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ABSTRACT

Behavioral Targeting (BT) in the past few years has seen a great up-

surge in commercial as well as research interest. To make advertis-

ing campaigns more effective, advertisers look to target more rele-

vant users. Ad-networks and other data collectors, such as, Cellular

Service Providers (CSPs), hold a treasure trove of user information

that is extremely valuable to advertisers. Moreover, these players

may have complimentary sets of data. Combining and using data

from different collectors can be very useful for advertising. How-

ever, in the trade of data among the various players, it is currently

unclear how a price can be attached to a certain piece of informa-

tion. This work contributes (i) a MOdel of the Value of INformation

Granularity (MoVInG) that captures the impact of additional infor-

mation on the revenue from targeted ads in case of uniform bidding

and (ii) an expression that is applicable in more general scenarios.

We apply MoVInG to a user data-set from a large CSP to evaluate

the financial benefit of precise user data.

1. INTRODUCTION
The budget invested in Behavioral Targeting (BT) in the year

2012 is estimated to be $4.4 billion [6]. In the year 2009, 24%
of online marketers used BT [7] a 50% increase from the previous

year. Studies show that the conversion rates (i.e., fraction of people

who buy an item/service after seeing its ad) of targeted advertise-

ments are twice that of the non-targeted ones [5].

In order to make targeting more effective for advertisers, ad-

networks not only collect user data, e.g., browsing behavior, demo-

graphics, etc., but also trade the user-data with each other (while

adhering to their privacy terms and conditions) [8, 14]. However, it

is unclear what price tag can be attached to a certain piece of infor-

mation. For example, what is the impact of finer-granularity user-

data on the conversion rate and consequently on the revenue that

ad-networks might expect from targeted ads? Consider, for exam-

ple, a car dealer in San Francisco, California, who wants to adver-

tise a special offer available to people living in her city. A data-set

with coarse-granularity, e.g., with residence information at the state

level, is of less use compared to a data-set that has city level infor-

mation. In fact, ads placed using the state-level data-set will likely

reach many people not interested in the offer. Consequently, the

conversion rate for ads placed based on the finer-grained data-set

will likely be higher and thus such a data-set is more valuable.

Currently, most of the user profiles are collected by partner net-

works of the web services that the users visit. By combining the

history of the user footprints at each partner service, the players in
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the ad industry form a picture of the user’s profile. This service-side

profiling method lacks ways to combine information from multi-

ple devices, multiple browsers, and web services that are not part-

ners in profile collection. There are other players, e.g., ISPs, CSPs,

who can build rich and fine-grained user data-sets by profiling their

users. This network-side profiling can be extremely valuable for

targeting because as long as a user is on the same edge ISP (or

CSP), her data can be collected regardless of her devices, OSes,

services, etc. However, in order for these players to take full advan-

tage of the benefit their data can offer, they must be able to properly

price it. This work devises a MOdel of the Value of INformation

Granularity (MoVInG) by deriving expressions to quantify the im-

pact of such fine-grained data on the revenue from advertising.

Challenges: Estimating the benefit of fine-grained user data is

challenging due to the following reasons: (1) lack of measures for

data quality that take into account different granularities for vari-

ous attributes; (2) several factors affecting competition among ad-

vertisers, e.g., different advertisers are interested in placing ads on

overlapping sets of users based on different attributes; (3) several

proprietary components, e.g., targeting algorithm. MoVInG does

not relate the impact of user data on the revenue to information

granularity explicitly, which can be extremely challenging given

the variety of aggregation levels of different attributes. Instead,

MoVInG derives the relationship between revenue from user data

and the number of redundant users that might be included in a target

set due to the lack of fine-grained information.

Contributions: (i) We derive MoVInG to capture the difference

in revenue resulting from different data-sets, considering a pay-

per-impression payment model where advertisers pay based on the

number of ads (impressions) shown (Section 2.1). We assume a

single-sided auction market for ad slots, where advertisers draw

bids from a uniform distribution. (ii) We validate the obtained

model by simulating the auction under both the assumption of uni-

form bid distribution and more general bidding behaviors. Since

the information granularity value as computed by MoVInG refers

to a specific bidding scenario, (iii) we present a way of deriving

a more general expression, based on few input parameters and we

show that it fits the simulation results very well (Section 2.2). Fi-

nally, (iv) we present concrete examples of the gain in revenue due

to improved user-data precision using the traffic trace of a large

North-American CSP (Section 3).

2. REVENUE MODEL
Let D be a more precise data-set that has finer-grained informa-

tion than a less precise D′. To quantify the impact of improved

precision, we want to derive the difference in the revenue of the

ad-network when ad targeting is based onD versusD′.

Figure 1 shows a schematic view of the players in the targeted ad-



Figure 1: Advertisement placement architecture.

Notation Details

D Precise data-set
D′ Imprecise data-set
A Number of advertisers
U Total number of users in the system (inD andD′)
Q Advertisers’ query on user attributes in the data-set

SQ(S′
Q) User-set returned by query onD,Q(D) (D′,Q(D′))

S(S′) Expected size of SQ (S′
Q) over all queries

c(c′) Cost per impression/click when usingD (D′)
ai Attribute i of user information
vi Value for attribute i selected by queryQ
L Loss of revenue (between c and c′)

n(n′) Number of advertisers competing per slot inD (D′)
r Maximum possible bid of an advertiser

Table 1: Notations.

vertising architecture. Publishers ownwebsites (e.g., nytimes.com),

generate the content for them, and reserve ad spaces termed as slots.

Advertisers (e.g., car dealer in San Francisco) are interested in get-

ting the attention of the viewers of the web pages towards their

items/services by displaying ads. Ad-Networks (e.g., Google Ad-

Sense) are intermediaries deciding which ad is shown on which

publisher’s page. We consider the following ad placement archi-

tecture: (1) advertisers specify the user population they are inter-

ested in by means of a query Q (i.e., they are interested in users

satisfying Q). Q specifies the values that selected user attributes

must have in order for the advertiser to be interested in a user; (2)

the ad-network returns a list of users SQ or S′
Q who best match the

query Q(D) or Q(D′), depending on whether the ad-network by
itself or along with a partner data collector owns D or D′ and (3)

the advertisers, in turn, bid on the web page visits by any of the SQ

or S′
Q users, and the winning advertiser’s ad is placed on the pub-

lisher’s pages. Note that our findings are general and are applicable

in other ad-placement scenarios e.g., where ad-network carries out

the ad-placement directly on the pages visited by the users.

Next we define the terms used. Valuation is the amount adver-

tisers consider an ad is worth and, consequently, it determines their

bids. Bid is the maximum amount an advertiser is willing to pay

to display an ad. Revenue is the gross income of an ad-network

resulting from targeted advertising before any expense deductions

and the cut to the publishers. Table 1 summarizes our notations.

2.1 Information Value Model
We identify two factors that affect ad-networks’ revenue: (i) val-

uation of the advertisers for the impression, which goes lower with

imprecise data-set, as explained in Section 1; and (ii) amount of

competition during the auction of each ad slot, which goes higher

with imprecise data-set. For example, consider the user sets re-

turned to one car dealer in San Francisco and another in Los An-

geles, both interested in local customers. They are disjoint when

based on data-set D (which has city level information for user lo-

cation), hence advertisers do not compete for any slot. However,

with D′ (which has only state level information), both advertisers

are returned a set of all users in California and consequently they

compete in advertising to common users. This artificial competi-

tion actually improves ad-networks’ revenue.

In the derivation, we adopt an incremental approach and at first

consider an advertisement placement that is not based on auctions

and next consider ad auction scenarios.

Fixed Price Advertisements: Let’s consider a fixed cost c and

c′ that an advertiser pays for target users based on data-set D and

D′, respectively. When using D′, ads are displayed to users who

are actually not in the target audience because SQ ∈ S′
Q. Hence

impression cost c′ < c. We assume c′ = c ∗ S
S′ , the intuition being

that the advertiser will be willing to pay only for the fraction of ads

shown to the real target audience, i.e., the fraction of the users in

S′
Q that also belong to SQ. Hence loss of revenue per impression:

L = c− c
′ = c(1−

S

S′
) (1)

Auction-based Advertisements: We derive MoVInG in the auc-

tion scenario described below to capture artificial competition.

• Second price auction (or Vickrey auction) [15], where each im-

pression is auctioned off separately. From the revenue equiv-

alence theorem, the expected revenue at equilibrium is equal

to the expected revenue from a first price auction. In a sec-

ond price auction, the winner is the bidder who bids the highest

amount, but only pays the second highest bidder’s bid amount.

This incentivizes bidders to bid their true valuations [13].

• Bids drawn form uniform distribution U(0, r) (relaxed later).

This assumption has been used in [12, 3].

• When targeting is based on a less precise data-set D′, the con-

version rate decreases proportionally to S
S′ . Although in gen-

eral advertisers may resort to very complex strategies to esti-

mate the value of their ads (and to formulate their bids), it is

fair to assume that a decrease in conversion rate will be trans-

lated in a corresponding decrease in bids: b′ = b ∗ S
S′ . This

does not affect the value and generality of MoVInG as it can

be easily modified to accommodate the actual function that the

advertisers use to set their bids.

In this auction scenario, the ad-networks’ revenue is the expected

second maximum from the bid distribution. Since the actual bids

are drawn from a uniform distribution in the range [0, r] (i.e., U(0, r)),
the expected second maximum is a simple derivation known from [11].

ForD this results in a cost per impression c = n−1
n+1

∗ r, where n is

the average number of advertisers competing for an impression, r

is the maximum possible bid of an advertiser. Let the total number

of advertisers in the system be A and total number of users in the

system be U , the average competition per impression is n = A∗S
U

.

Substituting in above equation, c = A∗S−U
A∗S+U

∗ r. Similarly, with

D′: c′ = A∗S′−U
A∗S′+U

∗ r′, where r′ = r ∗ S
S′ is the new upper limit

for the range of bids. Thus c′ = A∗S′−U
A∗S′+U

∗ r ∗ S
S′ . Hence the loss

in revenue for an ad-network as given by MoVInG is:

L = c− c
′ = r ∗ (

A ∗ S − U

A ∗ S + U
−

A ∗ S′ − U

A ∗ S′ + U
∗

S

S′
) (2)

Results: Here we compare MoVInG with fixed price ad place-

ment (No Auction curve) and with simulations. Figure 3 and the

following ones plot the fraction of revenue lost by ad-networks,

i.e., the loss expression in Eq. 1 (No Auction) or Eq. 2 (MoV-

InG) or loss obtained in simulations, divided by the original rev-

enue with data-set D (obtained in that particular case). We set

A = 100, U = 1000, S = 100, and vary S′. The simulation

curves capture the contention among the A advertisers by emulat-

ing their bidding behavior as described in Figure 2.



1 Pick U users
2 PickA advertisers and assign bids picked from the chosen distribution

(e.g., uniform distribution in Fig 3)
3 for each advertiser:
4 assign S number of interested users (for data-setD)

5 assign S′ number of interested users (for data-setD′)

6 Create data structureB,B′

(for each user, all the interested advertisers for data-setsD,D′)

7 Create payment sets P and P ′

8 for each user inB:
9 P [user] = second highest bid
10 for each user inB′:

11 P ′[user] = second highest bid
12 L = average(P ) − average(P ′)

Figure 2: Pseudo code for simulation.
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Figure 3: Uniform Distribu-

tion.
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Figure 4: Varying Distribu-

tions.

In Figure 3 the Simulation Uniform curve overlaps with theMoV-

InG curve, which demonstrates the correctness of the model. The

estimated loss for ad-networks is 3%−12% higher when increased

contention is not captured. This is expected because increased con-

tention increases the revenue for the auctioneer, thus reducing the

loss. Parameter values in real world scenario may be higher than

the ones used in our numerical evaluation; however, this does not

cause any loss of generality because the results only depend on the

relative values of the parameters. We also study the effect of vary-

ing A, S and U , but omit the results in the interest of space.

Figure 4 shows the loss in revenue (using simulations) when bids

are picked from distributions other than uniform. The shape of the

loss functions are similar, but just shifted depending on the bid dis-

tribution. Three Beta distributions B(α, β) are considered with r

= 1: (i) B(1, 3), (ii) B(2, 2), and (iii) B(5, 1). The loss is higher
(48.6% with B(5, 1) vs 37% with B(1, 3) at S′ = 200) when dis-
tribution is skewed towards upper limit (i.e., α > β) as the initial

revenue from such a bid distribution is very high. No Auction still

has highest loss estimate: 50% at S′ = 200. A case where advertis-

ers draw bids from different ranges is also considered. The lower

limit and upper limit of the range are picked, for each advertiser,

uniformly between 0 and 1 and a uniform distribution within this

range is used to draw bids. The result is similar to the one obtained

with all advertisers picking bids according to a uniform distribution

with the same range (45% with same range and 46% with different

ranges at S′ = 200).

Resemblance to Monotone Hazard Rate curves: The Equa-

tions 1 and 2 are forms of 1− 1
x
, thus have a decreasing slope and

look like MHR curves which arise in a number of applications [4].

2.2 Generalized Expression
Here we derive an expression, for general bidding distributions.

Methodology: We derive the expression by fitting a large num-

ber of simulations run for different scenarios. From Eq. 2 under

uniform bidding, and furthermore from the MHR shape of the sim-

ulation curves, we find that the loss L is a polynomial function in

the following variables: S, S′, A and U . Our goal is to have a
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Figure 5: Accuracy of general expression.

model which is: (i) general and applicable to a variety of scenarios,

(ii) has low error, and (iii) is simple and does not over-fit the data.

We run simulations for varying A, S, S′ and U giving us 189

data points. We further use different bid distributions: (i) Uniform

U(0, 1), (ii) Beta B(1, 3), B(2, 2), and B(5, 1) and (iii) Uniform,
bidders have different ranges, upper and lower limits picked uni-

formly between 0 and 1. This gives total of 945 data points to fit
the model. We then write a general polynomial as

L = x1U
x2 + x3A

x4 + x5S
x6 + x7S

′x8 +

x9U
x10A

x11 + ...+

x27U
x28A

x29S
x30 + ...+

x43U
x44A

x45S
x46S

′x47 + x48

where xi’s are the unknowns and i is the index of each unknown.

The unknowns include coefficients and exponents.

We solve a non-linear optimization problem to minimize the sum

of squares of residuals. Once we obtain the coefficients and the ex-

ponents, we add additional terms to see if that helps accuracy (e.g.,

multiple exponents per term). We find that this does not improve

the accuracy. Thus, for simplicity, we use above equation.

The expression thus obtained is still quite complex and may over-

fit for the simulation results. To further simplify it, we construct a

linear system of equations and solve for x inM ∗x = b. HereM is

a matrix of terms where rows correspond to different observations

and columns correspond to different terms with exponents given by

the above step, b is a vector of the real observed losses in simula-

tions and x is a vector of unknowns specifying the new coefficients

of the terms. We try to obtain a sparse solution for x through ℓ1

norm minimization [1]. As shown in [9], the minimal ℓ1 norm so-

lution often coincides with the most sparse solution for many large

linear systems. This avoids over-fitting the data and identifies most

important factors. Thus we obtain final general model as:

L = 0.40 ∗ U0.17 + 1.69 ∗A0.11 + 0.02 ∗ S0.11 +

0.17 ∗A0.11
∗ S

0.11
−

0.17 ∗
U0.20 ∗A0.13

S′0.01
− 0.07 ∗

U0.20 ∗ S0.14

S′0.01
−

1.60 ∗
A0.10 ∗ S0.10

S′0.07
+

0.02 ∗ U0.25
∗A

0.16
∗ S

0.16
∗ S

′0.04

Note that one of the significant terms (in bold face) contains S
S′

which is not surprising as the Eq. 2 contains the same term.

Accuracy of the general expression: In Figure 5 we plot the curve

from the general expression along with the other simulation curves

considered for the fitting. This is with our default parameters. Even

though we look for a sparse solution, the accuracy of the model is

very good (i.e., within the range of B distributions).

We further quantify the error of the model, by evaluating scenar-

ios other than the ones considered for fitting. We once again vary
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Figure 6: Loss in revenue in real data-set with simple queries.

A, S, S′ and U to give 64 data points (different from ones used

for fitting). Further we run this for several bid distributions: (i)

U(0, 1), (ii) B(0.5, 0.5) and (iii) B(2, 5). We observe that the gen-

eral expression, captures the loss in revenue accurately with 6.8%

mean relative error (= 1
k
∗
∑k

i=1
abs(actual lossi−estimated lossi)

actual lossi
)

with k = 64 ∗ 3 = 192 trials.

3. TRACE DRIVEN EVALUATION
Here, we use MoVInG on a real data-set. We assume the full

data-set from a large CSP to be the most precise data-set D. We

construct synthetic D′s assuming some attributes to be absent. We

first consider simple queries, i.e., queries on single attributes.

Gender: Given 18024 users with gender information, for varying

number of advertisers, we assume 50% of advertisers are interested

in advertising to males and the rest 50% to females. If gender infor-

mation is available (D), average size of users satisfying the query

S = 18024
2

= 9012 and if gender is unavailable (D′), S′ = 18, 024.
In Figure 6 (a), we plot the loss in revenue with varying levels of

average competition. We define average competition as A∗S
U

, i.e.,

the average number of advertisers, interested in each impression

auctioned. The fact that loss of revenue with average competition

of 10 is already over 0.44means that the loss of gender information
is already cutting the revenue almost by half (it is not exactly at 0.5,
because the effect of increased artificial competition compensates

for some loss). Moreover, fractional loss increases with increase

in real competition, because at higher competition levels, artificial

competition doesn’t help as much.

Age: We vary average competition as above and assume that ad-

vertisers are interested in users of any age with equal probability.

From the data-set we have age information of 14, 348 users. We

divide them into 6 age groups 18-24, 25-34, 35-44, 45-54, 55-64,

and 65+. D is the data-set with exact age information available: S

= 196.5 and D′ is the data-set without age information available

but age group information available, S′ = 2, 391.33. In Figure 6
(b), we plot the loss in revenue comparing S and S′. We see that

loss is over 90% because the difference between S and S′ is large.

Composite Queries: Here, we consider an example composite

query, i.e., query on multiple attributes, e.g., a jeweler wants to

advertise to all users that are female and in age group 25− 34, i.e.,
query Q = (25 ≤ v(aage) < 35 ∧ v(agender) = Female).
Suppose we have advertisers, each interested in one of the 12

queries in Table 2. Also suppose universe is the people who have

age and gender information in our data-set: U = 13, 598with males
= 8, 612 and females = 4, 986. Thus average set size S′

no age if no

age group information is 6, 799. From the table, if both age group

and gender are available, average set size S = 1, 133 and average

set size S′
no gender if only age group is available is 2, 266. Fraction

of revenue lost, with S′
no gender = 0.45 and with S′

no age = 0.80
(with average competition with respect to precise set n = 10).

Queries Gender Age Group Count Total Count

Q1 Male 1 2716
4450

Q2 Female 1 1734

Q3 Male 2 2423
4317

Q4 Female 2 1894

Q5 Male 3 2559
3517

Q6 Female 3 958

Q7 Male 4 769
1106

Q8 Female 4 337

Q9 Male 5 118
169

Q10 Female 5 51

Q11 Male 6 27
39

Q12 Female 6 12

Table 2: Composite query on gender and age.

As expected, the loss is higher if age group is not available, than

when gender is not available as the S′
no age is 6× larger than S and

S′
no gender is only 2× larger than S.

4. FUTURE DIRECTIONS
Two directions will be followed in future work: first different

from the assumption in this work, the ad-network may use a strat-

egy wherein they do not include a user in the returned set if the

information required by the query is unavailable. Thus user-set re-

turned maybe smaller in case of D′ than in case of D. It will be

interesting to study the mix of these two strategies. Second, we

have ignored the strategic aspects of bidding. However, what will

be the bidding strategy of an advertiser interested inD when she is

only allowed to target D′? Recent research on game theoretic and

equilibrium analysis in presence of auctions with information [10,

2] could be used as a starting point to extend our work.
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