20. For each parameter setting, we generate thxagust 1999 traces) to parameterize one simulation setup.
different trees. We use the access logs in the following way. First, we use

To generate random graphs, we use the GT-ITM internetwatie approach proposed by Krishnamurétyal. in [15] to clus-
topology generator [5]. In particular, we use three netwodd- ter the Web clients that are topologically close togethdreiil
els: pure random, Waxman, and Transit-Stub. In the pure ranethod is based on the information available from BGP rgutin
dom model, vertices are distributed at random locations intable snapshots, and they show that it significantly outperé
plane, and an edge is added between a pair of vertices with pra heuristic that assumes a fixed-length, 24-bit networkxrefi
ability p. In the Waxman model, the probability of an edge from To use their method for clustering clients, we obtained the
u to v is given by P(u,v) = ae~% L) where0 < o and complete BGP routing tables from seven geographically and
08 < 1 are parameters of the modeéljs the Euclidean distancetopologically diverse ISPs [13]. For each client IP addieske
from » to v, and L is the maximum distance between any twaccess logs, we find its best matching prefix in the union of the
nodes. The Transit-Stub model generates hierarchicahgiiay routing tables. All the clients whose IP addresses havedimes
composing interconnected transit and stub domains; séédi26 best prefix match belong to the same cluster. Figure 1 plets th
further detalils. number of requests generated by each cluster. As we camsee, i

We use a wide range of parameters for each network modék 8/3/99 MSNBC trace, the top 10, 100, 1000, and 3000 clus-
For each parameter setting, we generate three differealdtop ters account for about 23.55%, 44.86%, 77.96%, and 93.97%
gies. We do not claim that these network models and paramequests, respectively. The other server traces haveasined

A. Network Topology



sults, though the NASA traces are a little more concentrdted ~ Figure 2 shows the cumulative distribution (CDF) of the rel-

top 10, 100, 1000, and 3000 clusters account for about 29.678tve performance of the algorithms on tree topologies. &s w

51.96%, 85.39%, and 97.37% requests, respectively. can see, the greedy algorithm and the tree-based algorithim p

100 preNBC eI . form the best, with the greedy algorithm slightly better. eTh

22 &”E%‘&%{%:fg Rl hot spot algorithm has a performance in between these two and

o the random algorithm, which clearly has the worst perforoean

60 We quantify the differences in relative performance of tlypa

50 rithms in the next set of graphs.

40 Figure 3 shows the minimum (best case), maximum (worst

% case), and median values of the relative performance oé thles
gorithms over all simulation runs, where the tree-baseskdy,
random, and hot spot algorithms are numbered algorithm 1, 2,

% requests generated

20
10%
0

1 10 100 1000 10000 100000

#Clusters 3, and 4, respectively. On average, both the greedy and tree-
Fig. 1. The CDF of the number of requests generated by the \usters Dased algorithms are within 5% worse than the super-optimal
defined by address prefixes. algorithm for 100-node trees, and within 20%-30% worse than

For a network topology of a specific size, say 100 nodes, Wee super-optimal algorithm for 300-node trees. The hot spo
choose the top 100 clusters in the traces and map them rapdoatgorithm has a relative performance that is about 30% worse
to the nodes in the graph. Assigning a clusierto a nodepP; than the super-optimal algorithm. The random algorithm per
in the graph means that the weight of the nétiés equal to the forms considerably worse than the others. This is also etide
number of requests generated by the cluéter For each net- from its CDF curve shown in Figure 2, which has a very grad-
work topology and access log, we make three different randat@l slope. For the three graph sizes, 50% of the simulatios ru
assignments from the clusters to the nodes in the graphs. ~ for the random algorithm have a relative performance ofastle

2.5. Note also that the relative ranking of these algoritlisns
C. Performance Metric consistent across all the tree topologies and Web traceesites

To compare the performance of the algorithms on the var-The reason that even in tree topologies the tree-based algo-
ious network topologies and access logs, we useréfative rithm is not the best performer is that it assumes clientocén
performance of the algorithms as a metric. We define the reHirect requests to replicas on the path toward the Web server
ative performance as the ratio between the cost of the fieasibhis assumption eliminates some potentially better plasgm
solution found by the algorithm to the cost determined by tifdoices.
super-optimal algorithm. The relative performance is gorap .
priate metric, since it reflects the cost we want to minimiee B- Random graph topologies

normalization step is to show how far away we are from the We also evaluate the performance of the placement algesithm
super-optimal, and does not alter the metric to be minimizesh random graphs generated by the GT-ITM topology generator
The smaller the value of the relative performance, the bétee As with the tree topologies, we run each algorithm in hundred
algorithm performs. A relative performance of 1 implies #te of simulation runs and examine the performance of the algo-
gorithm finds an optimal solution, but the optimal soluti&ed rithms across all simulation runs. We vary the number ofirepl
not necessarily have a relative performance of 1, sinceupers cas to place from 1 to 80 for the 100-node graphs, from 1 to 100
optimal solution may not be achievable. for the 300-node graphs, and from 1 to 200 for the 1000 and
3000-node graphs. For every graph size, we use three network
models with different parameters, as described in Sectidn V

In this section, we evaluate the performance of the variowe plot the CDF of the relative performance of the different
placement algorithms on a variety of synthetic and realistit- placement algorithms across all simulation runs in Figui&/d
work topologies using the Web server traces. show the minimum, maximum, and median of the relative per-
formance across all simulation runs using errorbars in i
where the algorithms are numbered as in Figure 3.

First, we evaluate the performance of the placement algo-Before describing the results in the graphs, we make the fol-
rithms on the tree topologies. More specifically, we run eadbwing observations. First, the tree-based algorithmireguhe
placement algorithm in hundreds of simulation runs and exammderlying topology to be a tree. For our evaluation of tlee+r
ine the performance of the algorithm across all simulatiorsr based algorithm on general graphs, we generate three random
Each simulation run is parameterized by (i) the Web sereeetr spanning trees for a given graph, where all the spanning tree
(ii) the network topology, (iii) the mapping of clusters todes are rooted at the original server node. Then we run the al-
in the simulation topology, and (iv) the number of replicas tgorithm on each of the trees. The three adjacent errorbars fo
pick. We evaluate the algorithms on 100-node and 300-nodé&jorithm ID = 1 in Figure 5 correspond to the performance
trees using Web traces 1 and 3 listed in Table Il. We use thr@atained using the three different spanning trees. Seased,
different random assignments from the clusters defined by ahly report the performance of the tree-based algorithr 66-
dress prefix to the nodes in the trees. We then vary the numbede and 300-node topologies since it takes too long to run on
of replicas to place from 1 to 80 for the 100-node trees, amut fr topologies with 1000 or more nodes. For example, it takes ove
1 to 100 for the 300-node trees. 11 hours to place 5 replicas among 1000 potential sites on an

VI. SIMULATION RESULTS

A. Random tree topologies
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Fig. 2. The CDF of relative performance across all simufatims of the place-
ment algorithms on tree topologies.
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Fig. 3. A summary of the performance of the placement algorit on tree
topologies using errorbars. The lower and upper bounds tf& mark
on each errorbar correspond to the minimum, maximum, andamede-
spectively, of the relative performance of the correspogdilgorithm. The
tree-based, greedy, random, and hot spot algorithms gpeatgely num-
bered 1, 2, 3, and 4 in the graph.

UltraSparc machine with a 500 MHz CPU and 4 GB of mem-
ory. As a result, we conclude that the tree-based algorithm i
not practical for making real-time placement decisionsmhe
network size grows to thousands of nodes. In comparison, for
the same scenario, the greedy, hot spot, and random algarith
take less than 1 minute to run.

Compared to the super-optimal algorithm, the greedy algo-
rithm performs within a factor of 1.5 in the median cases, and
around a factor of 4 in the maximum cases. These results are
significantly better than all of the other algorithms, irdihg
the tree-based algorithm. Another interesting obsermasithat
the hot spot algorithm is often better than the tree-basgatal
rithm on the general graphs. The random algorithm, as before
performs the worst: its median performance is around 2.5 and
its maximum relative performance is as high as 11-13.

C. Internet topology

We also evaluate the performance of the placement algasithm
using a model of Internet topology derived from BGP routimg t
bles. In this case, we use AS hop counts as the distance metric
between two connected nodes. As shown in Figure 6 and Fig-
ure 7, the ranking of the various algorithms stays the sanre as
the randomly generated graphs. From the best to the worstin o
der are the greedy, hot spot, tree-based, and random algwarit
However, the performance difference between the algostism
smaller than that in the randomly generated graphs. This-is b
cause the number of AS hops between any two nodes is not as
widely distributed as the distance in the generated topedog
The number of AS hops varies from 0 to 6 for the 100 top AS’s
(in terms of the number of requests generated to the MSNBC
Web server during the periods under study), and from 0 to 9 for
the 1000 top AS’s. In contrast, the distance between any two
nodes in the generated topologies can be different by oafers
magnitude.

D. Effects of imperfect knowledge about input data

The above simulation results are based on the assumptibn tha
we have perfect knowledge of the underlying topologies aed t
number of requests generated from each node. In practice, we
do not have perfect knowledge about these inputs, but omy ha
rough estimates. In this section, we examine how imperfect
knowledge about the input data affects the placement decisi
In particular, we want to find out if the placement decisiogdth
on inaccurate information will still be useful, and how ferper-
formance deviates from that obtained using perfect knogded

Our approach is to salt the input data with random noise of
uniform distribution, and vary the amount of noise added t
input data. This is done in two ways: (1) we perturb the volume
of requests from a client by up to a factor of 2 (i.e., if theetru
number of requests i¢, the perturbed value ranges betw%en
and2d), and (2) we perturb the distaneg;, between two nodes
i andj by up to a factor of 4 (i.e., the corrupted distance ranges
between= and4c;;). We feed the salted inputs to the place-
ment algorithms, and compute the cost after applying theepla
ment decision to the actual input data. As before, we ustévela
performance as the metric, defined as the ratio between #te co
of the feasible solution found by the algorithms using thega
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14 40 tables, and use the perturbed topology information in thees!
ment algorithm. Figure 10 shows the performance resulthéor
greedy algorithm normalized by the performance of the super
optimal algorithm using perfect topology information fdret
10/8/99 MSNBC server trace. As we can see, the performance
L& I } I 1 of the greedy algorithm hardly changes as more edges are re-
0 ! 2 ° ¢ ° ' 2 3 ‘ * moved. In particular, even when the edge removal probwglislit

Algorithm ID Algorithm ID
as high as 50%, the relative performance of the greedy atgori
Fig. 7. A summary of the relative performance of the placenagorithms 9 ? P 9 y

on the model of the real Internet topology using errorbarise Bwer and stays within 2.6. The insenSitiVity of the greedy algoriMhe
upper bounds, and the X mark on each errorbar corresponcetnihi-  edge removal partly comes from the fact that the only topplog

mhum, maximudmi anld mer:iianiﬂr]esnectigely, dof the (fje'atiVE‘gﬂgT?]nce of information that the greedy algorithm (and all other alforis
the corresponding algorithm. e tree-based, greedyprandn ot spot _ : : : : -
algorithms are respectively numbered 1, 2, 3, and 4 in thehgra except the, tree bas_ed algorlthm) .requwes IS the dIStamaxn

. . _ . When testing the distance matrix in more detail, we find that t
inputs to the cost determined by the super-optimal algarits- gistance matrix is not sensitive to edge removal. In pagicu

ing the actual inputs. . . removing up to 5% of the edges in the graph does not change
Figure 8 shows the minimum, maximum, and median of thge distance matrix in our experiments.

relative performance over all the values of the error ratebe Real Internet topologies of 1000 nodes & Trace 1, 2, 3
distance and load. As we can see, the performance deviation i :
small. In particular, even with the salted error as high atof 25
of 4, the cost of the greedy algorithm is in most cases within a 2 H I l
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factor of 2 of the super-optimal algorithm when using perfec
knowledge. This is also evident from Figure 9, which plots th

Relative performance

relative performance of the greedy algorithm versus thargin 0s
the input. As we can see, as the error increases, the perficema ol S —
degrades only slightly. Edge removal probabilty
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1 1 Fig. 10. A summary of the relative performance of the gredggrithm during
1 " edge removal using errorbars. The lower and upper boundk then X
10 " mark on each errorbar correspond to the minimum, maximuchnaedian,

respectively, of the relative performance of the greedwpritigm.
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l E. Stability of input data

8 8
6 6
4 4
i l o Jf The above section studies the effect of imperfect knowledge
o s ° t 2 oo g ° on the placement decision. One of the major reasons that we
Fig. 8. The relative performance of the placement algorstton the graph _do not hav_e perfeCt_ knOW|ed_ge about the mput data is that the
topologies using errorbars, with both the load and distanéermation input data is changing over time. When making the placement
salted with random noise. decision for the next 24 hours, ideally we would like to give
the placement algorithms the load and network informatoon f
Real Internet topologies of 1000 nodes & Trace 1, 2, 3 the next 24 hours. However, in practice, we can only use the
Relatve perormance @ past information to predict the future load and network iinfo
a5 | I l . mation. How good such a prediction is can significantly dffec

the performance of the placement algorithm. In this sectien
investigate this issue in detail.
Our evaluation is done in two parts. In the first part, we as-
° sume the topology information is accurate but the load infor
o T Error in distance info. nr:ation is paseﬁl on the prediction.kln palrticular, Wg cpr_rsid:z
: . . . the scenario where we want to make a placement decision for
Flg'\,\?it'h ;ﬁigﬁq’aﬁﬁie‘f'g”"mame of the greedy algorithmeninpLt salted 10/1/99 by using the workload for the previous few days. We
predict the load generated from a cluster by averaging &d lo
The above perturbation technique on the topology is madiring the previous days, where: varies from 1 to 4.
useful when our performance metric is the propagation delay To perform this evaluation, we use Trace 2 listed in Table I,
the economic cost of the paths. If our performance metric3s Avhich contains the access logs from 5 consecutive workigg da
hop count, we can infer the distance between two nodes by (fsem Monday to Friday). We pick the top 1000 clusters from
ing BGP routing tables as illustrated in Section V-A. Howgvel0/1/99. (The top 1000 clusters on 9/27/99 - 9/30/99 haveemor
when the number of BGP peers providing routing informatsn than 90% overlap with those on 10/1/99.) As before, we ran-
very limited, we may not have a very accurate AS-level togplo domly assign the clusters to the nodes in the randomly gener-
map (for example, we do not see all the links). ated topologies of various network models and parameters. F
To study the effect of overlooking some network links on theach topology and cluster assignment, we simulate the place
placement algorithms, we randomly remove 0-50% of the edgasnt algorithms on the actual workload on 10/1/99 and five pre
in the AS-level Internet topology derived from the BGP ragti dicted workloads: (i) the workload of 9/30/99, (ii) the aages
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of 9/29/99 and 9/30/99, (iii) the averages of 9/28/99 — W80/ ° [ - 06/30/99
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and (iv) the averages of 9/27/99 — 9/30/99. g0 | SO28199 - 0013099 k-
Figure 11 shows the CDF of the greedy algorithm’s perfor- 70l
mance across all simulation runs. Here we normalize the per- g oo
formance of the greedy algorithm using the predicted loaitidby 5 jz
performance using the actual workload on 10/1/99. The lower 20l
the normalized performance, the better the prediction isoA 20|
malized performance of 1 means the performance is exadly th 1o} , 1
same as that obtained using the actual workload. As we can see % 05 o7 008 099 L Lol 102 103 104 Lo
the performance using the predicted workload closely nesich Performance normalized by using the actual workload on 10/01/99
the performance using the actual workload, within 5% ovkr al (a) Perturbation factor is 1.2
cases. Note that, in some cases, the performance usinggthe pr 100

dictions is slightly better than using the actual worklo@His is o0 | 0926198 - 0910190

) - ! 09128/99- 09/30/99 -
because the greedy algorithm does not give the optimal perfo 80 | 09/27/99 - 0930199 -
mance even when the input data is completely accurate.
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Fig. 12. The CDF of the greedy algorithm’s performance ushegpredicted

[ I .
097 098 099 1 101 102 103 104 workload normalized by its performance using the actualkiead when
Performance normalized by using the actual workload on 10/01/99 we also perturb the distance between any two nodes

Fig. 11. The CDF of the greedy algorithm’s performance usirggpredicted {g potential replica sites) about the number of requestsigéed
‘;ﬂ?;’fﬂgﬁ&?ﬁﬂﬂged by its performance using the actuaklead across ., o) the popular clusters, where clusters are identifiéututhe
. approach proposed in [15].

For the second part of the evalgatlon, we use the same ey:ra_tegThe method for obtaining edge weights depends on the per-
as above, but salt the topology information with random @0ig, 1,2 nce metric that we want to optimize. Since replication
as described in Section VI-D. .Flgure 12 shows the performa acement is a relatively long-term provision, we believesi
results \;vhen w?fgrturg t2heAd|stance betwein any ftWO nodesf¥iraple to use the performance metrics that are stablaeon t
up t,o a actoro_ -2 and 2. As we can see, the periormance g¢ger of hours, such as propagation delay, hop count, or eco-
viation from using the accurate load and network infornraiso nomic cost of the path between two nodes
To approximate the distance between each pair of nodes, we

small: when the perturbation in distance is up to a factor.Bf 1
and 2, the deviation is only within 5% and 17%, respectivelgan use BGP routing tables to infer the hop counts betwedn eac
pair of nodes as described in Section V. An interesting ques-

Moreover, the performance results are similar across alpth-

dICtI.On windows tested. N . tion is how many BGP peers we would need routing informa-
Finally, we have observed significant variation betweenkwee; - trom in order to construct a fairly accurate AS-levab

day workloads and weekend workloads, even though they ¢, 2~ The answer clearly depends on the richness of the

consecutive in time. This is not surp_rising, and suggea_svtle connectivity, i.e., the (average) degree of nodes in thelomy
should use past weekday V\_/orkl_oad information to predietriut ph. The greater the degree, the greater the number of BGP
weekday workloads, and likewise use past weekend worklo ers from which we will need routing information. The worst

data to predict future weekend workloads. case is a completely connected graph (which, however, is far
from the reality). However, as we show in Section VI, the per-
formance of the greedy algorithm is not sensitive to ovekiog
In this section, we discuss ways to obtain the input data feome network links —its relative performance stays withéhdt
the placement algorithms. As mentioned earlier, the inpthé the super-optimal algorithm even when the edge removal-prob
placement algorithms is a graph with weighted nodes andsedgability is as high as 50%.
A node’s weight represents the amount of traffic initiatedi®y A separate question is whether knowing the topology is suffi-
node, and an edge’s weight represents latency, or link oost,cient for solving the placement problem. In general, we doul
hop count, etc. In order to apply the placement algorithms ireed some notion of Internet “weather”, that is, the netvpenk
practice, we need to be able to obtain both traffic pattern aftmance between two points, say a client location and apote
network topology information in real-time. tial replica site. There are several research efforts,(Ddlaps
Obtaining node weights is relatively straightforward. Dgr [14]) focusing on the problem of constructing such an Inéern
re-provisioning, the Web server communicates with all tbe aweather map. If desired, we could, in a straightforward neann
tive replicas (i.e., the replicas that serve the requestspposed substitute cost metrics derived from an Internet weathgy ima

VIl. PRACTICAL CONSIDERATIONS



place of those derived from topology information in our algo As for future work, we are interested in exploring increnaént
rithms. Before such a service is widely available, we cap alsersions of the placement algorithms that also take intowaac
have the Web sites periodicalyng or traceroutea representa- the cost of changing the set of replica sites. Ideally, facpt
tive client in each identified popular cluster. Since the bam ment strategies with similar performance, we prefer thetbae
of popular clusters is not large, usually around 1 - 3 thodsamcurs the least amount of perturbation to the system. Feor ex
as is the case with MSNBC Web site, such probing is affordmple, if siteA is already hosting a Web service, then we prefer
able especially when the provisioning timescale is on tlikeior not to replace it with another replica site unless the perforce
of hours or longer. degradation of continuing to usé is significant. We are also
interested in studying distributed versions of the placenaé
VIII. CONCLUSION gorithms to further improve the scalability of the systermeO

In this paper, we study the online problem of placing WeB0Ssible distributed algorithm would be to make the algaonit
server replicas in content distribution networks (CDNsjiai- hierarchical.
mize the cost for clients to access data replicated on thverser
We approach the placement problem by formulating it as a min-

imum K-median graph theoretic problem. We present various Thanks to Craig Labovitz for providing us with the complete
algorithms for solving the minimund-median problem, and BGP routing tables from seven different ISPs. Thanks to Yin

evaluate the performance of the algorithms by simulatirejy th Zhang and Ravi Kumar for helpful discussions.
behavior on synthetic and real network topologies and s¢ver
Web traces. We also address a number of practical issues when

using these algorithms online in a content distributiorwoek. [L] ABC News. http://www.abcnews.com.
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e : : http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm.
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