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Abstract— Multihoming is a popular method used by large
enterprises and stub ISPs to connect to the Internet to reduce
cost and improve performance. Recently researchers have studied
the potential benefits of multihoming and proposed protocols
and algorithms to realize these benefits. They focus on how to
dynamically select which ISPs to use for forwarding and receiving
packets, and assume that the set of subscribed ISPs is given
a priori. In practice, a user often has the freedom to choose
which subset of ISPs among all available ISPs to subscribe
to. We call the problem of how to choose the optimal set of
ISPs the ISP subscription problem. In this paper, We design a
dynamic programming algorithm to solve the ISP subscription
problem optimally. We also design a more efficient algorithm
for a large class of common pricing functions. Using real traffic
traces and realistic pricing data, we show that our algorithm
reduces users’ cost. Next we study how ISPs respond to users’
optimal ISP subscription by adjusting their pricing strategies.
We call this problem the ISP pricing problem. Using a realistic
charging model, we formulate the problem as a non-cooperative
game. We first prove that if cost is the only criterion used by
a user to determine which subset of ISPs to subscribe to, at
any equilibrium all ISPs receive zero revenue. We then study
a more practical formulation in which different ISPs provid e
different levels of reliability and users choose ISPs to both
improve reliability and reduce cost. We analyze this problem
and show that at any equilibrium an ISP’s revenue is positive
and determined by its reliability.

I. I NTRODUCTION

Multihoming is a popular method used by large enterprises,
stub ISPs, and even small businesses to connect to the Inter-
net [34]. A user is said to be multihomed if it has multiple
external links (either to a single provider, or to different
providers). According to a study by CAIDA [9], as of June,
2004, 51% of stub ASes are multihomed. When a multihomed
user actively controls how its traffic is distributed among its
multiple links, we say that it implementssmart routing. Smart
routing is also referred to as route optimization, or intelligent
route control.

In the past few years, there has been significant research
on evaluating and realizing the benefits of multihoming. For
example, in [1], [2], Akellaet al. quantify the benefits of
multihoming and show that selecting the right set of providers
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yields performance improvement. In [15], Goldenberget al.
propose smart routing algorithms to distribute traffic among
multiple links to optimize both cost and performance. A
recent economic analysis shows that smart routing has the
potential to benefit not only the end users, but also the service
providers [13]. Many companies are actively developing com-
mercial products to realize the benefits of multihoming (e.g.,
Internap, Proficient, Radware, RouteScience).

Although these previous studies have made much progress
in realizing the potential benefits of multihoming, two impor-
tant problems remain unaddressed. First, most of the previous
studies focus on how to dynamically select which ISPs to use
for forwarding and receiving packets, and do not consider the
ISP subscription problem (i.e., how to determine which ISPs
among all available ISPs to subscribe to). Second, the freedom
for users to choose ISPs introduces competitions among ISPs.
ISPs will respond to users’ selections by adjusting their pricing
strategies. We call this problem the ISP pricing problem.
While there is a large volume of literature on pricing and
competition, most are based on abstract pricing models. There
is no previous study on this problem using realistic Internet
pricing models.

To address the above issues, we first study the ISP sub-
scription problem. We develop an optimal algorithm using
dynamic programming to minimize a user’s cost. Based on
the observation that many pricing functions are concave due
to diminishing marginal returns, we design a more efficient
algorithm for this class of functions. Using real traffic traces
and realistic pricing data, we show that our algorithm reduces
a user’ cost by up to 24% compared with a greedy heuristic,
and by up to 100% compared with random subscription.

Next we study the ISP pricing problem. Using the realistic
percentile-based charging model, we formulate the problem
as a non-cooperative game. We prove that if cost is the only
criterion used by a user to determine which ISPs to subscribe
to, all ISPs receive zero revenue at any equilibrium. We then
study a more practical formulation of the ISP pricing problem
in which different ISPs provide different levels of reliability
and users choose ISPs to both improve reliability and reduce
cost. We analyze this problem and show that an ISP’s revenue
is positive and determined by its reliability at any equilibrium.
This result suggests that when users use multihoming to both
improve reliability and reduce cost, the increasingly wide



deployment of multihoming can be beneficial to the global
Internet, since it provides incentives for the ISPs to improve
their reliability and thus benefits users.

Our key contributions can be summarized as follows:� We design a dynamic programming algorithm to solve
the ISP subscription problem optimally. We also design
a more efficient algorithm for concave pricing functions.
We demonstrate the effectiveness of the general algorithm
using real traffic traces and realistic pricing data.� We study the effects of multihoming on ISPs by formulat-
ing the ISP pricing problem as a non-cooperative game
using a realistic charging model. We prove that if cost
is the only criterion used by a user to determine which
ISPs to subscribe to, all ISPs receive zero revenue at any
equilibrium.� We also study a more general formulation in which
different ISPs provide different levels of reliability and
users choose ISPs to both improve reliability and reduce
cost. We show that an ISP’s revenue is positive and
determined by its reliability at any equilibrium.

The rest of this paper is organized as follows. In Section II,
we describe the network and charging models. In Section III,
we propose dynamic programming algorithms to solve the ISP
subscription problem. In Section IV, we study the ISP pricing
problem when cost is the only criterion. In Section V, we
investigate a more general formulation, in which differentISPs
provide different levels of reliability. In Section VI, we review
related work. Finally we conclude the paper in Section VII.

II. N ETWORK AND CHARGING MODELS

We start with a description of our network and ISP charging
models.

A. Network Model
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Fig. 1. An illustration of a user withK service providers.

A multihomed user has multiple links to the Internet for
sending and receiving traffic, as shown in Fig 1. The imple-
mentation techniques of distributing traffic to the links are dif-
ferent for outgoing and incoming traffic. For outgoing traffic,
a border router inside the user’s network can actively control
how traffic is distributed. For incoming traffic, a user can use
NAT, BGP prepending, BGP selective announcement, and/or
DNS to control the routes. For more detailed discussions about
the implementations, we refer the readers to [1], [8], [11],[15],
[16], [31]. In this paper, we consider only outgoing traffic.

B. Charging Models

Users pay ISPs for using their service. The cost incurred to a
user is usually based on the amount of traffic a user generates,
i.e., 
ost = 
(p), where p is a variable determined by a
user’s traffic (which we will term thecharging volume) and
 is a non-decreasing function which mapsp to cost. Various
charging models differ from one another in their choices of
charging volumep and cost function
.

Usually, the cost function
 is a piece-wise linear (non-
decreasing) function, which we will use for our design and
evaluation. There are several ways in which the charging
volume p can be determined. Percentile-based charging and
total-volume based charging are both in common use.

In this paper, we focus on percentile-based charging. This
is a typical usage-based charging scheme currently in use by
many ISPs [27]. Under this scheme, an ISP records the traffic
volume a user generates during every 5-minute interval. At
the end of a complete charging period, theq-th percentile of
all 5-minute traffic volumes is used as the charging volumep
for q-percentile charging. More specifically, the ISP sorts the
5-minute traffic volumes collected during the charging period
in ascending order, and then computes the charging volumep
as the traffic volume in the(q%� I)-th sorted interval, whereI is the total number of intervals in a charging period. For
example, if 95th-percentile charging is in use and the charging
period is 30 days, then the cost is based on the traffic volume
sent during the 8208-th (95%�30�24�60=5 = 8208) sorted
interval.

III. T HE ISP SUBSCRIPTIONPROBLEM

In this section, we first develop optimal algorithms to
solve the ISP subscription problem. Then we demonstrate the
effectiveness of our algorithms using real traffic traces and
realistic pricing data.

A. Problem Formulation

The ISP subscription problem can be stated as follows:
Given a setK = f1; : : : ;Kg of ISPs with cost functions
k and
charging percentilesqk, wherek 2 K, find a subsetS � K of
ISPs that minimizes the user’s total cost

Pk2S 
k(pk), wherepk is the charging volume of ISPk. Formally,minS Xk2S 
k(pk)
subject to S � K: (1)

Compared with the cost optimization problem formulated
in [15], the ISP subscription problem is different in that [15]
assumes that the ISP subscription decision has already been
made, so all ISPs can be used, while in our ISP subscription
problem the user has the freedom to select a subset of ISPs to
use in order to minimize cost. A user can benefit from selecting
a subset of the ISPs if the ISPs charge non-zero base prices.



TABLE I

NOTATIONSK The set of all ISPs,i.e., K = f1; : : : ;Kg, whereK is
the total number of ISPs.
k The cost function of ISPk. We assume that
k is a non-
decreasing function.I The number of time intervals in a charging period.v[i℄ The total traffic volume during intervali. Let time seriesV = fv[i℄ j 1 � i � Ig.t[i℄k The volume of traffic distributed to ISPk during intervali. Let time seriesTk = ft[i℄k j 1 � i � Ig. Note thatV =Pk Tk (with vector summation).qk The charging percentile of ISPk, e.g., qk = 0:95 if an
ISP charges at 95th-percentile.zk zk def= 1� qk.qt(X; q) Thedq�jXje-th value inXsorted(or 0 if q � 0), whereXsortedis X sorted in non-decreasing order, andjXj is
the number of elements inX.pk The charging volume of ISPk, (i.e., pk = qt(Tk ; qk)).
For example, if ISPk charges at 95th-percentile, thenpk
is the 95th-percentile of the traffic assigned to ISPk.V0(S) V0(S) def= qt(V; 1 �Pk2S zk), whereS � K is a
subset of ISPs, andV is the time series of the total traffic
volumes of a user.

B. A Dynamic Programming Algorithm

Table I introduces the notations we will use. We define
aggregated charging volume and total peak percentile as
follows. Suppose a user subscribes to a setS of ISPs, then
the user’s aggregated charging volume is defined as the sum
of pk, i.e.,

Pk2S pk, and the user’s total peak percentile is
defined as the sum ofzk, i.e.,

Pk2S zk, wherezk = 1� qk.
Assume a user subscribes to a set of ISPs, denoted asS.
Then aggregated charging volume and total peak percentile
satisfy the following two properties [15]. First, if the cost
functions
k of all ISPs inS are non-decreasing, then the user’s
minimum total cost

Pk2S 
k(pk) is also a non-decreasing
function of the user’s aggregated charging volume. Second,the
user’s aggregated charging volume has a lower bound, which
is V0(S) def= qt(V; 1 �Pk2S zk), whereqt is the quantile
function, andV is the time series of the user’s total traffic
volume. The lower bound is achievable when each ISP has
sufficient bandwidth to handle the user’s traffic by itself. Below
we will focus on this scenario, since multihoming is often used
to provide high reliability – even when all other ISPs fail, a
user can still use the single remaining ISP to carry out its
traffic.

Based on the above properties, now we reformulate the ISP
subscription problem as in eqn:isp2.minS Xk2S 
k(pk)

subject to S � KXk2S pk = V0(S): (2)

The reformulation in eqn:isp2 allows us to design efficient
optimal algorithms.

Instead of solving the ISP subscription problem for a fixedK, we first generalize the problem. LetK = f1; : : : ;Kg be
the set of all ISPs. LetC(n; k; p; z) denote the minimum cost
when the user has aggregated charging volumep, total peak
percentilez, and subscribes to no more thank out of the firstn ISPsf1; : : : ; ng. Formally,C(n; k; p; z) = minS Xk2S 
k(pk)

subject to S � f1; : : : ; ngjSj � kXk2S pk = pXk2S zk = z: (3)

Note that for some combinations ofn, k, p, and z, there
may not be anyS � K that satisfies all of the constraints. In
such cases, we defineC(n; k; p; z) = +1.

Given the definition ofC(n; k; p; z), we have that the
solution to eqn:isp2 isminz C(K;K; qt(V; 1 � z); z). Thus
we can solve the ISP subscription problem eqn:isp1 if we can
computeC(n; k; p; z) efficiently.

The generalization allows us to observe thatC(n; k; p; z)
satisfies the recurrence relation shown in eqn:dp1, assuming
that the cut points on the cost functions are all integers. This
recurrence relation leads naturally to a dynamic programming
algorithm. The algorithm solves the ISP subscription problem
optimally when there is no capacity constraint (i.e., each ISP
can handle the user’s traffic by itself).

Now, we analyze the complexity of the algorithm. Its
time complexity isO(K2ZP 2), and its space complexity isO(KZP ), whereZ is the total number of choices ofz, andP is the total number of choices ofp. The percentilez is
of the form i=I , whereI is the total number of intervals in
a charging period, andi is an integer between0 and I . So
we haveZ = I . Since the input specifies the user’s traffic
in each interval to decide the charging volumes, the input
complexity is linear inI , instead oflog I . In the worst case,
the dynamic programming algorithm is exponential for general
pricing functions. In practice, however, the cost functions are
usually piece-wise linear or step functions with very coarse-
grained cut points, soP is usually small. In addition, it is
easy to use discretization to make tradeoffs between precision
versus computational time and space complexity.

C. Polynomial-time Dynamic Programming Algorithm for
Concave Functions

If the ISP’s cost functions are concave (as is often the
case), we can specialize the preceding dynamic programming
algorithm to design a more efficient, polynomial-time algo-
rithm. First, for concave cost functions, we have the following
observation:



C(n; k; p; z) = minn C(n� 1; k; p; z)min0�y�p(
n(y) + C(n� 1; k � 1; p� y; z � zn)) (4)C(n; k; p; z) = min( C(n� 1; k; p; z)
n(0) + C(n� 1; k � 1; p; z � zn)
n(p) + C(n� 1; k � 1; 0; z � zn) (5)

Lemma 1: Let S = f1; : : : ; ng be a set ofn ISPs. If the
total cost function
(p1; : : : ; pn) is concave, then the following
minimization problemminp1;:::;pn 
(p1; : : : ; pn)

subject to
nXk=1 pk = p > 0pk � 0 8k 2 S (6)

has an optimal solution in which the charging volumespk are0 for all but one ISP.
Proof: Denote by ek the k-th unit vector. Suppose(p1; : : : ; pn) is an optimal solution. Since

Pnk=1 pkp = 1, we
have
(p1; : : : ; pn) = 
(Pnk=1 pkek) = 
(Pnk=1 pkp (p ek)) �Pnk=1 pkp 
(p ek) = Pnk=1 pk 
(p ek)p , where the inequality is
due to the concavity of
.

Let k� = argmink 
(p ek)p , we have
Pnk=1 pk 
(p ek)p �Pnk=1 pk 
(p ek� )p = 
(p ek�). In addition,p ek� also satisfies

the constraint in eqn:concaveopt; sopk� = p, andpk = 0;8k 6=k� is an optimal solution to eqn:concaveopt:
Given the above lemma, we observe that if all cost functions
k are concave, then for any subsetS = f1; : : : ; ng of ISPs,

the user’s total cost
(p1; : : : ; pn) = Pnk=1 
k(pk) is also
concave. Applying Lemma 1 to the second case of eqn:dp1,
we have that the minimum occurs either wheny = 0 ory = p. Therefore, we do not need to search fory all the
way from0 to p. Instead, we only need to compare the user’s
total cost wheny = 0 with that wheny = p. This leads
to a new recurrence relation shown in eqn:dp2. Notice that
now, in order to computeC(K;K; qt(V; 1 � z); z), instead
of having to computeC(n; k; p; z) for all p values as in
eqn:dp1, we only need to computeC(n; k; p; z) values forp =qt(V; 1 � z) and p = 0. Therefore, a dynamic programming
algorithm based on the recurrence relation in eqn:dp2 has time
complexityO(K2Z) and space complexityO(KZ), which are
both polynomial.

D. Greedy Subscription

The greedy algorithm chooses a set ofk ISPs, denoted asSk, as follows. In the first iteration, it examines all ISP sets
with size no larger thanr (r � k), and selects the one which
yields the lowest cost. In the second iteration, it searchesfor
a new ISP to add which in conjunction with the ISPs already
picked yields the lowest cost. It iterates untilk ISPs have
been chosen. Herer is a tuning parameter of the algorithm,
and all ISP sets with size no larger thanr are exhaustively
searched. Ifr = n, all subsets are searched, and hence the
solution is optimal; however, in this case, its complexity is
much higher than the dynamic programming algorithm. Using
different values ofr can trade off running time for solution
quality. In our evaluation, we setr = 1.

E. Random Subscription

The random subscription algorithm randomly chooses a
specified number of ISPs under the constraint that the total
bandwidth of the subscribed ISPs is large enough to accom-
modate the user’s traffic. In our evaluation, we run the random
subscription algorithm 20 times and report the average.

F. Evaluations

In this subsection, we evaluate the performance of our ISP
subscription algorithms using two sets of Abilene traffic traces.
The traces contain netflow data from an institution (National
Institutes of Health) and an enterprise (Red Hat Inc.) on the
Internet-2 from October 8, 2003 to January 6, 2004. In our
evaluations, We scale each set of traffic traces such that each
ISP can handle the traffic by itself.

In each evaluation scenario, there are 10 ISPs and 1 sub-
scriber. The 10 ISPs have 5 different pricing functions as
shown in Fig. 2. Each pricing function has 2 ISPs associated
with it. The shape of the pricing functions reflects the general
pricing practice of decreasing unit cost as bandwidth increases;
it is also consistent with the pricing functions we are awareof
( e.g., [4], [24]). We refer readers to [15] for more details. The
subscription cost is computed based on the 95-th percentileof
the subscriber’s traffic during each month.
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Fig. 2. The complex OC3 pricing functions.

We compare our optimal subscription algorithm against the
random subscription algorithm and the greedy subscription
algorithm. In our first set of experiments, we assume that the
user knows its traffic volume in advance. Fig. 3 compares
the total cost incurred using the three subscription algorithms
as we vary the number of ISPs the user subscribes to. We
present here the results using traces obtained in December
2003. Results using other months’ traces show the same
relative ranking of the three algorithms. Random subscription
continues to do much worse than the optimal, while the
difference between the greedy and the optimal algorithms is
much smaller.

We make the following observations. First, as expected, our
optimal subscription algorithm yields the lowest cost in all



cases. The random subscription algorithm incurs about 50%
higher cost on average for both traces, and leads to more than
100% higher cost in worst cases, especially when subscribing
to a small number of ISPs. The greedy subscription yields
similar cost to the optimal algorithm in most cases, but could
lead to up to 24% higher cost in worst cases. Second, we
observe that adding ISPs initially helps reduce the total cost;
as the number of ISPs increases further, the cost increases.
To explain this, we note that an ISP’s cost involves two
components: base charge and usage-based charge. Adding
ISPs initially helps to accommodate burstiness of the traffic,
thereby reducing usage-based charge. The initial reduction in
usage-based charge is large enough to offset the additional
ISPs’ base charge. As the number of subscribed ISPs increases
further, the reduction in usage-based charge becomes smaller
than additional base charge. Therefore the total cost increases
with additional ISPs.
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Fig. 3. Comparison of the three subscription algorithms. Traces are obtained
in December 2003.

In our second set of experiments, we study the case where
the user does not know its traffica priori, but predicts one
month’s traffic based on the previous month’s traffic and
applies the three subscription algorithms to the predictedtraf-
fic. We call this scheme predicted subscription. We compare
the results with the optimal subscription that knows traffic
in advance. We present the results using trace obtained in
November to predict the traffic of December 2003, as shown
in Fig. 4. Results using other months’ traces are similar.

We observe that our optimal subscription algorithm using
predicted traffic performs fairly well. It performs close to
the optimal algorithm under perfect knowledge about traffic
patterns, and much better than the random subscription algo-
rithm. In most cases, uncertainty in traffic patterns yieldsless
than 5% cost increase on average for the optimal subscription
algorithm. The greedy algorithm performs close to the optimal
in most cases, but could lead to 24% higher cost in the worst
case.

Although our evaluation shows that the greedy subscription
algorithm performs reasonably well in most cases, it is worth
noting that its worst case approximation ratio is unbounded
for r < n� 1, as shown below. Considerr + 2 ISPs that are
available for subscription, and they all use 100-th percentile
charging with the following pricing functions,
1(p) = A; (7)
i(p) = � B if p < V=r;2A if p � V=r; i = 2; : : : ; r + 2; (8)

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3
x 10

4

# of subscribed ISPs

M
on

th
ly

 C
os

t (
$)

optimal subscription
predicted subscription
random subscription
greedy subscription

(a) National Institutes of Health

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3
x 10

4

# of subscribed ISPs

M
on

th
ly

 C
os

t (
$)

optimal subscription
predicted subscription
random subscription
greedy subscription

(b) Red Hat Inc.
Fig. 4. Impact of traffic fluctuation on subscription algorithms for December
2003. Prediction is based on traffic of November 2003.

whereA � B > 0, andV is the user’s peak traffic volume.
The greedy algorithm starts by exhaustively searching overall
ISP sets within sizer.

The optimal subscription cost is(r + 1)B. In comparison,
the greedy algorithm first selects ISP 1, since all other ISP
sets of size withinr have higher cost. Its final subscription is
no less thanA, since ISP 1 is included in the final selection.
So the ratio between the greedy solution and optimal solution
is no less thanA=(r + 1)B, which is unbounded. The above
analysis can easily be generalized to the case of more thanr + 2 available ISPs by having
j(p) = 3A for j > r + 2.

To summarize, in this section we develop a dynamic pro-
gramming algorithm for solving the ISP subscription problem,
and demonstrate its effectiveness using real traffic traces.

IV. T HE ISP PRICING PROBLEM

Our ISP subscription algorithm allows users to choose a
subset of ISPs to subscribe to and minimize their costs. In
response, ISPs may adjust their prices to maximize their
revenue. How ISPs will adjust their prices is an interesting
question because it helps us understand the evolution of In-
ternet multihoming. In this section, we formulate the problem
as a non-cooperative game and prove that, if cost is the only
criterion used by a user for ISP subscription, all ISPs receive
zero revenue at any equilibrium.

A. Problem Formulation

To make our game theoretical analysis more realistic, we use
the realistic percentile-based charging model in our formula-
tion. Using this model makes our analysis more involved, but
we believe the results can be more relevant. In our formulation,
we focus on the case where multiple ISPs compete for a single
subscriber. Hereafter, we use subscriber and user interchange-
ably. We assume a special structure of pricing functions: ISPk receives revenue by charging the subscriber
k = akpk+ bk
if it is selected by the subscriber, and0 otherwise. Hereak
is the unit price;pk is the charging volume determined by
the charging percentileqk and time series of the subscriber’s
traffic assigned to ISPk; andbk is the base price.

We now define the game formally. The players of the game
are a setK = f1; 2; :::;Kg of ISPs. The action space of
player k is R+ � R+ � [0; 1℄. Specifically, a player adjusts
its charging parametersfak; bk; qkg, whereak; bk 2 R+, and0 � qk � 1, such that its revenue is maximized. When an



ISP changes its charging parameters, it should consider how
the subscriber and the other ISPs will respond. Specifically,
there exists competition among ISPs, and the subscriber takes
advantage of our subscription algorithm to select a set of ISPs
to minimize cost. It is worth noting that, since all pricing
functions are concave, when subscribing to a setS of ISPs,
the subscriber always allocates traffic in such a way that only
ISPs inS with minimum unit cost can have non-zero charging
volume.

To state our assumptions clearly, we first introduce some
more terms. We call the set of ISPs computed by our sub-
scription algorithm as a feasible set. An ISP in a feasible set
is called a feasible ISP. There may exist multiple feasible sets.
Let F denote the set of all feasible sets. Note that a subscriber
has equal cost on any feasible set of ISPs. Letamin(S) denote
the minimum unit price of all ISPs in a setS, andna(S) the
number of ISPs having the same unit price asa in setS. Note
that S may have multiple ISPs with the same minimum unit
price. For a complete list of notations we use hereafter, please
refer to the Appendix.

Finally, we explicitly make the following assumptions in the
analysis below:� We assume that each feasible set has equal probability

of being selected by the subscriber. We also assume that
when the subscriber is multihomed to a feasible ISP setS,
the aggregated charging volume trafficp(S) is distributed
evenly across those ISPs with minimum unit price.� We assume that each of the ISPs has enough capacity
to accommodate all of the subscriber’s traffic, and that
the total amount of traffic that the subscriber generates is
bounded. We also assume that each ISP only charges a
finite price and can adjust its unit price and base price in
an infinitesimal amount.� We assume that there is perfect information sharing
among the subscriber and ISPs; that is, each of them
has perfect information about the others when making
decisions.

B. Summary of Results

Our analysis based on the percentile-based charging model
is quite involved. In the interest of clarity, we first summarize
our results and the structure of our analysis.

The main result of this section is that an action profile
of the ISP pricing problem is an equilibrium if and only if
all ISPs receive zero revenue in the outcome. It is obvious
that any action profile with an outcome in which all ISPs
receive zero revenue is an equilibrium of the game, since if an
ISP unilaterally increases its price, the subscriber can always
switch to other ISPs that charge zero; thus the revenue of the
ISP is not increased.

The remaining challenge then is to prove that all ISPs
receive zero revenue at any equilibrium. We first show that
at any equilibrium, either all ISPs receive zero revenue or
all of them receive positive revenue. There does not exist
an equilibrium in which some ISPs receive zero revenue
while others receive positive revenue. Therefore, we only

need to show that there does not exist an equilibrium with
positive revenue for all ISPs, which we call a positive-revenue
equilibrium. To do so, we derive the following properties that
a positive-revenue equilibrium should have. We first show that
a subscriber is not able to free-ride all providers (pay onlythe
base price), and that any feasible ISPk must have a unit price
equal to the maximum of all positive minimum unit prices
of all of the feasible sets containing ISPk, at any positive-
revenue equilibrium. We then show that a feasible ISP can
reduce its unit price by a small amount without introducing
any new feasible set with the same minimum cost. We then
prove that any ISPk in a feasible set must have the unique
minimum unit price in that set. Using these properties, we
prove that there exists no positive-revenue equilibrium.

C. Equilibrium Analysis

We consider an arbitrary ISPk. Without loss of generality,
we assumek appears in feasible setsZi2f1;:::;Nkg. Note that
there must exist at least one such set thusNk � 1. Also,
there areN�k � 0 feasible sets that do not containk, andN = Nk+N�k is the total number of feasible sets. We sortZi
in non-increasing order ofamin(Zi). Let Si2f1;:::;Nkg denote
the sorted sets. Without loss of generality, we assume thatS1; :::; Snk have the same minimum unit price, and denote this
minimum unit price bya. Apparently,amin(Sj) = a;8j 2f1; :::; nkg, and ak � a. In addition, a subscriber has equal
cost on all feasible sets of ISPs; that is,
(Si);8i 2 f1; :::; Nkg,
are equal and we denote it by
min. We denote byRk the total
revenue of ISPk.

We first notice that at any equilibrium, either all ISPs or
none of them receives positive revenue:

Theorem 1: At any equilibrium, eitherRk = 0;8k 2 K, orRk > 0;8k 2 K.
Proof: Proof by contradiction. AssumeRk = 0; Rk0 >0; k 6= k0. Then ISPk can increase its revenue from 0 to some

positive value by reducing its charge to the minimum ofRk0
(e.g., by settingak = 0; qk = 0, andbk = mink0 Rk0 ), which
leads to a contradiction.

The above theorem tells us that there does not exist an
equilibrium in which some ISPs receive zero revenue while
others receive positive revenue. Now we only need to show
that there does not exists an equilibrium with positive revenue
for all ISPs. Therefore, in the remaining part of this subsection,
we consider only these positive-revenue equilibria.

Next we show the first property of a positive-revenue
equilibrium: the subscriber is not able to free-ride all providers
at a positive-revenue equilibrium.

Lemma 2: At any positive-revenue equilibrium, there exists
at least oneSk0 2 F such thatp(Sk0) > 0, for somek0 2f1; :::; nkg.

Proof: Proof by contradiction. Assume thatp(Sk0 ) =0;8k0 2 f1; :::; nkg. Then we havepk = 0. Therefore, ISPk’s
total revenue is Rk = NkNk +N�k bk:



We first prove that
min > bk. Suppose that
min = bk, thenbj = 0 for an arbitrary ISPj 2 Sk0 , for somek0 2 f1; :::; nkg.
We consider the following two cases:

1) all feasible sets contain ISPk. Then any other feasible
ISP j receives zero revenue sincebj = 0 and pj = 0
(becausep(Sk0) = 0;8k0 2 f1; :::; nkg). This contra-
dicts with Theorem 1.

2) some feasible sets do not contain ISPk. Then ISPk can
setak = 0 and choose a small positive value� < N�kNk +N�k bk
so that it can attract all of the user’s traffic and receive
revenueR0k = bk � � > Rk.

Therefore, we have
min > bk.
We next show that ISPk can increase its revenue by

reducing its base pricebk. Because all original feasible sets
of ISPs have equal costs and
min > bk we can find a small
positive valueÆ satisfyingÆ < 
min � NkNk +N�k bk
such that ISPk can setbk = 
min � Æ to increase its revenue
to R0k = 
min� Æ > Rk. Therefore we derive a contradiction.

Next we study the second property of a positive-revenue
equilibrium: any feasible ISPk must have the same unit price
as all other ISPs in feasible sets containingk.

Lemma 3: At a positive-revenue equilibrium,ak = a if a >0.
Proof: Proof by contradiction.

Assumeak > a. We compare the expected revenue of ISPk before and after lettingak = a.
The expected revenue of ISPk whenak > a isRk = NkNk +N�k bk;

since each of theN feasible sets is chosen by the subscriber
with equal probability, and ISPk receivesbk revenue when
any setSi2f1;:::;Nkg is chosen (recall that the subscriber runs
smart routing algorithm to optimize cost such that all ISPs inSi with unit price higher thanamin(Si) have zero charging
volume; therefore, the charging volume of ISPk is 0).

We next consider the expected revenue of ISPk, R0k, after
letting ak = a, in the following three cases:

1) There are no new feasible sets introduced by ISPk’s
action. Then we haveR0k = 1Nk +N�k  a nkXk0=1 p(Sk0 )na(Sk0 ) + bkNk! :
Therefore,R0k �Rk = aNk +N�k nkXk0=1 p(Sk0)na(Sk0) :
Sincea > 0, we only need to show thatp(Sk0) > 0 for
somek0 2 f1; :::; nkg. Applying Lemma 2, we know

that 9k0 2 f1; :::; nkg such thatp(Sk0) > 0. Therefore,R0k > Rk.
2) There areN 0k � 1 new feasible sets with the same total

cost as
min introduced by settingak = a.
Denote these new sets byS0i;8i 2 f1; :::; N 0kg. Note that
ISP k’s unit price must be the minimum unit price of
all ISPs inS0i. Then the expected revenue of ISPk isR0k = 1Nk +N 0k +N�k  a nkXk0=1 p(Sk0)na(Sk0) + bkNk!+ 1Nk +N 0k +N�k 0�a N 0kXk0=1 p(S0k0) + bkN 0k1A> Nk +N 0kNk +N 0k +N�k bk> NkNk +N�k bk:
Note that the first inequality is derived by applying
Lemma 2 and the fact thata > 0.

3) There areN 0k � 1 new feasible sets with total cost
0min < 
min introduced by settingak = a. Denote
these new sets byS0i; i 2 f1; :::; N 0kg. Note that none of
the old feasible sets inF is feasible now since they have
higher cost. Note also thatk 2 S0i;8i 2 f1; :::; N 0kg.
Therefore, the expected revenue of ISPk isR0k = aN 0k N 0kXk0=1 p(S0k0)na(S0k0 ) + bk:
Then by applying Lemma 2 and the fact thata > 0, we
have R0k �Rk > N�kNk +N�k bk � 0:

Apparently, we have contradictionR0k > Rk in all cases.
Therefore,ak = a if a > 0 at a positive-revenue equilibrium.

The above lemma shows that a feasible ISPk is not able to
increase its revenue by increasing its unit price. However,it
is still unknown if it is possible for ISPk to increase revenue
by reducing its unit price. We show below (Lemma 4) that a
feasible ISP can reduce its unit price by a small amount such
that all feasible sets remain unchanged; based on this lemma,
we then prove by contradiction that a feasible ISP can reduce
its unit price by a small amount to increase its revenue, if that
unit price is not the unique minimum (Lemma 5).

Lemma 4: At a positive-revenue equilibrium, ifak > 0,
there exists a small number� > 0 such that ISPk can reduce
its unit price toak � � without introducing any new feasible
sets.

Proof: Consider the sets inUk �F , whereUk is the set
of all subsets ofK containing ISPk. Note that we can safely
drop those sets that do not contain ISPk since they are not
affected by ISPk’s action of reducingak.

For any setZ 2 Uk �F , we show that we can find a small
value � such that
(Z) is still larger than
min after ISPk



reduces its unit price toak � �. Note that whenUk �F = �,
no new feasible set is introduced by ISPk’s reducing its unit
price.

SupposeZ = fk; u1; :::; ulg 2 Uk �F . Therefore, we have
(Z) > 
min. Let 
(Z) and 
0(Z) denote the expected total
cost of the subscriber before and after ISPk reduces its unit
price, respectively, if the subscriber uses ISPs inZ as the
providers. Now we derive the condition for� such that
0(Z) >
min.

Note that
(Z) = akpk + bk + Xk02fu1;:::;ulg(ak0pk0 + bk0)
and
0(Z) = akp̂k � �p̂k + bk + Xk02fu1;:::;ulg(ak0 p̂k0 + bk0);
wherepk0 and p̂k0 are the charging volumes of ISPk0 before
and after ISPk reduces its unit price, respectively.

Consider three cases as follows.� case 1:ak � � is not the minimum unit price in setZ.
Then we have
(Z) = 
0(Z) > 
min sincep̂k = pk = 0.� case 2:ak� � is the minimum unit price whileak is not.
Then we can reduce� such thatak � � is no longer the
minimum unit price and this case degenerates to case 1.� case 3: bothak � � andak are the minimum unit price.
Then we havep̂k = pk � 0 (we have equality here
becausep(Z) � 0); therefore,
(Z) = 
0(Z) > 
min.

Let �Z denote the appropriate� value for a setZ satisfying
the above conditions. Therefore, we can always find an� by
taking the minimum of all�Z .

Lemma 5: At a positive-revenue equilibrium, ifak > 0 anda > 0, then ak = a is the unique minimum unit price inSi;8i 2 f1; :::; Nkg.
Proof: Proof by contradiction. Assume at a positive-

revenue equilibrium,ak is not the unique minimum unit price
in Si;8i 2 f1; :::; nkg:

By applying Lemma 3, we haveak = amin(S1) = amin(S2) = ::: = amin(Snk ) = a:
By applying Lemma 4, we can find� > 0 such that no new

feasible set is introduced by reducing ISPk’s unit price toak � �.
Now we compare the revenue received by ISPk before and

after ISPk reduces its unit price. The revenue received before
the reduction ofak isRk = 1Nk +N�k  ak nkXk0=1 p(Sk0)na(Sk0) +Nkbk! :

The revenue afterak is reduced toak � � isR0k = ak � �nk nkXk0=1 p(Sk0) + bk;
because

1) the setsSnk+1; :::; SNk are no longer feasible because
the user has lower cost onS1; :::; Snk and the user will
subscribe to these sets; therefore, ISPk receives no
revenue from the setsSnk+1; :::; SNk ;

2) all of the setsSNk+1; :::; SN that do not containk are
no longer feasible because the user has smaller cost on
setsS1; :::; Snk ;

3) we have chosen� carefully such that no new set is
introduced by reducingak; therefore, ISPk receives no
revenue from other sets inU � F .

Next, we compareR0k andRk by considering the following
two cases:

1) N > 1: sinceN � Nk, we note that if� < N �NkN bkPnkk0=1 p(Sk0 ) + ak nkXk0=1(1� nkN );
then R0k > Rk (the right-hand side of the above in-
equality is always positive). Therefore, we could choose� such that the above condition is satisfied, which leads
to a contradiction.

2) N = 1: ThenN = Nk = 1, and we have one single
feasible setS1 (k 2 S1). If jS1j = 1, then we already
have ak = amin(S1) and ak is the unique minimum
unit price; otherwise, we can choose a small positive
value� satisfying the preceding inequality and derive a
contradiction.

Finally, we prove the property of any equilibrium based on
the preceding lemmas.

Theorem 2: At any equilibrium, every ISPk has zero
revenue.

Proof: Proof by contradiction.
By applying Theorem 1, we know that there can be only two

possible cases: (1)Rk = 0;8k 2 K, or (2) Rk > 0;8k 2 K.
Therefore, we only need to prove that the second case does
not show up in any equilibrium.

For an arbitrary ISPk, Rk > 0, ISP k must be in some
feasible set. We next consider the case where ISPk is in some
feasible set. Specifically, we examine the following two cases:

1) a > 0.
By applying Lemma 5,ak = a is the unique minimum
unit price in all of the setsSi2f1;:::;Nkg. Therefore, all
the sets with non-zero minimum unit price can have only
one single ISP. Then we only need to considerN > 1
since whenN = 1 it is trivial to show that each ISPk
has zero revenue.
Assume ISPk has positive revenueRk; therefore,
min > 0. Then, ISPk can lower its price to increase its
revenue. Let
min denote the revenue of each feasible
set with a single ISP. Then we haveRk = 
minN :
ISP k can lower its charge to
min � Æ, whereÆ > 0 is
a small number, and receives revenueR0k = 
min � Æ:



Since 
min > 0, we are always able to find aÆ <N�1N 
min such thatR0k > Rk. This leads to a contra-
diction.

2) a = 0.
Note that in this casebk = 0, because otherwise the
subscriber can dump all traffic to the ISP with zero
unit price in Si without using ISPk, which means
thatRk = 0 and leads to contradiction. Therefore, ISPk is not in Si;8i 2 f1; :::; nkg. By the assumptionRk > 0, ISP k should be in any feasible set since
the subscriber can assign free-riding traffic to ISPk
(by making charging volume zero) without incurring
any extra cost. Therefore, all feasible sets containingk
should have zero minimum unit price andk is in all of
these sets; otherwise, it contradicts with our assumption
that a = 0.

Therefore, we prove that all ISPs receive zero revenue at
any equilibrium if cost is the only criterion used by a user to
determine which subset of ISPs to subscribe to.

V. RELIABILITY AND THE ISP PRICING PROBLEM

We have shown in the previous section that if the only
difference among ISPs is pricing, then all ISPs receive zero
revenue at any equilibrium. However, in reality, pricing is
not the only difference among ISPs, and cost is not the
only concern of subscribers, either. Subscribers also consider
many other factors,e.g., reliability, ease of management, and
security. In particular, reliability is a major motivationfor the
deployment of multihoming.

Given the importance of both cost and reliability, we
investigate a more realistic formulation of the ISP pricing
problem: how ISPs respond to multihomed subscribers when
the subscribers optimize both cost and reliability.

A. Problem Formulation

Similar to the previous section, we formulate the problem
as a non-cooperative game. We consider the percentile-based
charging model and focus on the case where multiple ISPs
compete for a single subscriber. The players, action spaces,
and ISPs’ revenue-maximization objectives are the same as
those of the previous section.

The major difference between this formulation and the pre-
ceding formulation is that we consider both cost and reliability.
Specifically, the subscriber takes advantage of our subscription
algorithm and smart routing algorithms to minimize cost
and maximize reliability. To characterize the objective ofthe
subscriber, we define a utility function of the subscriber ona
subsetS of ISPs as follows:U(S) = wXk2S logmk �Xk2S 
k;
where�k is the instantaneous failure rate of ISPk, mk = 1�k is
the mean time between failures (MTBF) of ISPk, andw > 0
is the weight of the subscriber’s preference of reliabilityover
cost. We consider finite constant mean time between failures

in this paper. The weightw reflects how much the subscriber is
concerned with reliability. The higher the weight is, the more
the subscriber prefers reliability over cost. The subscriber’s
objective is to choose a subset of ISPs such that its utility is
maximized:maxS2U wPk2S logmk�Pk2S 
k. We assume
that the subscriber always chooses as many ISPs as possible
when maximizing its utility,e.g., when the subscriber has equal
utility over multiple feasible sets of ISPs, the subscriberprefers
to multihome to ISPs in the largest set in order to improve
reliability.

Note that our formulation and approach can be easily ex-
tended to consider other metrics that subscribers are concerned
with.

B. Analysis of Existence and Non-uniqueness of Equilibrium

Given our non-cooperative game-theoretic formulation, we
will prove the existence and non-uniqueness of equilibrium
of the game in this section. The intuition of our proof is
that no matter how ISPs change their charging parameters,
the subscriber excludes a particular ISPk from subscription if
that ISP charges more thanw logmk, because the subscriber’s
utility becomes less if ISPk is included in subscription.

Formally, we have the following theorem stating the exis-
tence and non-uniqueness of equilibrium:

Theorem 3: There exist multiple equilibria in the ISP pric-
ing game.

Proof: We first show thatfak = 0; qk = 0; bk =w logmkg;8k 2 K; is an equilibrium. Note that the subscriber
has zero utility and uses all ISPs as providers. LetS denote
the set of ISPs used (i.e., all ISPs) in this scenario. We look
at all of the possible actionsfa0k; q0k; b0kg taken by an arbitrary
ISP k:

1) b0k < bk. We first consider the case where ISPk changes
its base price only. In this case,w logmk � b0k > 0 and
the subscriber’s utility is maximized by including all
ISPs as providers. However, ISPk’s revenue decreases.
We next consider the cases where ISPk changes its unit
price and/or charging percentile simultaneously. Note
that no matter howak andqk change, the subscriber can
always distribute the traffic in such a way thata0kp0k = 0.
For instance, ifpk > 0 anda0k > 0, then the subscriber
re-distributes traffic such thatp0k = 0 and incurs no extra
cost. This is achievable because all of the other ISPs
have zero unit price. Therefore, no matter howak andqk change, the subscriber’s utility is always maximized
by using all ISPs as providers, while ISPk’s revenue
decreases.

2) b0k = bk. There are three cases to be considered:a0k > ak
andq0k = qk; a0k = ak andq0k > qk; a0k > ak andq0k >qk. We present the proof for the last case here and the
proof for the first and second cases can be constructed
similarly. The intuition of our proof is that the subscriber
can always dump all aggregated charging volume trafficp(S) to the ISP with zero unit price such that no extra
cost is incurred. Therefore, no matter howak and qk
change, the subscriber can always distribute the traffic



in such a way thata0kp0k = 0. For instance, ifa0k > ak
and q0k > qk, the subscriber assignsp0k = 0 amount
of traffic to ISPk. The difference between utilities of
including and excluding ISPk is:U(S)� U(S � fkg)=  w KXk0=1 logmk0 � KXk0=1 bk0!�0�w KXk0=1;k0 6=k logmk0 � KXk0=1;k0 6=k b0k01A= w logmk � b0k= 0:
Therefore, no matter howak and qk change, the sub-
scriber’s utility is always maximized by using all ISPs
as providers, while ISPk cannot increase its revenue by
settingb0k = bk.

3) b0k > bk. The subscriber has the option to choose from
two possible feasible setsS andS � fkg in this case.
Note that we implicitly apply our previous assumption
that the subscriber chooses as many ISP as possible
when maximizing its utility. Specifically, the subscriber
has the same utility on any subset ofS � fkg.
Similarly, we know that the subscriber can always
distribute the traffic in such a way thata0kp0k = 0 no
matter how ISPk changesak andqk. We compute the
difference of utilities onS andS � fkg as follows:U(S)� U(S � fkg)=  w KXk0=1 logmk0 � KXk0=1 bk0!�0�w KXk0=1;k0 6=k logmk0 � KXk0=1;k0 6=k b0k01A= w logmk � b0k< 0:
Therefore, the subscriber choosesS�fkg as the feasible
set, and ISPk receives zero revenue by increasingbk.

Therefore, we have found an equilibrium. Furthermore, it
is obvious to see thatfak = 0; qk = 0:95; bk = w logmkg is
another equilibrium. Therefore, there exist multiple equilibria.

C. Properties of Equilibria

Given the results of existence and non-uniqueness of equi-
libria, we consider a more challenging and important problem
in this subsection: what properties does an equilibrium have?
In particular, we are interested in understanding how the
revenue is distributed across ISPs at an equilibrium.

We first show that every ISP has positive revenue at any
equilibrium by proving Theorem 4. We summarize our in-
tuition of the proof as follows. Any ISPk can attract the
subscriber’s subscription by charging the subscriber withsome

amount smaller thanw logmk. By doing so, an ISPk can
always receive positive revenue because the subscriber will
receive a higher utility if ISPk is subscribed to.

Theorem 4: At any equilibrium,Rk > 0;8k 2 K. In other
words, all ISPs receive positive revenue at any equilibrium.

Proof: Proof by contradiction. SupposeRk = 0; 9k 2 K.
For ISPk, we consider the following two cases:

1) Rk = 0 because ISPk is not in any of the subscriber’s
feasible sets.
ISP k can set its charging parameters tofa0k = 0; q0k =0; b0k = w logmk � Æg , wherew logmk > Æ > 0 to
increase its revenue. Note that the subscriber’s utility is
maximized if ISPk is included in the feasible sets sincew logmk � b0k = Æ > 0.

2) Rk = 0 and ISPk is in some of the subscriber’s feasible
sets.
Similarly, ISPk can set its charging parameters tofa0k =0; q0k = 0; b0k = w logmk � Æg, wherew logmk > Æ >0, and the subscriber’s utility is maximized if ISPk is
still included in the feasible sets. Then ISPk is able to
increase its revenue from 0 tow logmk � Æ.

Therefore, ISPk can increase its revenue by taking the
above actions. This contradicts with our equilibrium assump-
tion.

Theorem 4 above shows that every ISP has positive revenue
when we consider the competition among all ISPs. It also
indicates that new ISPs have incentives to join the competition
and obtain a share of the total revenue. However, it is still
not clear how the revenue is distributed across ISPs, or, an
equivalent question is that what an ISP should do in order to
increase its revenue in the game.

Next, we show that the revenue an ISP receives at any equi-
librium is determined by both its own reliability of services
and the weight of the subscriber’s preference of reliability.
Specifically, we prove the following theorem:

Theorem 5: At any equilibrium,Rk = w logmk;8k 2 K.
Proof: Theorem 3 shows that there exist (non-unique)

equilibria, whereRk = w logmk;8k 2 K. We now prove that
this property indeed holds for every equilibrium.

The proof follows from the fact that if an ISPk charges the
subscriberRk < w logmk, then it must be included in all of
the feasible sets of the subscriber, because by including ISP k
in the feasible set, the subscriber always increases its utility.

Suppose at an equilibrium, a particular ISPk charges the
subscriberRk < w logmk, then ISPk can increase its charge
by a small positive amountÆ. As long asRk+ Æ < w logmk,
ISPk can be sure that it will be included in all of the feasible
sets of the subscriber. Thus ISPk can increase its revenue toRk + Æ, which contradicts with our equilibrium assumption.

On the other hand, suppose that at an equilibrium, a partic-
ular ISPk charges the subscriberRk > w logmk if the sub-
scriber uses ISPk as a provider. This leads to a contradiction:
ISPk receives zero revenue because the subscriber has higher
utility by excluding ISPk from the feasible set; however, ISPk can increase its revenue by charging the subscriberw logmk
if the subscriber takes it as a provider. This contradicts with



our equilibrium assumption. Note that here we assume that
the subscriber uses as many ISPs as possible when there are
multiple utility-maximizing feasible sets.

A couple of comments follow.
First, by considering both reliability and cost, we show that

ISPs receive positive revenue in the competition; therefore,
new providers have incentives to join the competition and
share the total revenue.

Second, at any equilibrium, an ISP’s revenue is jointly
determined by that ISP’s reliability and the subscriber’s weight
of preference. Therefore, ISPs have incentives to improve their
reliability by upgrading their networks. On the other hand,
the subscriber also benefits from the competition among ISPs.
By adjust relative preference between reliability and cost, a
subscriber can trade reliability for cost, or vice versa. Our
results indicate that the wide deployment of multihoming can
be beneficial to the global Internet, since it provides incentives
to ISPs to improve their reliability.

VI. RELATED WORK

We classify the related work into four areas: analysis of
multihoming benefits, algorithm design for smart routing,
implementation techniques for smart routing, and Internet
pricing.

There are several papers that evaluate the potential benefits
of smart routing, including [1], [13], [28], [29]. For example,
in [1], Akella et al. quantify the potential performance and
reliability benefits of multihoming using real Internet traces,
and conclude that a careful choice of upstream providers is
crucial. Daiet al. quantify the potential economic benefits to
both subscribers and ISPs [13]. Our work differs from the
above in that we use both cost and performance as metrics of
interest.

The potential performance and economic benefits of smart
routing motivate research studies on designing algorithmsfor
smart routing (e.g., [1], [3], [15], [21], [23]). For example,
Akella et al. [3] propose and evaluate a series of schemes
to optimize the performance of multihomed users. In [15]
the authors design smart routing schemes to dynamically
distribute traffic among different external links to optimize cost
and performance. They also study the interactions between
multiple smart routing users, and between smart routing and
single-homed users. Our work is complementary to the above
work in that both of the above work consider the case where
users have already decided which ISPs to subscribe to, whereas
in this paper we study the ISP subscription problem. Moreover
we analyze the implications of users’ cost minimization on ISP
pricing strategies.

On the implementation side, [8], [11], [18], [26], [31]
propose implementing smart routing using BGP peering,
whereas F5 Networks [14] and Radware [25] implement smart
routingusing DNS and NAT.

Finally, there is a large body of literature on Internet pricing
strategies and competition (e.g., [5], [6], [7], [10], [12], [17],
[19], [20], [22], [30], [32]). These papers consider abstract

charging models, while our work studies the percentile-based
charging model which is widely used by today’s ISPs. We
believe analysis using a realistic charging model can provide
much needed insight in understanding the implications of
multihoming.

VII. C ONCLUSION

In this paper, we study two related problems — which
subset of ISPs a user subscribes to to minimize cost, and
how ISPs respond to the user’s selection by changing their
pricing strategies. Our results show that a user can apply the
dynamic programming algorithm to effectively reduce its cost.
In response to users’ cost optimization, ISPs will adapt their
pricing strategies. Using the percentile-based charging model
which is widely used by today’s ISPs, we formulate the pricing
problem as a non-cooperative game. Our results show that if
cost is the only criterion used by a user to determine which
ISPs to subscribe to, at any equilibrium all ISPs receive zero
revenue. To be more practical, we consider the case where
different ISPs provide different levels of reliability, and users
choose ISPs to both improve reliability and reduce cost. In
this case, at any equilibrium an ISP’s revenue is positive and
determined by its reliability.
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APPENDIX� ak: the unit price of ISPk.� amin(Zi): the minimum unit price of all ISPs in setZi,
i.e., amin(Zi) = minfak0 jk0 2 Zig.� bk: the base price of ISPk.� 
k: the cost function of ISPk. We assume that
k is a
linear non-decreasing function.� 
(S): the minimum total cost of subscribing to all ISPs
in setS (single-homing whenjSj = 1).� F : the set of all feasible sets of ISPs which the subscriber
obtains by applying our subscription algorithm. A feasi-
ble set is a set of ISPs that the subscriber pays minimum
cost to deploy multihoming over all possible sets inU .
There may exist multiple feasible sets.� I : the total number of intervals in a charging period.� K: the set of all ISPs,i.e., K = f1; :::;Kg, whereK is
the total number of ISPs. We usek as the index.� mk: mk = 1�k is the mean time to failure (MTTF) of ISPk.

� N : N = jFj is the number of feasible sets.� Nk: the number of feasible sets inF that contain ISPk.� N�k: the number of sets inF that do not contain ISPk.N�k = N �Nk.� nk: the number of feasible sets containing ISPk and
having maximum unit price over allNk sets which
contain ISPk. In other words,nk = jfZijamin(Zi) =maxfamin(Zj)jj = 1; :::; Nggj.� na(Zi): the number of ISPs in setZi that have the same
unit price asa. na(Zi) = jfakjak = a; k 2 Zigj.� pk: the charging volume of ISPk, (i.e., pk = qt(Tk; qk)).
For example, if ISPk charges at 95th-percentile, thenpk
is the 95th-percentile of the traffic assigned to ISPk.� pk(S): the charging volume of ISPk 2 S when the
subscriber subscribes to all ISPs in the feasible setS.� p(S): the aggregated charging volume of ISPs in setS.p(S) = V0(S).� qk: the charging percentile of ISPk, e.g., qk = 0:95 if
an ISP charges at 95th-percentile.� qt(X; q) : the dq � jX je-th value in Xsorted (or 0 ifq � 0), whereXsorted is X sorted in non-decreasing
order, andjX j is the number of elements inX .� Rk: the total expected revenue of ISPk.� t[i℄k : the volume of traffic distributed to ISPk during
interval i. Let time seriesTk = ft[i℄k j 1 � i � Ig. Note
thatV =Pk Tk (with vector summation).� U : the set of all subsets ofK. Uk denotes the set of all
subsets ofK containingk.� U(Z): the subscriber’s utility function on a setZ of ISPs.U(Z) = wPk2Z logmk �Pk2Z 
k. The subscriber’s
objective in ISP pricing problem ismaxZ2U U(Z).� v[i℄ : the total traffic volume during intervali.� V : time series of traffic volumesV = fv[i℄ j 1 � i � Ig.� V0(S): V0(S) def= qt(V; 1 �Pk2S zk), whereS � K is
a subset of ISPs,� w: the weight of the subscriber’s preference of reliability
over cost.� Zi: the enumeration of all the feasible sets inF . Herei 2 f1; :::; Ng.� zk: zk def= 1� qk.� �k: the instantaneous failure rate of ISPk. We consider
constant failure rate in this paper.


