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Abstract— Multihoming is a popular method used by large yields performance improvement. In [15], Goldenbetcal.
enterprises and stub ISPs to connect to the Internet to redu® propose smart routing algorithms to distribute traffic amon
cost and improve performance. Recently researchers havelstied multiple links to optimize both cost and performance. A

the potential benefits of multihoming and proposed protoca ¢ . IVsis sh that t ting has th
and algorithms to realize these benefits. They focus on how to '€CENt €CONOMIC analysis Shows that smart routing has the

dynamically select which ISPs to use for forwarding and reciwing  Potential to benefit not only the end users, but also the servi
packets, and assume that the set of subscribed ISPs is givenproviders [13]. Many companies are actively developing com
a priori. In practice, a user often has the freedom to choose mercial products to realize the benefits of multihomiegy.(
which subset of ISPs among all available ISPs to subscribe Internap, Proficient, Radware, RouteScience).

to. We call the problem of how to choose the optimal set of Alth h th . tudies h d h
ISPs the ISP subscription problem. In this paper, We design a ougn these previous studies have made much progress

dynamic programming algorithm to solve the ISP subscriptin  in realizing the potential benefits of multihoming, two intpo
problem optimally. We also design a more efficient algorithm tant problems remain unaddressed. First, most of the prsvio
for a large class of common pricing functions. Using real tréfic  studies focus on how to dynamically select which ISPs to use
traces and realistic pricing data, we show that our algoritm for forwarding and receiving packets, and do not consider th
reduces users’ cost. Next we study how ISPs respond to gsers’lsp bscrinti bler h d - hich ISP
optimal ISP subscription by adjusting their pricing strategies. Su scr'pt'_on problem.¢., how FO etermine whic S
We call this problem the ISP pricing problem. Using a realistc @mong all available ISPs to subscribe to). Second, the dreed
charging model, we formulate the problem as a non-cooperate  for users to choose ISPs introduces competitions among ISPs
game. We first prove that if cost is the only criterion used by |SPs will respond to users’ selections by adjusting thewipg
a user to determine which subset of ISPs to subscribe 10, at gyategies. We call this problem the ISP pricing problem.
any equilibrium all ISPs receive zero revenue. We then study While th . | | f literat L d
a more practical formulation in which different ISPs provid e e “ere IS a large volume of litera ur.e.on pricing an
different levels of reliability and users choose ISPs to bst CcOompetition, most are based on abstract pricing models€The
improve reliability and reduce cost. We analyze this problen is no previous study on this problem using realistic Interne
and show that at any equilibrium an ISP's revenue is positive pricing models.
and determined by its reliability. To address the above issues, we first study the ISP sub-
scription problem. We develop an optimal algorithm using
dynamic programming to minimize a user’s cost. Based on
Multihoming is a popular method used by large enterprisefie observation that many pricing functions are concave due
stub ISPs, and even small businesses to connect to the Interdiminishing marginal returns, we design a more efficient
net [34]. A user is said to be multihomed if it has multiplealgorithm for this class of functions. Using real trafficdes
external links (either to a single provider, or to differenand realistic pricing data, we show that our algorithm resuc
providers). According to a study by CAIDA [9], as of Junea user cost by up to 24% compared with a greedy heuristic,
2004, 51% of stub ASes are multihomed. When a multihomegd by up to 100% compared with random subscription.
user actively controls how its traffic is distributed amoig) i Next we study the ISP pricing problem. Using the realistic
multiple links, we say that it implemengsnart routing. Smart percentile-based charging model, we formulate the problem
routing is also referred to as route optimization, or ingelht as a non-cooperative game. We prove that if cost is the only
route control. criterion used by a user to determine which ISPs to subscribe
In the past few years, there has been significant reseatehall ISPs receive zero revenue at any equilibrium. We then
on evaluating and realizing the benefits of multihoming. Fatudy a more practical formulation of the ISP pricing proble
example, in [1], [2], Akellaet al. quantify the benefits of in which different ISPs provide different levels of relifityi
multihoming and show that selecting the right set of prokddeand users choose ISPs to both improve reliability and reduce
cost. We analyze this problem and show that an ISP’s revenue
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|I. INTRODUCTION



deployment of multihoming can be beneficial to the globd&. Charging Models

Internet, since it provides incentives for the ISPs to imvpro ; ing thei : h . q
their reliability and thus benefits users. Users pay ISPs for using their service. The cost incurred to a

user is usually based on the amount of traffic a user generates
i.e, cost = c(p), wherep is a variable determined by a

» We design a dynamic programming algorithm to solvgser's traffic (which we will term theharging volume) and
the ISP subscription problem optimally. We also desighis a non-decreasing function which map$o cost. Various
a more efficient algorithm for concave pricing functionsgharging models differ from one another in their choices of
We demonstrate the effectiveness of the general algoritiiarging volumep and cost functiore.
using real traffic traces and realistic pricing data. Usually, the cost function: is a piece-wise linear (non-

« We study the effects of multihoming on ISPs by formulatyecreasing) function, which we will use for our design and
ing the ISP pricing problem as a non-cooperative gam&galuation. There are several ways in which the charging
using a realistic charging model. We prove that if cosfolume p can be determined. Percentile-based charging and
is the only criterion used by a user to determine whicjytal.volume based charging are both in common use.
ISP_s_to_subscrlbe to, all ISPs receive zero revenue at any,, this paper, we focus on percentile-based charging. This
equilibrium. o _ js a typical usage-based charging scheme currently in use by

« We also study a more general formulation in whicll, ' |sps [27]. Under this scheme, an ISP records the traffic
different 1ISPs provide different levels of reliability an olume a user generates during every 5-minute interval. At
users choose ISPs to both improve reIiab_iIity an_d_ reduges end of a complete charging period, #h percentile of
cost. We show that_ an ISP's revenue 1s positive ang 5_minute traffic volumes is used as the charging volyme
determined Dby its reliability at any equilibrium. for ¢-percentile charging. More specifically, the ISP sorts the

The rest of this paper is organized as follows. In Section B-minute traffic volumes collected during the charging peri

we describe the network and charging models. In Section lih, ascending order, and then computes the charging vojume
we propose dynamic programming algorithms to solve the 1$B the traffic volume in thg;% x I)-th sorted interval, where
subscription problem. In Section 1V, we study the ISP pgcin/ is the total number of intervals in a charging period. For
problem when cost is the only criterion. In Section V, wexample, if 95th-percentile charging is in use and the dhgrg
investigate a more general formulation, in which differi8®s period is 30 days, then the cost is based on the traffic volume
provide different levels of reliability. In Section VI, weview sent during the 8208-t95% x 30 x 24 x 60/5 = 8208) sorted
related work. Finally we conclude the paper in Section Vll.interval.

Our key contributions can be summarized as follows:

II. NETWORK AND CHARGING MODELS IIl. THEISP SUBSCRIPTIONPROBLEM

We start with a description of our network and ISP charging In this section, we first develop optimal algorithms to

models. solve the ISP subscription problem. Then we demonstrate the
effectiveness of our algorithms using real traffic traced an
A Network Model realistic pricing data.

A. Problem Formulation

The ISP subscription problem can be stated as follows:
Givenasel = {1,..., K} of ISPs with cost functions;, and
charging percentileg,, wherek € K, find a subse C K of
ISPs that minimizes the user’s total cgs}, . ¢ cx(px), Where
pr is the charging volume of ISR. Formally,

Fig. 1. An illustration of a user withK service providers.

min c
A multihomed user has multiple links to the Internet for s ,; k() "
sending and receiving traffic, as shown in Fig 1. The imple- subject to S C K.

mentation techniques of distributing traffic to the linke alif-

ferent for outgoing and incoming traffic. For outgoing traffi Compared with the cost optimization problem formulated

a border router inside the user’s network can actively @bntrin [15], the ISP subscription problem is different in thabJ1

how traffic is distributed. For incoming traffic, a user cam usassumes that the ISP subscription decision has already been
NAT, BGP prepending, BGP selective announcement, andfoade, so all ISPs can be used, while in our ISP subscription
DNS to control the routes. For more detailed discussionsitab@roblem the user has the freedom to select a subset of ISPs to
the implementations, we refer the readers to [1], [8], [I1$], use in order to minimize cost. A user can benefit from selgctin
[16], [31]. In this paper, we consider only outgoing traffic. a subset of the ISPs if the ISPs charge non-zero base prices.



TABLE |
NOTATIONS

The reformulation in egn:isp2 allows us to design efficient
optimal algorithms.
Instead of solving the ISP subscription problem for a fixed

K The set of all ISPsi.e, K = {1,..., K}, whereK is ' )
the total number of ISPs. K, we first generalize the problem. L&t = {1,..., K} be
ck The cost function of ISR:. We assume that;, is a non- the set of all ISPs. Le€'(n, k, p, z) denote the minimum cost
decreasing function. when the user has aggregated charging volpmiotal peak
1 The number of time intervals in a charging period. percentilez, and subscribes to no more tharout of the first
ol] The total traffic volume during interval Let time series n ISPs{1,...,n}. Formally,
Vv ={ll1<i< ).
tE:] The volume of traffic distributed to ISP during interval C(n,k,p,z) = min Z cr(pr)
i. Let time seriesT}, = {t | 1 < i < I}. Note that S s
V= Zk T}, (with vector summation). subjectto S C {1,...,n}
qr The charging percentile of ISP, eg., ¢, = 0.95 if an
ISP charges at 95th-percentile. ‘S| <k (3)
def
2k Zkzlqu. Zpk:p
qt(X,q) | The[gx|X|]-th value inXgq1eq(or 0 if ¢ < 0), where kes
XsortediS X sorted in non-decreasing order, aid| is _
the number of elements iX. Z k=2
Dk The charging volume of ISR, (i.e, pr = qt(Tk, gx))- kes
For example, if ISR charges at 95th-percentile, thgp - :
is the 95th-percentile of the traffic assigned to I&P Note that for some Combm_atl_ons of k, D, andz, there
@ | v Ter vioy ) where s C K | may not be anys C K that satisfies all of the constraints. In
o( 0(S) = qt(V,1 -, o2), whereS C K is a . _
subset of ISPs, anl’ is theetisme series of the total traffi¢ Such cases, we C_ie.fl_r(é(n’ k. p,z) = +oo.
volumes of a user. Given the definition ofC(n,k,p,z), we have that the

solution to eqn:isp2 isnin, C(K, K,qt(V,1 — z),z). Thus
we can solve the ISP subscription problem eqgn:ispl if we can
computeC(n, k, p, z) efficiently.

The generalization allows us to observe thi&tn, k, p, z)

Table | introduces the notations we will use. We defingatisfies the recurrence relation shown in eqn:dpl, asgumin
aggregated charging volume and total peak percentile as that the cut points on the cost functions are all integerss Th
follows. Suppose a user subscribes to a $eif ISPs, then recurrence relation leads naturally to a dynamic programgmi
the user's aggregated charging volume is defined as the saigorithm. The algorithm solves the ISP subscription peobl
of pr, i.€, Y ,cq Pk, and the user's total peak percentile i®ptimally when there is no capacity constraint (i.e., es8h |
defined as the sum of,, i.e, 3, 2, Wherez, = 1 — g, ¢an handle the user’s traffic by itself).

Assume a user subscribes to a set of ISPs, denotefl. as Now, we analyze the complexity of the algorithm. Its
Then aggregated charging volume and total peak percentifde complexity isO(K?ZP?), and its space complexity is
satisfy the following two properties [15]. First, if the ¢osO(K ZP), whereZ is the total number of choices af and
functionsey, of all ISPs inS are non-decreasing, then the user'® is the total number of choices ¢f. The percentilez is
minimum total costd", ¢ cx(pk) is also a non-decreasingof the formi/I, where! is the total number of intervals in
function of the user’s aggregated charging volume. Sedbied, a charging period, and is an integer betweef and 7. So
user’s aggregated charging volume has a lower bound, whiwze haveZ = I. Since the input specifies the user’s traffic
is Vo(S) def qt(V,1 — ¥ ,cs 2k), Whereqt is the quantile in each _int_ervgl to _decigle the charging volumes, the input
function, andV is the time series of the user’s total trafficcOmplexity is linear in/, instead oflog /. In the worst case,
volume. The lower bound is achievable when each ISP h&§ dynamic programming algorithm is exponential for gaher
sufficient bandwidth to handle the user’s traffic by itselél@v Pricing functions. In practice, however, the cost functiere
we will focus on this scenario, since multihoming is ofteeais Usually piece-wise linear or step functions with very cears
to provide high reliability — even when all other ISPs fail, &rained cut points, sa is usually small. In addition, it is

user can still use the single remaining ISP to carry out iB2SY t0 use discretization to make tradeoffs between poecis
traffic. versus computational time and space complexity.

Based on the above properties, now we reformulate the ISP L , , ,
subscription problem as in eqn:isp2. C. Polynomial-time Dynamic Programming Algorithm for

Concave Functions

B. A Dynamic Programming Algorithm

H}qiﬂzck () If the ISP’s cost functions are concave (as is often the
kES case), we can specialize the preceding dynamic programming
Subject to 5 C K (2) algorithm to design a more efficient, polynomial-time algo-
Zpk = Vy(S). rithm. First, for concave cost functions, we have the foltayv

keS observation:



C(’fl - lvk’p’z)

C(n,k,p, z) = min { ming<y<p(cn(y) + Cn =1,k = 1,p — 4,2 — 21))

4

C(n—1,k,p,2)
C(n,k,p,z):min cn(0)+C’(n71,k71,p,z7zn) (5)
en(p)+C(n—1,k—1,0,2 — 25)

Lemma 1: Let S = {1,...,n} be a set ofn ISPs. If the E. Random Subscription

total cost functiore(p. . ..., p,) is concave, then the following  The random subscription algorithm randomly chooses a
minimization problem specified number of ISPs under the constraint that the total
min ¢(pi1,...,pn) bandwidth of the subscribed ISPs is large enough to accom-
Proeobn n modate the user’s traffic. In our evaluation, we run the ramdo
subject to Zpk =p>0 (6) subscription algorithm 20 times and report the average.
k=1 H
>0 VkeS F. Evaluations

In this subsection, we evaluate the performance of our ISP
has an optimal solution in which the charging volumpgsare subscription algorithms using two sets of Abilene traffacts.

0 for all but one ISP. The traces contain netflow data from an institution (Nationa

Proof: Denote bye, the k-th unit vector. Suppose Institutes of Health) and an enterprise (Red Hat Inc.) on the
(p1,...,pn) is an optimal solution. Sinc&_;_, % =1, we Internet-2 from October 8, 2003 to January 6, 2004. In our
havec(pi,...,pn) = c(Xj_i prer) = c(Xi_, 2 (pey)) > evaluations, We scale each set of traffic traces such that eac

S Bec(pey) = S Dk ceex) \where the inequality is ISP can handle the traffic by itself.

due to the concavity of. P In each evaluation scenario, there are 10 ISPs and 1 sub-
Let k* = aremin, S2%) we have s c(ex) -  scriber. The 10 ISPs have 5 different pricing functions as
= argming =52, p—1 PR 2 o e . :
n c(pexe) In additi I fisi shown in Fig. 2. Each pricing function has 2 ISPs associated
Y1 Pr=, o = c(pey-). In addition, pey- also satisfies it The shape of the pricing functions reflects the gaher

the constraint in eqn:concaye, sopg- = p, andpy, = 0, Vk #
k* is an optimal solution to eqgn:concaye.
Given the above lemma, we observe that if all cost functio

pricing practice of decreasing unit cost as bandwidth iases;
it is also consistent with the pricing functions we are awgfre
I'(‘Se.g., [4], [24]). We refer readers to [15] for more details. The

€y are C(?ncave, then for any subset= {nl’ oo} O.f ISPs, subscription cost is computed based on the 95-th perceritile
the user's total cost(pi,...,pn) = 34—, ck(pk) is also tlze subscriber’s traffic during each month.
concave. Applying Lemma 1 to the second case of eqn:dpl,

we have that the minimum occurs either whgn= 0 or

y = p. Therefore, we do not need to search fprall the N 2(5)8887 R ——
way from0 to p. Instead, we only need to compare the user’s £ 40000}
total cost wheny = 0 with that wheny = p. This leads S 35000
to a new recurrence relation shown in egn:dp2. Notice that g 30000
now, in order to comput€’ (K, K,qt(V,1 — z), z), instead = 5(5)888:
of having to computeC(n,k,p,z) for all p values as in % 15000 -

=

10000 F "

eqn:dpl, we only need to computén, k, p, z) values forp =
qt(V,1 — 2) andp = 0. Therefore, a dynamic programming 5008 i
algor|thrr_1 baseq on the recurrence relatllon in eqn:dp2 haes ti 0 20 40 60 80 100120140160
complexityO(K?7) and space complexiy (K Z), which are Mbps

both polynomlal. Fig. 2. The complex OC3 pricing functions.

D. Greedy Subscription We compare our optimal subscription algorithm against the
The greedy algorithm chooses a setkofSPs, denoted as random subscription algorithm and the greedy subscription
Sk, as follows. In the first iteration, it examines all ISP setalgorithm. In our first set of experiments, we assume that the
with size no larger tham (r < k), and selects the one whichuser knows its traffic volume in advance. Fig. 3 compares
yields the lowest cost. In the second iteration, it seardbes the total cost incurred using the three subscription allgors
a new ISP to add which in conjunction with the ISPs alreadds we vary the number of ISPs the user subscribes to. We
picked yields the lowest cost. It iterates unkilISPs have present here the results using traces obtained in December
been chosen. Hereis a tuning parameter of the algorithm2003. Results using other months’ traces show the same
and all ISP sets with size no larger tharare exhaustively relative ranking of the three algorithms. Random subsiompt
searched. Ifr = n, all subsets are searched, and hence thentinues to do much worse than the optimal, while the
solution is optimal; however, in this case, its complexiy idifference between the greedy and the optimal algorithms is
much higher than the dynamic programming algorithm. Usinguch smaller.
different values ofr can trade off running time for solution We make the following observations. First, as expected, our
quality. In our evaluation, we set= 1. optimal subscription algorithm yields the lowest cost ih al
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cases. The random subscription algorithm incurs about ! @ _ _
higher cost on average for both traces, and leads to more s é Féﬁﬁg‘me‘i{ﬁs"é?él‘.’é‘ﬁ" 25 é ?;ﬁﬁg‘me‘i{ﬁé’;?él’.’é‘ﬁ"
. . . . greedy subscription greedy subscription

100% higher cost in worst cases, especially when subsgri ,
to a small number of ISPs. The greedy subscription yiegls
similar cost to the optimal algorithm in most cases, but doz
lead to up to 24% higher cost in worst cases. Second,” *
observe that adding ISPs initially helps reduce the totat;c o=
as the number of ISPs increases further, the cost increi .
To explain t.h|s, we note that an ISP’s cost involves tu National Institutes of Health (b) Red Hat Inc.
components: base charge and usage-based charge. A ing, . . - .

o . Fig.¥4. Impact of traffic fluctuation on subscription algbnits for December
ISPs initially helps to accommodate burstiness of the traffiogos. prediction is based on traffic of November 2003.
thereby reducing usage-based charge. The initial reduatio
usage-based charge is large enough to offset the addition

[ . , )
ISPs’ base charge. As the number of subscribed ISPs insreavgelereA > B >0, andV'is the users peak traffic volume.
i

Monthly Cost ($)

1 2

9 1 2 9

3 4 5 6 7 3 4 5 6 7
# of subscribed ISPs # of subscribed ISPs

further, the reduction in usage-based charge becomesesm e greedy algorithm starts by exhaustively searching alfer

n . P sets within size.
th_an add_lt_|0nal base charge. Therefore the total costasese The optimal subscription cost i + 1)B. In comparison,
with additional ISPs.

the greedy algorithm first selects ISP 1, since all other ISP

30000 30000 sets of size within- have higher cost. Its final subscription is
= 25000 ?§5§E§+ 1 B ?§5§E§+ o no less thand, since ISP 1 is included in the final selection.
R greedy 5 20 greedy So the ratio between the greedy solution and optimal salutio
s s is no less thamd/(r + 1) B, which is unbounded. The above
5 iizzz e 5 analysis can easily be gen_eralized to the case of more than

. r + 2 available ISPs by having;(p) = 3A for j > r + 2.
O s 4 556 7 8 9 1254567080 To summarize, in this section we develop a dynamic pro-
# of subscribed ISPs # of subscribed ISPs gramming algorithm for solving the ISP subscription prabje

(a) National Institutes of Health (b) Red Hat Inc.

Fig. 3. Comparison of the three subscription algorithmac&s are obtained
in December 2003.

and demonstrate its effectiveness using real traffic traces

IV. THE ISP RICING PROBLEM

In our second set of experiments, we study the case wheréur ISP subscription algorithm allows users to choose a
the user does not know its traffe priori, but predicts one subset of ISPs to subscribe to and minimize their costs. In
month’s traffic based on the previous month’s traffic aniesponse, ISPs may adjust their prices to maximize their
applies the three subscription algorithms to the predittafd revenue. How ISPs will adjust their prices is an interesting
fic. We call this scheme predicted subscription. We compafigestion because it helps us understand the evolution of In-
the results with the optimal subscription that knows traffiternet multihoming. In this section, we formulate the pesbl
in advance. We present the results using trace obtainedafha non-cooperative game and prove that, if cost is the only
November to predict the traffic of December 2003, as showehiterion used by a user for ISP subscription, all ISPs rexei
in Fig. 4. Results using other months’ traces are similar. ~ zero revenue at any equilibrium.

Wg observe_ that our optimal subscription algorithm usin& Problem Formulation
predicted traffic performs fairly well. It performs close to , ) o
the optimal algorithm under perfect knowledge about traffic 10 Make our game theoretical analysis more realistic, we use
patterns, and much better than the random subscription alfef realistic percentile-based charging model in our fdamu
rithm. In most cases, uncertainty in traffic patterns yigtgs 1ON- U§|ng this model makes our analysis more involved, put
than 5% cost increase on average for the optimal subsaripti§€ Pelieve the results can be more relevant. In our formarati
algorithm. The greedy algorithm performs close to the ogtim"’€ focgs on the case where multiple !SPs compete.for a single
in most cases, but could lead to 24% higher cost in the woRstoscriber. Hereafter, we use subscriber and user integena
case. ably. We assume a special structure of pricing functionB: IS

Although our evaluation shows that the greedy subscriptidn©Ceives revenue by charging the subscries axpy. + by
algorithm performs reasonably well in most cases, it is worf! It IS selected by the subscriber, afidotherwise. Here
noting that its worst case approximation ratio is unboundéj the unit price;p;. is the charging volume determined by
for r < n — 1, as shown below. Consider+ 2 ISPs that are the charging percentilg, and time series of the subscriber’s

available for subscription, and they all use 100-th peitent(raffic assigned to ISR; andb, is the base price.

charging with the following pricing functions, We now define the game formally. The playgrs of the game
are a set = {1,2,..., K} of ISPs. The action space of
alp) = A4, (7) playerk is Rt x Rt x [0,1]. Specifically, a player adjusts

, _ B ifp<V/r, . _ 5 5 (8 its charging parameterSuy, by, qi }, whereay, b, € R*, and
i(p) 24 ifp>V/r, i=2...,r+2, (8 0 < ¢ < 1, such that its revenue is maximized. When an



ISP changes its charging parameters, it should consider hoged to show that there does not exist an equilibrium with
the subscriber and the other ISPs will respond. Specificalpositive revenue for all ISPs, which we call a positive-rave
there exists competition among ISPs, and the subscribes takquilibrium. To do so, we derive the following propertieath
advantage of our subscription algorithm to select a set BS1Sa positive-revenue equilibrium should have. We first shaat th
to minimize cost. It is worth noting that, since all pricinga subscriber is not able to free-ride all providers (pay dhéy
functions are concave, when subscribing to a $eif ISPs, base price), and that any feasible IBfust have a unit price
the subscriber always allocates traffic in such a way that ordqual to the maximum of all positive minimum unit prices
ISPs inS with minimum unit cost can have non-zero chargingf all of the feasible sets containing ISR at any positive-
volume. revenue equilibrium. We then show that a feasible ISP can
To state our assumptions clearly, we first introduce someduce its unit price by a small amount without introducing
more terms. We call the set of ISPs computed by our subry new feasible set with the same minimum cost. We then
scription algorithm as a feasible set. An ISP in a feasibte gerove that any ISR in a feasible set must have the unique
is called a feasible ISP. There may exist multiple feasibts.s minimum unit price in that set. Using these properties, we
Let F denote the set of all feasible sets. Note that a subscrilpgove that there exists no positive-revenue equilibrium.
has equal cost on any feasible set of ISPs.d.gt,(S) denote
the minimum unit price of all ISPs in a sét andn,(S) the C. Equilibrium Analysis
number of ISPs having the same unit pricexan setS. Note ) ) i _
that S may have multiple ISPs with the same minimum unit Ve consider an arbitrary ISP. Without loss of generality,
price. For a complete list of notations we use hereafteggale W& assume: appears in feasible sefc,, . n,;. Note that
refer to the Appendix. there must exist at least one such set tigs > 1. Also,

Finally, we explicitly make the following assumptions ireth there areN_ Z 0 feasible sets that do.not contatn and
analysis below: = N+ N_, is the total number of feasible sets. We s@yt

N
« We assume that each feasible set has equal probabiﬂ pon-increasing o_rder Ofmin (Z). Let S"E.{]l N} denote
) . sorted sets. Without loss of generality, we assume that
of being selected by the subscriber. We also assume t
1

when the subscriber is multihomed to a feasible ISFSset _.” . S, have the same minimum unit price, and denote this

X o e g minimum unit price bya. Apparently,a,,,(S;) = a,Vj €
the aggregated charging volgme t.ra_fﬁ(cS) IS d_|str|puted {1,...,n}, anda; > a. In addition, a subscriber has equal
evenly across those ISPs with minimum unit price.

« We assume that each of the ISPs has enough Capa&?ston all feasible sets of ISPs; thati§5;), Vi € {1,..., N},

to accommodate all of the subscriber’s traffic, and thgtr¥ equal and we denote it by,i,. We denote by, the total

the total amount of traffic that the subscriber generatesrlesVenue of ISP

bounded. We also assume that each ISP only chargers],()%{]vee (I:‘rfrt\enrr?“r?(}:;ir\g{satozir'li}\//ee?slzj\l/“earlljuem’ either all 1SPs or
finite price and can adjust its unit price and base price In POSITY . X
Theorem 1: At any equilibrium, eitherR;, = 0,Vk € K, or

an infinitesimal amount. .
« We assume that there is perfect information sharin@’c >0,Vk € K.

among the subscriber and ISPs; that is, each of them Prolof: Proof by contradiction. Assumé&;, = 0, Ry >
has perfect information about the others when makir&;k # k'. Then ISPk can increase its revenue from 0 to some

decisions. positive value by reducing its charge to the minimumi$
(e.g., by settingar = 0, = 0, andb;, = ming Ry/), which
B. Summary of Results leads to a contradiction. ]

Our analysis based on the percentile-based charging modelhe above theorem tells us that there does not exist an
is quite involved. In the interest of clarity, we first sumiaar equilibrium in which some ISPs receive zero revenue while
our results and the structure of our analysis. others receive positive revenue. Now we only need to show

The main result of this section is that an action profilthat there does not exists an equilibrium with positive neie
of the ISP pricing problem is an equilibrium if and only iffor all ISPs. Therefore, in the remaining part of this sulisec
all ISPs receive zero revenue in the outcome. It is obviowge consider only these positive-revenue equilibria.
that any action profile with an outcome in which all ISPs Next we show the first property of a positive-revenue
receive zero revenue is an equilibrium of the game, since if equilibrium: the subscriber is not able to free-ride all\pders
ISP unilaterally increases its price, the subscriber camyd at a positive-revenue equilibrium.
switch to other ISPs that charge zero; thus the revenue of the.emma 2: At any positive-revenue equilibrium, there exists
ISP is not increased. at least oneSy: € F such thatp(Sg) > 0, for somek’ €

The remaining challenge then is to prove that all ISPgl,...,n}.
receive zero revenue at any equilibrium. We first show that Proof: Proof by contradiction. Assume tha(S; ) =
at any equilibrium, either all ISPs receive zero revenue Qrvk' € {1,...,n;}. Then we havey, = 0. Therefore, ISR’s
all of them receive positive revenue. There does not existtal revenue is
an equilibrium in which some ISPs receive zero revenue Ny,

while others receive positive revenue. Therefore, we only Ry = N + N_;, Dy



We first prove that,,,;, > bx. Suppose that,,;, = by, then
b; = 0 for an arbitrary ISR} € Sy, for somek’ € {1,...,ny}.
We consider the following two cases:

1) all feasible sets contain ISR Then any other feasible
ISP j receives zero revenue sinég = 0 andp; = 0
(becausep(Sr) = 0,Vk' € {1,...,n4}). This contra-
dicts with Theorem 1.

2) some feasible sets do not contain IGPThen ISPk can
seta;, = 0 and choose a small positive value

N_y
< — b
‘ Ne+ N °

so that it can attract all of the user’s traffic and receive

revenueR), = by, — ¢ > Ry.
Therefore, we have,,;, > b;.

We next show that ISF: can increase its revenue by
reducing its base pricé,. Because all original feasible sets

of ISPs have equal costs ang;, > b, we can find a small
positive valued satisfying

N,
N + N_y,
such that ISR can seth, = c¢,,;, — 0 to increase its revenue

to R}, = cmin — 0 > Ry,. Therefore we derive a contradiction
[ ]

0 < Cmin — bi

Next we study the second property of a positive-revenue
equilibrium: any feasible ISR must have the same unit price

as all other ISPs in feasible sets containing
Lemma 3: At a positive-revenue equilibriunay, = a if a >
0.
Proof: Proof by contradiction.

Assumeay > a. We compare the expected revenue of ISP

k before and after letting; = a.
The expected revenue of ISPwhenay > a is

N,

Ry=——Ft
k Nk"‘N,k

bk:

since each of theV feasible sets is chosen by the subscriber

with equal probability, and ISR receivesbh; revenue when
any setSic(i...,
smart routing algorithm to optimize cost such that all IS®Ps
S; with unit price higher thanu,,;,(S;) have zero charging
volume; therefore, the charging volume of 1&Rs 0).

We next consider the expected revenue of ISR, after
letting ay, = a, in the following three cases:

1) There are no new feasible sets introduced by k&P

action. Then we have

Ro-_ Lt ai PSk) N
k N]g"‘ka = na(Sk’) kiVE | -
Therefore,
R;c _ Rk _ a p(Sk’)

Ni+ N_p £= na(Sp)

Sincea > 0, we only need to show that(Sy.) > 0 for
somek’ € {1,...,nt}. Applying Lemma 2, we know

~,.} is chosen (recall that the subscriber run

that 3k’ € {1,...,nt} such thatp(Sy) > 0. Therefore,
R;c > Ry.

There areV; > 1 new feasible sets with the same total
cost asc,,;,, introduced by setting; = a.

Denote these new sets I8y, Vi € {1, ..., N; }. Note that
ISP £’s unit price must be the minimum unit price of
all ISPs inS;. Then the expected revenue of I&Rs

— D(Sk)
O

Ny,
a Z p(Sp) + b Ny,

k=1

2)

1
Nk-i-N,’c-l-N,k

!

Ry

+kak>

1
—
Nip+ N+ N_i

Ny, +Nllc
N+ N, + N_y g
Ny,
N+ N_y

Note that the first inequality is derived by applying
Lemma 2 and the fact that > 0.

There areN; > 1 new feasible sets with total cost
¢ in < Cmin introduced by settingy, = a. Denote
these new sets by!,i € {1,..., N;}. Note that none of
the old feasible sets ift is feasible now since they have
higher cost. Note also thdte S;,Vi € {1,...,N,}.

Therefore, the expected revenue of IBfs

>

> b.

3)

1

Ny, ,
a p(Si)
R, = — + by,
: NI’C k=1 ’n/a(S]’C')
Then by applying Lemma 2 and the fact that- 0, we
have N
Rl — Ry > ——— >0
k k Ny + N_p k=

Apparently, we have contradictioR), > Ry in all cases.
Therefore,ar, = a if a > 0 at a positive-revenue equilibrium.
]
The above lemma shows that a feasible KSB not able to
'@crease its revenue by increasing its unit price. Howeiver,
s still unknown if it is possible for ISR to increase revenue
y reducing its unit price. We show below (Lemma 4) that a
feasible ISP can reduce its unit price by a small amount such
that all feasible sets remain unchanged; based on this lemma
we then prove by contradiction that a feasible ISP can reduce
its unit price by a small amount to increase its revenue af th
unit price is not the unique minimum (Lemma 5).
Lemma 4: At a positive-revenue equilibrium, ifi, > 0,
there exists a small number> 0 such that ISR can reduce
its unit price toa; — e without introducing any new feasible
sets.
Proof: Consider the sets itv, — F, wherel,, is the set
of all subsets ofC containing ISPk. Note that we can safely
drop those sets that do not contain I8Rince they are not
affected by ISPk’s action of reducing,.
For any setZ € U, — F, we show that we can find a small
value e such thatc(Z) is still larger thanc,,;, after ISPk



reduces its unit price ta; — . Note that wherif, — F = ¢,
no new feasible set is introduced by I&R reducing its unit
price.

Suppos€Z = {k,us,...,u;} € Uy — F. Therefore, we have
c(Z) > emin. Let ¢(Z) and ¢'(Z) denote the expected total
cost of the subscriber before and after IEPeduces its unit
price, respectively, if the subscriber uses ISPsZiras the
providers. Now we derive the condition fesuch that'(Z) >

1)

2)

3)

the setsS,, +1,..., SN, are no longer feasible because
the user has lower cost of, ..., S, and the user will
subscribe to these sets; therefore, ISReceives no
revenue from the setS,,, 11, ..., Sn,;

all of the setsSy, +1,..., Sy that do not contairk are

no longer feasible because the user has smaller cost on
setsSi, ..., Sn,s

we have chosenr carefully such that no new set is
introduced by reducing; therefore, ISP receives no

Cmin-

Note that revenue from other sets i — F.

Next, we compard?;, and R, by considering the followin
«(2) = axpr + b + Z (ar prr + br) two cases: P e ’ k
Wefur, 1) N > 1: sinceN > N;, we note that if
and NN b i(l e
~ ~ ~ € Tk Qg - X /)
'(Z) = appy — €pr, + by, + Z (ap prr + brr), N 3 p(Sk) o N
k'e{ur,...,u;}

wherep;: andp, are the charging volumes of ISP before
and after ISPk reduces its unit price, respectively.
Consider three cases as follows.

e case lia, — € is not the minimum unit price in sef.

Then we have:(7) = ¢'(Z) > cmin SiNcepy = pr = 0.

e case 2uay, — e is the minimum unit price whiley, is not.

Then we can reduce such thata;, — € is no longer the

minimum unit price and this case degenerates to case 1.

« case 3: bothy, — € anday are the minimum unit price.

Then we havepr, = pr > 0 (we have equality here

becauser(Z) > 0); thereforec(Z) = '(Z) > cmin-

Let ez denote the appropriatevalue for a setZ satisfying
the above conditions. Therefore, we can always find: &y
taking the minimum of alk. [ |

Lemma 5: At a positive-revenue equilibrium, if, > 0 and
a > 0, thenar = a is the unique minimum unit price in
Si, Vi e {1, ,Nk}

Proof: Proof by contradiction. Assume at a positive
revenue equilibriumg;, is not the unique minimum unit price
in S;,Vie{l,..,n}

By applying Lemma 3, we have

2)

Ay = amin(S]) = amin(SQ) s = amin(Snk,) = Q.

By applying Lemma 4, we can find> 0 such that no new
feasible set is introduced by reducing 1SR unit price to
ap — €.

Now we compare the revenue received by KSBefore and
after ISPk reduces its unit price. The revenue received before
the reduction ofz;, is

_ 1 — P(Sk)
=— | ag
N+ N o= ma(Sw)

Ry, +Nkbk> .

The revenue aftet;, is reduced taz;, — € is

ap — € ok
‘ > p(Sk) + i,

k=1

R, =

ng

because

then R, > R; (the right-hand side of the above in-
equality is always positive). Therefore, we could choose
e such that the above condition is satisfied, which leads
to a contradiction.
N = 1: Then N = N; = 1, and we have one single
feasible setS; (k € Sy). If |S1] = 1, then we already
have a;, = anin(S1) and ay, is the uniqgue minimum
unit price; otherwise, we can choose a small positive
value e satisfying the preceding inequality and derive a
contradiction.

]

Finally, we prove the property of any equilibrium based on
the preceding lemmas.

Theorem 2: At any equilibrium, every ISPk has zero
revenue.

Proof: Proof by contradiction.

By applying Theorem 1, we know that there can be only two
possible cases: (1%, = 0,Vk € K, or (2) Ry, > 0,Vk € K.
Therefore, we only need to prove that the second case does
not show up in any equilibrium.

For an arbitrary ISPk, R; > 0, ISP k& must be in some
feasible set. We next consider the case whered&Pin some
feasible set. Specifically, we examine the following twoesas

1) a>0.

By applying Lemma 5¢a; = a is the uniqgue minimum
unit price in all of the sets;c(1... n,}. Therefore, all
the sets with non-zero minimum unit price can have only
one single ISP. Then we only need to considéer> 1
since whenN = 1 it is trivial to show that each ISR
has zero revenue.
Assume ISPk has positive revenueRy; therefore,
cmin > 0. Then, ISPk can lower its price to increase its
revenue. Let,,;, denote the revenue of each feasible
set with a single ISP. Then we have
Cmin

Ry = N
ISP k can lower its charge to,,;, — d, whered > 0 is
a small number, and receives revenue

!
Rk = Cmin — 0.



Since cmin > 0, we are always able to find & < in this paper. The weight reflects how much the subscriber is
%cmm such thatR, > Ry. This leads to a contra- concerned with reliability. The higher the weight is, thermo
diction. the subscriber prefers reliability over cost. The subsciib

2) a=0. objective is to choose a subset of ISPs such that its utsity i
Note that in this casé, = 0, because otherwise themaximized:maxgecy w Zkeslogmk *Zkes c,. We assume
subscriber can dump all traffic to the ISP with zerthat the subscriber always chooses as many ISPs as possible
unit price in S; without using ISPk, which means when maximizing its utilitye.g., when the subscriber has equal
that R, = 0 and leads to contradiction. Therefore, ISRitility over multiple feasible sets of ISPs, the subscripefers
k is not in S;,Vi € {1,...,n;}. By the assumption to multihome to ISPs in the largest set in order to improve
Rr > 0, ISP k£ should be in any feasible set sinceeliability.
the subscriber can assign free-riding traffic to 18P  Note that our formulation and approach can be easily ex-
(by making charging volume zero) without incurringended to consider other metrics that subscribers are ooede
any extra cost. Therefore, all feasible sets contaiingwith.
should have zero minimum unit price akds in all of
these sets; otherwise, it contradicts with our assumpti
thata = 0.

gn Analysis of Existence and Non-uniqueness of Equilibrium

Given our non-cooperative game-theoretic formulation, we
will prove the existence and non-uniqueness of equilibrium

Therefore, we prove that all ISPs receive zero revenue %t (e game in this section. The intuition of our proof is

any equilibrium if cost is the only criterion used by a user tfat N0 matter how ISPs change their charging parameters,
determine which subset of ISPs to subscribe to. the subscriber excludes a particular IBBrom subscription if

that ISP charges more thanlog m;,, because the subscriber’s
V. RELIABILITY AND THE ISP RRICING PROBLEM utility becomes less if ISR is included in subscription.

We have shown in the previous section that if the only Formally, we have the following theorem stating the exis-
difference among ISPs is pricing, then all ISPs receive zel@1Cc€ and non-uniqueness of equilibrium: .
revenue at any equilibrium. However, in reality, pricing is Theorem 3: There exist multiple equilibria in the ISP pric-
not the only difference among ISPs, and cost is not tHéd game. _
only concern of subscribers, either. Subscribers alsoidens Proof: We first show that{ay = 0,qx = 0,bx =
many other factorse.g., reliability, ease of management, andv10gm«}, ¥k € K, is an equilibrium. Note that the subscriber
security. In particular, reliability is a major motivatidar the has zero utility and uses all ISPs as prowders._ﬁaﬂenote
deployment of multihoming. the set of ISPs used.€, all ISPs) in this scenario. We look

Given the importance of both cost and reliability, wét all of the possible actionfsi;, ¢;, b} } taken by an arbitrary
investigate a more realistic formulation of the ISP pricinbSP k:
problem: how ISPs respond to multihomed subscribers whenl) b}, < bi. We first consider the case where I8Rhanges
the subscribers optimize both cost and reliability. its base price only. In this case,logm; — bj, > 0 and
the subscriber’s utility is maximized by including all
ISPs as providers. However, ISP revenue decreases.
We next consider the cases where ISEBhanges its unit
price and/or charging percentile simultaneously. Note

A. Problem Formulation

Similar to the previous section, we formulate the problem
as a non-cooperative game. We consider the percentilatbase
charging model and focus on the case where multiple ISPs that no matter how, andg; change, the subscriber can
compete for a single subscriber. The players, action spaces always distribute the traffic in such a way thép;, = 0.
and ISPs’ revenue-maximization objectives are the same as For instance, ifp, > 0 andaj, > 0, then the subscriber
those of the previous section. re-distributes traffic such thaf, = 0 and incurs no extra

The major difference between this formulation and the pre-  cost. This is achievable because all of the other ISPs
ceding formulation is that we consider both cost and rdiigbi have zero unit price. Therefore, no matter hayand
Specifically, the subscriber takes advantage of our suyiisami qr change, the subscriber’s utility is always maximized
algorithm and smart routing algorithms to minimize cost by using all ISPs as providers, while IS% revenue
and maximize reliability. To characterize the objectivetiod decreases.
subscriber, we define a utility function of the subscriberaon  2) b = bs. There are three cases to be considedgds ay,
subsetS of ISPs as follows: andq;, = q; aj, = ax andgy, > qx; aj, > a andgq;, >

qrx- We present the proof for the last case here and the
U(S) =w Z logmy, — Z €k proof for the first and second cases can be constructed
kes kes similarly. The intuition of our proof is that the subscriber

where)\,, is the instantaneous failure rate of IBPn; = ﬁ is
the mean time between failures (MTBF) of I$Pandw > 0
is the weight of the subscriber’s preference of reliabititser

cost. We consider finite constant mean time between failures

can always dump all aggregated charging volume traffic
p(S) to the ISP with zero unit price such that no extra
cost is incurred. Therefore, no matter hay and ¢;,
change, the subscriber can always distribute the traffic



in such a way thatp) = 0. For instance, ifa, > a; amount smaller tham logm;. By doing so, an ISF: can
and q;, > qi, the subscriber assigns, = 0 amount always receive positive revenue because the subscriber wil
of traffic to ISP k. The difference between utilities of receive a higher utility if ISP is subscribed to.
including and excluding ISR is: Theorem 4: At any equilibrium,R; > 0,Vk € K. In other
words, all ISPs receive positive revenue at any equilibrium
u(s) - U(SK_ {k}) p Proof: Proof b)_/ contradiction.. Suppoge, = 0,3k € K.
_ w Z log my: — Z b For ISPk, we consider the following two cases:
= e 1) R; = 0 because ISR is not in any of the subscriber’s
feasible sets.

K K . .
ISP k can set its charging parameters{ig, = 0, g}, =
o . I, y 4k
w Z log m Z k 0,b, = wlogmy — 6} , wherewlogmy > § > 0 to
k'=1,k'#£k k'=1,k'#£k

increase its revenue. Note that the subscriber’s utility is
maximized if ISPk is included in the feasible sets since
wlogmy — b, =6 > 0.

R; = 0 and ISPk is in some of the subscriber’s feasible
sets.

Similarly, ISPk can set its charging parameterstd, =
0,q, = 0,0, = wlogmy — 6}, wherewlogmy > § >

0, and the subscriber’s utility is maximized if ISPis

still included in the feasible sets. Then I$Hs able to

wlogmy — b,
0.

Therefore, no matter how, and g, change, the sub- 2)

scriber’s utility is always maximized by using all ISPs
as providers, while ISR cannot increase its revenue by
settingd), = by.

b;, > bi. The subscriber has the option to choose from
two possible feasible setS and S — {k} in this case.

. - ! ! increase its revenue from 0 tologmy, — 6.
Note that we implicitly apply our previous assumption

that the subscriber chooses as many ISP as possibégherefo,re’ ISPrI]c. can incc;fease ,itﬁ revenugl.tt)))./ taking the
when maximizing its utility. Specifically, the subscribe2°V€ actions. This contradicts with our equilibrium aspum

o tion. [ |
has the same utility on any subset®f- {k}. .
Similarly, we know that the subscriber can always Theorem 4 above shows that every ISP has positive revenue

distribute the traffic in such a way thafp;, = 0 no yvhgn we consider the comp_etitioq amon_g.all ISPS‘. It ‘?‘ISO
matter how ISPk changess, andgy. We co'mpute the |nd|cates_that new ISPs have incentives to join the compput _
difference of utilities onS and S — {k} as follows: and obtain a share of the t.otall revenue. However, it is still
not clear how the revenue is distributed across ISPs, or, an
US)-U(S —{k}) equivalent question is that what an ISP should do in order to
K K
(w Z log my — Z bkr>

3)

increase its revenue in the game.
Next, we show that the revenue an ISP receives at any equi-

k=1 k=1 librium is determined by both its own reliability of service
K K and the weight of the subscriber’s preference of relighilit
—lw D logmp— D b Specifically, we prove the following theorem:
k'=1,k'#k k'=1,k'#k Theorem 5: At any equilibrium, Ry, = wlogmy,Vk € K.

Proof: Theorem 3 shows that there exist (non-unique)
equilibria, whereR;, = wlogmy, Vk € K. We now prove that
this property indeed holds for every equilibrium.

wlogmy — b,
0.

<

Therefore, the subscriber chooses {k} as the feasible
set, and ISF receives zero revenue by increasing
Therefore, we have found an equilibrium. Furthermore,
is obvious to see thafay = 0,qx = 0.95,b;, = wlogmy} is

The proof follows from the fact that if an ISP charges the
subscriberR;, < wlogmy, then it must be included in all of
ipe feasible sets of the subscriber, because by includiRg: 1S
in the feasible set, the subscriber always increases ltg/uti

Suppose at an equilibrium, a particular I$Rcharges the
subscriberR;, < wlogmy, then ISPk can increase its charge
] o by a small positive amourit As long asRy. + 0 < wlog my,
C. Properties of Equilibria ISP k can be sure that it will be included in all of the feasible
Given the results of existence and non-uniqueness of egsits of the subscriber. Thus 1&Pcan increase its revenue to
libria, we consider a more challenging and important pnoble R, + ¢, which contradicts with our equilibrium assumption.
in this subsection: what properties does an equilibriuneRav  On the other hand, suppose that at an equilibrium, a partic-
In particular, we are interested in understanding how thaar ISPk charges the subscribét;, > wlogmy if the sub-
revenue is distributed across ISPs at an equilibrium. scriber uses ISR as a provider. This leads to a contradiction:
We first show that every ISP has positive revenue at aifyP k receives zero revenue because the subscriber has higher
equilibrium by proving Theorem 4. We summarize our inutility by excluding ISPk from the feasible set; however, ISP
tuition of the proof as follows. Any ISF: can attract the k can increase its revenue by charging the subscritieg m;,
subscriber’s subscription by charging the subscriber sdtime if the subscriber takes it as a provider. This contradict wi

another equilibrium. Therefore, there exist multiple diqua.
[ |



our equilibrium assumption. Note that here we assume tlaitarging models, while our work studies the percentileeHas
the subscriber uses as many ISPs as possible when therecherging model which is widely used by today’s ISPs. We
multiple utility-maximizing feasible sets. believe analysis using a realistic charging model can pivi
B much needed insight in understanding the implications of
A couple of comments follow. multihoming.
First, by considering both reliability and cost, we showttha
ISPs receive positive revenue in the competition; thesgfor _ )
new providers have incentives to join the competition and !n this paper, we study two related problems — which
share the total revenue. subset of ISPs a user subscribes to to minimize cost, and
Second, at any equilibrium, an ISP’s revenue is joinﬂpqvv_ ISPs respond to the user’s selection by changing their
determined by that ISP’s reliability and the subscribersght Pricing strategies. Our results show that a user can apgly th
of preference. Therefore, ISPs have incentives to impriosie t dynamic programming algorithm to effectively reduce itstco
reliability by upgrading their networks. On the other hand résponse to users’ cost optimization, ISPs will adapir the
the subscriber also benefits from the competition among. ISPECING strategies. Using the percentile-based chargindeh
By adijust relative preference between reliability and cast Which is widely used by today’s ISPs, we formulate the pgcin
subscriber can trade reliability for cost, or vice versar ORProblem as a non-cooperative game. Our results show that if
results indicate that the wide deployment of multihoming caf0St is the only criterion used by a user to determine which

be beneficial to the global Internet, since it provides itives ISPs to subscribe to, at any equilibrium all ISPs receive zer
to ISPs to improve their reliability. revenue. To be more practical, we consider the case where

different ISPs provide different levels of reliability, dhusers
VI. RELATED WORK choose ISPs to both improve reliability and reduce cost. In

We classify the related work into four areas: analysis dfis case, at any equilibrium an ISP’s revenue is positivé an

VII. CONCLUSION

multihoming benefits, algorithm design for smart routingletermined by its reliability.

implementation techniques for smart routing, and Internet
pricing.

There are several papers that evaluate the potential trenefitR
of smart routing, including [1], [13], [28], [29]. For exarap ac
in [1], Akella et al. quantify the potential performance an
reliability benefits of multihoming using real Internet des,
and conclude that a careful choice of upstream providers is
crucial. Daiet al. quantify the potential economic benefits to [1]
both subscribers and ISPs [13]. Our work differs from the
above in that we use both cost and performance as metrics [(2)f
interest.

The potential performance and economic benefits of smart
routing motivate research studies on designing algoritfons [3]
smart routing €.9., [1], [3], [15], [21], [23]). For example,
Akella et al. [3] propose and evaluate a series of schemes
to optimize the performance of multihomed users. In [15{4]
the authors design smart routing schemes to dynamicalis/]
distribute traffic among different external links to optaaicost  [6]
and performance. They also study the interactions between
multiple smart routing users, and between smart routing al
single-homed users. Our work is complementary to the above
work in that both of the above work consider the case where
users have already decided which ISPs to subscribe to, aberd’
in this paper we study the ISP subscription problem. Moreovéo]
we analyze the implications of users’ cost minimization 8R | 10}
pricing strategies.

On the implementation side, [8], [11], [18], [26], [31]
propose implementing smart routing using BGP peeringll
whereas F5 Networks [14] and Radware [25] implement smart
routingusing DNS and NAT. [12]

Finally, there is a large body of literature on Internet joric
strategies and competitior.d., [5], [6], [7], [10], [12], [17],
[19], [20], [22], [30], [32]). These papers consider abstra

[13]
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APPENDIX

ag: the unit price of ISPk.

amin(Z;): the minimum unit price of all ISPs in sef;,
i.€, amin(Z;) = min{ay |k’ € Z;}.

by: the base price of ISR.

ci. the cost function of ISR. We assume that;, is a
linear non-decreasing function.

¢(S): the minimum total cost of subscribing to all ISPs

in setS (single-homing whensS| = 1).

F: the set of all feasible sets of ISPs which the subscriber
obtains by applying our subscription algorithm. A feasi-
ble set is a set of ISPs that the subscriber pays minimum

cost to deploy multihoming over all possible setsiin
There may exist multiple feasible sets.

I: the total number of intervals in a charging period.
K: the set of all ISPsi.e, K = {1, ..., K}, whereK is
the total number of ISPs. We ugeas the index.

my. my = Al—k is the mean time to failure (MTTF) of ISP
k.

. na(

N: N = |F] is the number of feasible sets.
N, the number of feasible sets iA that contain ISF.
N_,: the number of sets itF that do not contain ISR.
N_x =N — Ng.
ny: the number of feasible sets containing 1$Pand
having maximum unit price over allv; sets which
contain ISPk. In other words,n, = [{Zilamin(Z;) =
max{amin(Z;)|j =1,..., N}}|.
i): the number of ISPs in séf; that have the same
unit price asa. n,(Z;) = [{arlar = a,k € Z;}|.
pr: the charging volume of ISR, (i.e., pr = qt(Tk, qx))-
For example, if IS charges at 95th-percentile, thgp
is the 95th-percentile of the traffic assigned to IGP
pr(S): the charging volume of ISR € S when the
subscriber subscribes to all ISPs in the feasibleSset
p(S): the aggregated charging volume of ISPs in Set
p(S) = Vo(5).
qr: the charging percentile of ISR, eg., ¢, = 0.95 if
an ISP charges at 95th-percentile.
qt(X,q) : the [¢ * | X[]-th value in X¢qteq (Or O if
q < 0), where X¢gieqis X sorted in non-decreasing
order, and X| is the number of elements iX.
Ry, the total expected revenue of ISP
tk’] the volume of traffic distributed to ISR during
interval i. Let time seriesl}, = {tgj | 1 <i<I}. Note
thatV =", T} (with vector summation).
U: the set of all subsets df. i/, denotes the set of all
subsets ofC containingk.
U(Z): the subscriber’s utility function on a sgtof ISPs.
U(Z) = w) e logmg — >, ck. The subscriber’s
objective in ISP pricing problem isaxzcy U(Z).
vlil : the total traffic volume during intervall
V: time series of traffic volume® = {vl! | 1 <i < T}.
Vo(S): Vo(S) = qt(V,1 — Y, 24), WhereS C K is
a subset of ISPs,
w: the weight of the subscriber’s preference of reliability
over cost.
Z;. the enumeration of all the feasible sets/h Here
ie{l,..,N}.

. def
ZEk. 2k = 1-— qk -
A the instantaneous failure rate of 1%P We consider
constant failure rate in this paper.



