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ABSTRACT

The ability to discover the AS-level path between two endwso

is valuable for network diagnosis, performance optimaatiand
reliability enhancement. Virtually all existing techn&giand tools
for path discovery require direct access to the source. Mexyve
the uncooperative nature of the Internet makes it diffiutiet di-
rect access to any remote end-point. Path inference beadmés
lenging when we have no access to the source or the destinatio

Moveover even when we have access to the source and know th

forward path, it is nontrivial to infer the reverse path,cgrhe In-
ternet routing is often asymmetric.

In this paper, we explore the feasibility of AS-level path in
ference without direct access to either end-points. Weritgsc
RouteScopea tool for inferring AS-level paths by finding the short-
est policy paths in an AS graph obtained from BGP tables ciaite
from multiple vantage points. We identify two main factdnat af-
fect the path inference accuracy: the accuracy of AS relskiip
inference and the ability to determine the first AS hop. Torasisl
the issues, we propose two novel techniques: a new AS nelatio
ship inference algorithm, and a novel scheme to infer the Aigs
hop by exploiting the TTL information in IP packets. We ekl
the effectiveness dRouteScopesing both BGP tables and the AS
paths collected from public BGP gateways. Our results staw t
it achieves 70% - 88% accuracy in path inference.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols — Routing protocols

General Terms
Algorithms, Measurement, Experimentation
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Discovering network paths is valuable for network opersatord
researchers to detect and diagnose problems, study rquring-
col behavior, characterize end-to-end paths through tterret,
and optimize network performance. Moreover, several ne&tap-
plications, such as server selection and overlay routiag,bene-
fit from the knowledge of AS path length between two end-mint
since it has been shown that AS path length correlates wittanke

eoerforman(:e [11, 12]. Several tools have been developedkt® i

tify the forwarding paths, such as traceroute [7], and thelé\@l
forwarding path discovery tool [10, 9].

However, an important question remains op€an we infer AS-
level path without requiring direct access to the sourééfually
all existing techniques and tools for path discovery regjdirect
access to the source either by getting the BGP table or byléom
active probesd.g.,traceroutefrom the source. Operational experi-
ence by large ISPs along with numerous measurement stddies [
14] have shown that asymmetric routing is commonly usedn to
day’s Interneté.g.,Paxson [14] shows that about 50% routes in his
study are asymmetric). As a result, when we only have access t
the source, we can not even answer question like “what’s dlie p
in the reverse direction,e., from the destination to the source?”.
The problem becomes even more challenging when we have direc
access to neither the source nor the destination.

In this work, we investigate the feasibility of inferring A8vel
path without direct access to the source. Our approachdgesr
BGP table dumps from multiple vantage points, and publighila
able traceroute servers. To the best of our knowledge, shise
first extensive study on this subject.

1.1 Challenges

The Internet consists of over 20,000 inter-connected Aartorus
Systems (ASes) controlled by different administrative dora such
as Internet Service Providers (ISPs), corporations, usiies, and
research institutions. Different ASes interact with eatifeoin a
very complex manner through the use of Border Gateway Robtoc
(BGP). BGP allows each individual administrative domaispec-
ify its own routing policies. The enormous scale and the lgigh
heterogeneous and uncooperative nature of the Internetrhade
it a major challenge for today’s network operators to unidecs
routing protocol behavior, and diagnose problems. Oneyttiiat
would be invaluable for performance inference and faulgaa
sis is a tool that can accurately discover the AS-level pattveen
two end-points. It is challenging to identify network pattishout
direct access to end-points for the following reasons.
Asymmetric routing: The forward and reverse paths between a
pair of nodes may not be the same due to policy-based inteaito
routing and traffic engineering mechanism such as hot-poteait-
ing. Based on our extensive measurement on the AS pathsdretwe



351 public traceroute gateways and 125 BGP gateways (Taple 2
we observe that over 60% AS paths are asymmetric, 2/3 of which
differ in length {.e., AS hop counts). Our observations are consis-
tent with previous work [14], which reports 50% router-lepaths

are asymmetric. Such high degree of asymmetry at both router
level and AS-level makes it difficult to know the path in theaese
direction based on the forward path.

Complicated routing policies: The current inter-domain routing
protocol is Border Gateway Protocol (BGP), which is poldyven.
Rather than selecting the route with the shortest AS patlters
can apply complex policies to influence the selection oflibst
route for each prefix and decide whether to propagate thie tou
their neighbors. However, such routing policies are ugudster-
mined by the commercial relationship between ASes and #fe tr
fic engineering mechanism adopted within an AS. For example,
a router may prefer to use routes learned from its custorhers t
the one learned from its peers or providers. A router cousd al
prepend its AS number multiple times to discourage the rbate
ing selected as the best route by making the route look lomgen

it propagates the route to its neighbors.

Multihoming: It has become more and more common that a net-
work multihomes to multiple service providers for reliatyil per-
formance, and traffic engineering purposes. Without kngvtire
routing policies used by the multihomed network, it is veifficllt

to determine which upstream provider it selects to carrfjic¢réor

a given destination prefix at a given time.

1.2 Related Work

Understanding Internet topology is important for develepin
and evaluation of networking protocols. It has receiveddasing
interest in research community. The previous work can badiyo
classified into two categories: path discovery and topoltiggov-
ery.

Traceroute is the most widely used tool to discover endatb-e
paths. It determines the interfaces on the forwarding patselnd-
ing a sequence of TTL-limited probes. Network operatorsehien
greatly from this tool to identify forwarding loops, blaails, rout-
ing changes, and unexpected paths through the InternetNi0g
recently, [10, 9] develop techniques to discover AS-levehviard-
ing paths. Both traceroute [7] and AS path discovery tooG [1
9], however, require direct access to the source. An opestigne
which we aim to address in this paper, is how to discover end-t
end paths without direct access to the source.

A number of techniques and tools have been developed to dis-
cover the Internet or ISP topologies. For example, Mercg&pr
uses traceroute to infer an Internet map. It applies novakal
resolution heuristics and takes advantage of source-iagable
routers to enhance the accuracy of the map. Rocketfuel fiBies
several techniques to directly measure ISP topologiekjding the
use of BGP routing tables, DNS, IP routing, and alias resmiut
Their techniques have been shown to obtain fairly complgte |
maps [18]. The above active probing requires cooperatiom fr
routers €.g.,traceroute, source-routing).

Researchers have also studied how to infer topology soélgdb
on end-host measurements. For example, [3] proposes egnbto
packet-pair delay measurements to find correlation betwedes
and hence infer topology. Mahajan [8] applies tomograpased
approach to infer OSPF weights. The basic idea is to use t@anog
phy to find a feasible solution that is consistent with theeobsd
routes. It requires enough observed paths for the given uos@
probably works better for large ISPs than for smaller ones.

1.3 Our Approach

The relationships among different ASes play an importalg ro
in determining the feasible forwarding paths. One natysplt@ach
to inferring AS-level path is to leverage recent advanceneriing
AS relationship based on BGP tables taken from multipleagent
points [4, 19, 1]. While much progress have been made to under
stand AS relationships, several questions remain opemmog)to
leverage the inferred AS relationships to infer AS-levehgaand
(ii) whether existing AS relationship inference schemes aiéow
us to infer AS path with high accuracy.

In our study, we infer AS paths by finding the shortest policy
paths (i.e., the paths that conform with AS relationshipgain AS
graph obtained from BGP tables at multiple vantage pointe W
find the accuracy of AS path inference based on the existing AS
relationship inferences is limited. There are two maindeston-
tributing to the inaccuracy: the limited accuracy in exigtiAS re-
lationship inference and the wide-spread deployment ofiharh-
ing.

To address the first issue, we compare and evaluate all three e
isting AS relationship algorithms based on extensive hegemea-
surements. In addition, we propose a novel AS relationgifgr-
ence algorithm, based on which we can infer 60 - 82% AS paths
accurately (i.e., 60 - 82% of the actual paths match one oirthe
ferred paths, and a similar fraction of the actual paths méie
inferred AS path length).

To address the second issue, we develop a simple technique to
identify the first-hop AS on the path from a source to a destina
when we have access to the destination. Evaluation basedgs |
scale Internet measurements suggest that the technigfiedsve
in identifying the first-hop AS, and improve the accuracy & A
path inference to 70 - 88%.

Our major contributions can be summarized as follow.

1. We develop a toolRouteScopeto infer the AS-level for-
warding paths between two end-points without direct access
to either end-point. Our tool infers AS paths by finding the
shortest policy paths in a AS graph obtained from BGP tables

at multiple vantage points.

. We describe a novel algorithm to infer AS relationshipg- D
ferent from the previous work, we take advantage of both
valid and invalid forwarding paths to make inference.

. We propose the ability to infer AS-level path as a new roetri
to evaluate the accuracy of AS relationship inference.

4. We use a diverse set of data to evaluate several AS relation
ship inference algorithms, including ours. We extensively
evaluate the well-known AS relationship inference aldonis
to understand their accuracy and robustness in inferring AS
level paths.

5. We present a novel technique for inferring the first AS hop
by exploiting the TTL information contained in IP packet.

. We demonstrate the effectivenessRafuteScopesing both
BGP table dumps and the AS paths collected using a large
number of public BGP gateways. The results are very promis-
ing: it achieves up to 88% accuracy in AS-level path infer-
ence.

1.4 Paper Outline

The rest of the paper is organized as follows. In Section 2jeve
scribe our data measurement methodology. In Section 3 veeptre
the high-level approach of AS path inference, and evaluses-
sumptions used in our approach. In Section 4, we show that the



Organization ASN Location | Dates

in 2004
Univ. of Washington 73 WA, USA | Oct. 31
PSG home network 3130 WA, USA | Oct. 19
ArosNet 6521 UT, USA | Oct. 19
OPTUSCOM-AS01-AU 7474 Australia | Oct. 28
Williams Communications Group 7911 OK, USA | Oct. 28
Vineyard.NET 10781 MA, USA | Oct. 19
Peak Web Hosting 22208 CA, USA | Oct. 19
EUNET-FINLAND 6667 Finland | Oct. 28
COLT Telecom 8220 Europe| Oct. 19
MainzKom Telekom 15837 Germany | Oct. 28
Manila Internet Exchange 9670 Philippines | Oct. 28
Telkom SA Ltd. 5713 South Africa | Oct. 28
RIPEOO-12 many | mostly Europe| Oct. 19
RouteViews many mostly USA | Oct. 19

Table 1: Location of BGP table dumps.

existing AS relationship inference schemes yield limitedusacy
in inferring AS paths. In Section 5, we propose a novel atbari
to infer AS relationship, and show that our new algorithnpkéin-
prove AS path inference. In Section 6, we develop and ewalaat
heuristic to infer the first AS hop to further improve the aemy
of path inference. Finally, we conclude with discussion ardre
work in Section 7 and Section 8.

2. DATA COLLECTION

In this section, we describe our measurement methodolaggeS
our goal is to understand path selection and inference intiee-
net, we try to get as diverse data as possible by taking aalyant
of multiple data sources. The data we collected include B&P t
ble dumps from various locations, traceroute results ugirgicly
available traceroute servers, and BGP query results.

The BGP table dumps are obtained from a large number of lo-
cations world-wide, as summarized in Table 1. These BGRsabl
altogether give a fairly complete view of the Internet at kgel.

We also obtained BGP tables from the BGP route reflectors and
border routers at peering links of a tier-1 ISP backbone oetw
These tables allow us to evaluate the accuracy of AS pati-infe
ence. Combining all the data together results in an AS grafih w
20,699 nodes and 53,954 edges. A recent work [21] collect the
Internet AS-level topology by using BGP routing updatesddia

tion to routing tables. The number of ASes in their data is-com
parable to ours. This combined with the fact that the numlber o
ASes observed from large ISPs was around 16,000 during Novem
ber 2003 [6] suggests that our AS graph is fairly completeims

of the number of ASes. The number of edges reported in [21] is
higher, slightly over 60,000, due to the use of BGP routing up
dates. We plan to investigate in the near future the effeatrabre
complete AS graph on our results.

In addition, we obtain router-level paths by querying 35bljau
traceroute servers [20], which are spread across over Stiraes!

We have them traceroute to each other to obtain router-fmitbls
and then convert router-level paths to AS-level paths byyamp

the technique proposed in [10, 9]. To diversify our data, \ge a
obtain additional AS-level paths from a collection of 125
gateways (mostly from the LookingGlass sites listed on)[ 2@t
support BGP queryshow i p bgp”. We send out query to each
BGP gateway to obtain the AS-level paths from that gateway to
the remaining gateways. We exclude responses that statee’sto
route” or “network not in table” in our experiments.

To evaluate the accuracy of first AS hop inference, we make use

# servers| # countries| # ASes
Traceroute servers 351 50+ 304
BGP servers 125 30+ 121
PlanetLab nodes 85 18 85

Table 2: Measurement infrastructures used in our study.

of a collection of 85 PlanetLab nodes [15], and 351 publicdra
oute servers spread across over 50 countries. The locatitimsse
nodes are summarized in Table 2.

3. INFERRING AS PATHS

In this section, we describe a simple algorithm for infegrikS
paths between two end-hosts without direct access to dithetr
The algorithm leverages the BGP tables collected from pielti
vantage points.

3.1 Assumptions & Validation

Our inference algorithm is based on the following assunmgstio
which we will validate using the data described in Section\&
recognize that deviations from our assumptions do existdntjce;
however, these assumptions constituteadbmmoncases. As part
of our future work, we plan to further reduce inaccuracy eausy
occasional violations of these assumptions.

1. Explicit AS relationshipThe relationship between two ASes
is clearly defined as one of the followings: peers, customer
and provider.

. Shortest policy AS path preferredfhe actual path is the
shortest one among all the paths that follow the routing pol-
icy. The routing policy is in the form o€ustomerProvider*
PeerPeer? ProviderCustome(tienoted a&\S path “valley-
free” rule [4]), where “*” represents zero or more occurrence
of such type of AS edge and “?” represents at most one oc-
currence of such type of AS edge.

. Uniform routing policy within an ASPaths from all sources
in a given AS to the same destination prefix have the same
number of AS hops.

. AS-destination based uniform routing?aths from a given
AS to all destinations in another AS have the same number
of AS hops.

. Stability. The AS-level paths are relatively stable and do
not change significantly between the time the BGP tables are
captured and the time BGP paths are queried.

The assumption (1) is used by many previous work, such as [4,
19, 1]. The assumption (5) has been shown to hold, espe&ally
popular destinations [16, 10]. Below we evaluate to whateixthe
assumptions (2) - (4) hold based on measurement data eallgct
in September 2003.

To test the assumption (2), we analyze BGP tables from 17 bor-
der routers at the peering links of a tier-1 ISP backbone ot
North America. These routers are selected to be geogrdiyhica
diverse. The BGP table obtained from each router contaias th
best route selected by the router as well as the alternaiivies
to each destination network. Each BGP table contains rdotes
over 150K distinct destination prefixes. All the routes grecified
at AS level. For each destination network, we compute twainget
to characterize the AS path length of the selected best ende



all the alternative routespolicy length(i.e., the number of ASes
including prepended ASes on the path) actual length(i.e., the
number of unique ASes on the path). We observe that the best
routes tend to be the shortest among all available routeoutAb
16% of the destination prefixes have a single available routiee
destination. They do not have alternative routes and thiabla
routes are selected as the best routes. For the remainitigades
tion prefixes which have alternative routes, a destinatiay have

up to 10 available routes. Only 1.37% of the best routes have a
longer policy length than the alternative routes; and on8s% of

the best routes have a longer actual length than their gones

ing alternative routes. The figures indicate that the skbpath is
highly likely to be selected as the best route regardlessepfgnd-

ing and other routing policies from the view of a large tieiSP;
moreover the AS prepending does not have a significant inguact
the best AS path selection. Therefore it is promising toridfg
paths by computing the shortest policy paths.

To evaluate the validity of the assumption (3), we analyze th
BGP tables from 21 route reflectors of a tier-1 ISP backbork an
from various vantage points listed in Table 1. We find thatpkas
from various sources in an AS to a destination prefix havedhees
policy length. Only about 1.5% of the paths differ in theituad
lengths. The different sources do not significantly afféet AS
path length of the best route. This suggests the assumgidiolds
for most of the paths.

Finally, we study the BGP tables from various vantage points
listed in Table 1. We found that 60% of the destination ASesha
more than one prefix. Over 95% of the distinct prefixes belong
to such destination ASes. 10-20% paths from a single soworce t
different prefixes in a destination AS differ in lengths. Tteths
from a source to a destination AS may have up to 7 distinctpoli
lengths and up to 5 distinct actual lengths. This indicates the
best path selection is based on destination prefixes insfedabti-
nation ASes. However, in over 84% cases, there is no difteran
path length from a source to all destinations in the same A& T
suggests that the assumption (4) applies to most paths,veowe
there is an inherent limit on the accuracy of path inferericthe
AS-level.

3.2 AS Path Inference Algorithm

Based on the above observations, a natural approach toimgfer
AS path is to combine BGP tables from multiple vantage pdimts
produce a fairly complete AS graph and then simulate shoki®s
hop-count routing on the graph subject to policies dictdtgd\S
relationships.

First, to enforce the AS path rules described earlier in $bis
tion, we apply the existing algorithms proposed in [4, 19tdl]
infer AS relationships for the nodes in the AS graph. As we wil
show in Section 4, among the three existing AS relationstip i
ference algorithms, [1] gives the most accurate inferefcaew
algorithm is also proposed in Section 5 to achieve an evemehig
accuracy in AS relationship inference.

Next based on the inferred AS relationships, edges in the AS
graph are classified as one of the following three categof(i¢s
custom-provider link (UP link), (i) provider-custom linffoOWN
link), (iii) peering links (FLAT link). (We exclude edges thi un-
known AS relationships.) We apply the algorithm as shownign F
ure 1 to derive the set of all shortest policy paths. (shortest paths
among all paths that conform to the AS relationship) betwesgrs
of nodes.

foreach source-destination pair find all shortest uphithpa
for each pair §rc, dst)
/I cost without FLAT link
cost0(sre, dst) = min,, { dist(src,m) + dist(dst, m) }
wherem is a node
/I cost with FLAT link
costl(sre,dst) = ming, ,{ dist(srec,p) + dist(dst,m) + 1}
wherem is a nodep is a peer ofm
cost(sre,dst) = min{ cost0(src,dst), costl(sre,dst) }
find all shortest policy paths betweenc anddst by concatenating
uphill(sre,m), (m,p), reverse(uphill(dst,p)), or
uphill(src,m), reverse(uphill(dst,m))

Figure 1: Compute all shortest policy paths

Inference| # invalid paths| % invalid paths
Gao 468568 25.0%
SARK 556383 29.73%
BPP 74737 3.99%

Table 3: The number of paths that violate the AS path “valley-
free” rule under three AS relationship inference algorithms

4. EVALUATING AS PATHINFERENCE US-
ING EXISTING AS RELATIONSHIP IN-
FERENCE

In this section, we first give a brief overview of existing ASa-
tionship inference schemes. Then we apply them to infer Aspa
and compare the inferred AS paths with the actual AS paths ob-
tained from BGP table dumps and BGP gateway queries. Our re-
sults show that the inference accuracy varies with the ASicel-
ship inference schemes and the location of vantage points.

4.1 Accuracy of Existing AS Relationship In-
ference

There are three existing algorithms for inferring relasioip be-
tween a pair of ASes. They are all based on the information ob-
tained from BGP tables at multiple vantage points.

Gao: Gao [4] proposes the first algorithm to infer AS relationship
The algorithm makes inference based on the degree of ASeg alo
with the AS paths extracted from the BGP tables.

SARK: Subramaniaret al.[19] simplifies the problem in [4], and
formulates it as a minimization problem. They develop a is¢iar

by leveraging multiple vantage points.

BPP: Recently, Battistat al. [1] prove that the problem formu-
lated in [19] is NP-complete. They map the problem into a 2SAT
formulation, and use the insights from 2SAT to develop rsias
for inferring AS relationships that yield a small number wfalid
paths.

Now we study the accuracy of the above three AS relationship
inference algorithms. We construct an AS graph using the BGP
tables listed in Table 1. The resulting AS graph contain§2®,
nodes and 53,954 edges as mentioned in Section 2.

Table 3 shows the number of invalid paths (the paths that vio-
lates the AS path “valley-free” rule described in Sectioa&ord-
ing to the inferred AS relationships. We observe that BPRIgie
the smallest number of invalid paths. Both Gao and SARK have a
significant number of invalid paths, around 2530%.

Next we evaluate the consistency among these three algarith
as follow. For every two inference algorithms, we compute th
number of edgesi.g., pairs of ASes) that are assigned with the



Common peer-peer | Common provider-custome
Gao vs. SARK| 229 (3.63%, 36.12%) | 41730 (89.43%, 94.68%)
Gaovs. BPP | 5950 (94.51%, 48.42%)] 39606 (84.87%, 97.74%)
SARK vs. BPP| 334 (52.68%, 2.71%) | 33752 (85.66%, 93.17%)

Table 4: The number of edges that are assigned the same rela-
tionship by given inference algorithms.

same AS relationship under the two algorithms, and summeéniz
results in Table 4. The numbers in parentheses denote theatum
of common peer-peer (or provider-customer) edges divigethé
total number of peer-peer (or provider-customer) edgestietl by
the corresponding algorithms. We observe that the numhezef
peer and provider-customer edges that are inferred by these
algorithms varies, especially for peer-peer edges. Theistamcy
is quite high for provider-customer edges, ranging from 85%#%.
In comparison, peer-peer edges share significantly lowanoon
assignments. This suggests these algorithms are bettédeaing
provider-customer relationships than peer-peer relakigs.

4.2 Comparing Inferred AS Paths with BGP
Tables

Next we examine whether the existing AS relationship infeee
algorithms enable us to accurately infer AS paths.

We evaluate the accuracy of AS path as follow. First, we se-
lectively remove BGP tables collected from a few vantagetsoi
Then we apply the AS relationship inference algorithms togét
of paths from the remaining BGP tables. Next, for each AS path
in the removed BGP tables, we compute the inferred AS path us-
ing our algorithm described in Section 3 based on the infleA®
relationships. Finally, we compare the inferred AS pathih whe
actual AS paths in the removed BGP tables.

In our experiments, we use the set of BGP tables listed ireThbl
We select three groups of vantage points to evaluate theamcu
of AS path inference: one tier-1 network (AS7018), one Aeret-
work (AS2152), and one tier-3 network (AS8121). Table 5 show
the inference accuracy when we remove BGP tables obtainad fr
each of these three ASes and all its customer ASes includitg m
tihomed customers.

We classify match cases into the following three categoi(ig¢s
the actual path matches one of the inferred paths (denot®tbash”),
(ii) the length of the actual paths matches the length ofriferied
paths (denoted as “Match Length”), (iii) there is a singlteired
AS path between a pair of ASes, and the inferred path is ickenti
to the actual path (denoted as “Exact Match”).

Inthe BGP table from AS7018, there are altogether 18,085udni
paths. Among them, there are 6784% matches, around 30% ex-
act matches, and 79-85% length-matches. A few commentsfoll

First, the inferred paths that have the same length as tlact
paths but do not exactly match every AS hop are not necegsaril
mismatches. This is because the actual AS paths in the B& tab
are only from a single location within an AS, and other locasi
inside the AS may use different paths, but typically of thmea
length due to uniform policies across the entire AS. Thusther
locations may use one of the inferred paths. We have obsématd
such phenomenon occur frequently at several tier-1 ISPs.

Second, although in many of the “Match” or “Match Length”
cases we cannot uniquely determine the actual AS path irsege,
eral applications, such as server selection and overlaingcan
already benefit from the AS path length information (e.decténg
the closest server in terms of AS hop count).

Third, most of the mismatches are due to inferred paths being

Match | Exact
Total | Match | length | match | Shorter | Longer
AS7018
Gao 18085 | 77% 80% 33% 18% 2%
SARK | 18085 | 67% 79% 34% 15% 4%
BPP | 18085| 84% 85% 37% 15% 0%
AS2152
Gao 11990 | 62% 65% 10% 34% 1%
SARK | 11990 | 48% 57% 29% 40% 3%
BPP | 11990 | 67% 67% 12% 33% 0%
AS8121
Gao 15757 | 16% 27% 3% 69% 4%
SARK | 15757 | 14% 23% 3% 2% 4%
BPP | 15757 | 18% 30% 3% 66% 5%

Table 5: Evaluating AS path inference using BGP tables from
selected vantage points.

shorter than the actual paths. They account for18% of the
paths in the BGP table from AS7018 (denoted as “Shorter’s)ase
We will elaborate the reasons for such discrepancies later.

Comparing the inference accuracy across different ASespbwe
serve that the inference accuracy is reasonably high (up%e) 8r
AS7018, atier-1 ISP. This is expected as our input BGP tables
the AS relationship inference algorithm contain many otfesr1
ISPs which all peer with AS7018. Thus, it is not difficult to in
fer paths originating from AS7018, which are mostly adweti to
other tier-1 ISPs and in turn visible in the input BGP tablés.
comparison, the inference result for AS2152, a tier-2 netwis
worse, 57~ 67% of the 11,990 unique paths fall into the “match
length” cases. The inference accuracy for AS8121, a tieet3 n
work, is even lower — only 23% of 15,757 unique paths fall in to
the “Match length” cases. A high percentage of the inferrath®
are shorter than the actual BGP paths, which suggests tgit24S
may use special routing policies to prefer longer paths. ssi-
ble enhancement to our tool is to output longer paths th&focon
to the routing policies instead of shortest policy paths éf kmow
the routing policies of the source AS. In addition, for aligl van-
tage points, BPP yields more accurate AS path inferenceGaan
and SARK.

4.3 Comparing Inferred AS Paths with BGP
Gateways

We also compare the inferred AS paths with the actual AS paths
queried from BGP gateways. Table 6 shows the inferencetsesul
for paths between BGP gateways across the world. 121 distinc
ASes serve both as source and destination ASes in our e>gg@sm
As aresult, we identify 2,457 unique AS paths between BGE-gat
ways. For each path, we compute the inferred paths basedtitba al
BGP tables in Table 1. We observe that the overall accuraay- of
ference is quite low across all three AS relationship infeesalgo-
rithms — only 18~ 38% and 29~ 51% of the examined paths fall
into “Match” and “Match length” cases, respectively. Comgzh
with the corresponding figures in Table 5, we observe a lotemor
cases where the inferred paths are longer than the actunes {ob-
noted as “Longer” cases). This is probably due to the inaayuin
the AS relationship inference, causing the shorter act@ Paths
to be considered invalid in our AS graph. In addition, we fihdtt
BPP yields the lowest accuracy among the three algorithras; G
and SARK perform better, yielding similar accuracy.

We also obtain AS paths from 7 BGP gateways located in US
to 3,343 unique prefixes assigned to universities, whicbrizeto
469 distinct ASes, all of them located in US. The inferencaiits



Match | Exact
Total | Match | length | match | Shorter | Longer
Gao | 2457 30% 51% | 21% 15% 35%
SARK | 2457 | 38% 61% | 24% 20% 19%
BPP | 2457 | 18% 29% 15% 5% 66%

Table 6: Evaluating AS path inference using BGP paths from
BGP gateways across the world.

Match | Exact
Total | Match | length | match | Shorter | Longer
Gao | 1907 | 24% 43% 16% 18% 40%
SARK | 1907 | 40% 57% | 24% 24% 19%
BPP | 1907 | 22% 42% 18% 10% 48%

Table 7: Evaluating AS path inference using BGP paths from
BGP gateways in US.

are shown in Table 7. There are a total of 1,907 unique AS paths
The figures are comparable to those shown in Table 6: the AS pat
inference accuracy is low.

4.4 Possible Causes of Inference Mismatches

We now examine the mismatches in detail to identify possible
causes that account for these mismatches.

4.4.1 Inaccuracy in AS Relationship Inference

One of the reasons for inaccurate AS path inference is imatzu
AS relationship inference. One way in which this inaccura@n-
ifests itself is through the mismatches due to inferred patking
longer than actual paths. In such cases, the inferred pathder
than the actual path, which appears to violate the inferr8drek
lationship. As Table 6 shows, 19% - 66% of paths fall into this
category. Moreover, Table 4 shows that there is significacdn-
sistency among the inference results from the three ASoakttip
inference algorithms. This further confirms that the irderAS
relationships have limited accuracy.

4.4.2 First Hop Analysis — Multihoming

Example

Source AS =4, Destination AS =D

Inferred path =AGH D, Actual path =ABCF D
Our analysis of mismatched paths reveals that more tharohalf

the mismatches occur right at the very first hop AS. As showhen

above example, A& can choose between two upstream providers:

B andG@. Due to traffic engineering or load-balancing, ASmay

choose ASB instead of ASF as the first hop AS, making the actual

path longer than the shortest policy path.

As we will show in Section 6, the ratio for “Match length” case
can be improved from 73% to 88% when we infer AS paths using
BGP gateways given the first hop AS in use. That is, if we can
correctly infer the first hop AS, we can eliminate around 15% o
the mismatches.

4.4.3 Summary

The above results suggest that in order to improve the acgura
of AS path inference, we should address two challenges:ofi) h
to improve AS relationship inference, and (ii) how to infee ffirst
AS hop. In Section 5 and Section 6 we investigate these twesss
in turn.

5. ANEWASRELATIONSHIP INFERENCE
ALGORITHM

The previous section shows that the existing AS relatignshi
ference algorithms yield limited accuracy in AS path infere. In
this section, we propose a new algorithm to infer AS relatiop,
and show it can improve the accuracy in AS paths inference.

5.1 Problem Formulation

Let G = (V, E) be the directed graph that consists of both di-
rections of every edge that is contained in some BGP paths.

For any directed edge; =< z,y >, we introduce a variable,
relation(e;) to indicate whether the link is FLAT, UP, or DOWN.

1 if e; is customer — provider
= 2 if x andy are peers
3 if eiis provider — customer

relation(e;)

We then introduce the following constraints:

1. Valid relationship variable: For every edgg let e, be the
edge corresponding to its reverse direction.

relation(e;) + relation(e,) = 4 1)
relation(e;) € {1,2,3} 2)
relation(e,) € {1,2,3} 3)

2. Every path in use is valley free, or equivalently, evenAFL
or DOWN link is followed by a DOWN link. For anye;, e;)
appearing on some valid BGP path,

relation(e;) =1 V relation(e;) = 3 (4)

. Given any(src, dst), if there is a pattP from srcto dst and
it is shorter (in terms of AS hop count) than the actual path
we see, therP is not valley-free. In other words, there exists
(ei,ej) onP s.t.

relation(e;) # 1 A relation(e;) # 3 (5)

To reduce the number of constraints we generate, we only
add the non-valley-free constraints for the paths that tzve
shortest AS hop-count (without considering AS-relatiopsh
and shorter than the actual routing paths.

Now our goal is to findrelation(e;) to satisfy as many con-
straints, shown above, as possible. Note that different fiee pre-
vious work, which only restrict observed paths to be vafieg,
we also derive additional constraints from the unused phttsare
shorter than the actual paths. These additional constraeip us
to get better relationship inference as we will show later.

5.2 Our Approach

Initialization: We initialize all links to be DOWN links (i.e.,
provider-customer links), because most of the paths fronvan-
tage points are towards customers.

Iteration: We use the random walk algorithm developed by Sel-
man et al. [17]. Figures 2 and 3 show our pseudo-code. We use
walk_prob = 0.5, mazxzFlips 15000, andmaxzNoProg =
1000 in our evaluation.

We make the following modifications and optimizations. Eirs
different from [17], we can handle non-binary variablesc@wl, to
reduce the problem size, we repeatedly apply the stub ASvamo
procedure as shown in Figure 4, where stub ASes are the sinks o
directed graptG = (V, E) with out degree of zero. This proce-
dure reduces the number of nodes and edges by up to 2 orders of



iteration = 0; num_no_prog = 0;
while (iteration < mazFlips or numNoProg < maxzNoProg)
if (rand() < walk_prob)
/I randomly select an unsatisfied edge
/I and changeRelation(e)
progress = random_walk();
else
/I For all unsatisfied edge and all possible relationships,
/ find the change that results in largest reduction
/I'in number of unsatisfied constraints
progress = greedy();
iteration++;
if (progress = 0) numNoProg = 0;
elsenumNoProg++;

Figure 2: Using random walk to find the AS-relationships that
satisfy the constraints in Section 5.1.

greedy(){
maz_prog = 0
for each edge {
if numUnsatConsWithEdge(e) < maz_prog

continue
else
for each relation # currentRelation(e)
rel(e) =r

rel(reverse(e)) = 4 — r // according to eq. (1)
prog = reducedNumO fUnsatCons();
if (prog < mazx_prog)

maz_prog = prog

action = “e => r'’

Figure 3: Greedy step in random walk

S = stubAS(G); /Il find stub ASes
while (S is not empty){
for (eachn in S) {
for (each< p,n > in E) {
markp as the provider ofi;

}

G = subgraph(G,V — S); Il removeS from G
S = stubAS(G); Il find ASes whose out-degree is 0

Figure 4: Removal of stub AS repeatedly

magnitude. Third, to reduce the number of tests requirechtbdi

Match | Exact
Total | Match | length | match | Shorter| Longer
AS7018 | 18085| 82% 83% | 35% 17% 0%
AS2152 [ 11990 | 64% 64% 10% 35% 0%
AS8121 | 15757 | 16% 27% 3% 69% 4%

Table 8: Evaluating the new AS path inference algorithm usiiy
BGP tables from selected vantage points.

Match | Exact
Total | Match | length | match | Shorter | Longer
All BGP gateways| 2457 | 70% 73% 30% 22% 4%
US BGP gatewayq 1907 | 60% 62% 27% 34% 1%

Table 9: Evaluating the new AS path inference algorithm usiiy
BGP paths from BGP gateways.

Next, we apply our AS relationship inference to infer AS path
and compare the inferred AS paths with the actual paths fr@R B
tables. Table 8 summarizes our results. Comparing it wigheity
curacy of the other three algorithms, shown in Table 5, wenles
that its accuracy is comparable with the best of the othesetlim
all cases.

Finally, we compare the inferred AS paths with the pathsigder
from BGP gateways, and summarize the results in Table 9.nlt ca
infer over 60% - 70% paths accurately, much higher than tiee-al
natives, whose accuracy is 18-40%.

To summarize, in this section we present a novel algorithm to
infer AS relationships. Our measurement results show thiat i
competitive: its accuracy is comparable to the best of theethl-
ternatives when compared with the paths from the BGP tahies,
significantly higher than the others when compared with gt
queried from the BGP gateways.

6. INFERRING THE FIRST AS HOP

As shown in Section 4.4.2, another important factor of ASpat
inference is the ability to infer the first-hop AS. Motivatbd this
observation, in this section we consider the problem of hmin+t
fer the first-hop AS on the path from source IP addr&gn AS
S) to destination IPD (in AS D), with only direct access to the
destinationD. Such inference not only enables us to improve AS
path inference, but also allow us to understand how multémbm
customers utilize different access links.

6.1 Inference Algorithms
Figure 6 shows our inference algorithm. At a high-level,abhe

greedy move, we skip over the edge whose number of unsatisfiegSists of two steps: (i) gather a list of candidate first hop #\sem

constraints is fewer thamaz_prog as shown in Figure 3, since
changing the relationship assignment for the edge candoteshe
number of unsatisfied constraints by more thaaz_prog. This
leads to a speed-up by up to two orders of magnitude.

5.3 Evaluation

In this section, we evaluate the accuracy of our AS relakigns
inference.

First, we apply the new AS relationship inference algorittam
the BGP tables shown in Table 1, and compute the number of path
that violate the AS path “valley-free” rule. We find the numbé
invalid paths is 115,865, which account for 7.35% of all gaffhis
accuracy is comparable with BPP, the best relationshipenfs
among the three existing ones.

S, and (ii) identify the transition poir (i.e., the last IP hop be-
fore entering ASS) that is likely to be on the path frony to
D by testing whether the following condition is satisfied, nhe
he(nodel, node2) denotes the IP hop count fronodel to node2.

he(S,T) + he(T, D) = he(S, D) (6)

We now describe each step in details. To obtain a list of can-
didate first hop ASes, we launch traceroute probes from pielti
public traceroute servers towards If the locations from which
we launch traceroute are diverse enough, we can discoveastt |
one path whose last-hop AS matches the first-hop AS for the pat
from S to D and whosdransition pointappears on the path from
S to D. In practice, we may miss some candidate ASes because
our probing points do not cover enough paths or the first-h6p A
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Figure 5: Our technique of inferring first-hop AS.

Goal: infer first hop AS from source IP to destination IPD

when we only have direct accessib

Steps:

1. Use public traceroute servers to lauticterouteprobes taS,
map each router-level forwarding path to AS-level path (HI,
record each last-hop AB and transition poinf”

/I 'T": border router of AS that is directly connected to AS

2. Find transition poin™ that is most likely to be on the path
from S to D, and report its AS as the inferred first-hop AS
a) Apply heuristic to infer

he(S, D): IP hop count fromS to D
he(S,T): IP hop count fromS to transition poinfl”
he(T, D): IP hop count from transition poiri to D
b) Find transition poinT™ that minimizes
| he(S, T) + he(T, D) — he(S, D) |

Figure 6: Algorithm for inferring the first hop AS

only carries the out-bound traffic froSbut no in-bound traffic (so
we cannot discover it by launching probes towafjs However,

our experimental results suggest that at least for the witelsave

tested, the inference algorithm based on the above assaamipis

a fairly high success rate.

Next, we infer the first-hop AS for the path frofhto D by iden-
tifying a transition point that is most likely to be on the fpétom S
to D. Specifically, for each transition poiffit, we first apply heuris-
tics (see below) to infer the IP hop couts(S, T'), he(T', D), and
he(S, D). We then test whethéF satisfies Equation 6.

Note that Equation 6 is a hecessary but insufficient condiibo
T to be on the path fron§ to D. The hope is that when the number
of different last-hop ASes is small, the above test is sufficito
exclude all transition points that are not on the path fi$no D.
Another important note is that without direct acces§'tat can be
very difficult to accurately estimate the hop counts. As allies
Equation 6 may not hold exactly even’f is indeed on the path
from S to D. To account for such inaccuracy, we pick the transition
pointT™ that minimizeghc(S,T') +he(T, D) —he(S, D)| instead
of strictly satisfying Equation 6.

Below we present our heuristics for inferring hop coumntss, T'),
he(T, D), andhe(S, D). We estimateic(S,T') using he(T, S),
which is available through the router-level forwardingtpaf his
assumes that the path between two routeanid7” within the same
AS is symmetric in terms of hop courite., he(T, S) = he(S, T).
This is reasonable for shortest path based IGP routing qotsto
like OSPF and IS-IS, because in practice the two directidres o
link is assigned with the same weight, which implies that cae
obtain a shortest path froifi to 7' by reversing the shortest path

fraction of src-dest pairs (%)

75

0 2 4 6 8 10
| inferred length - actual length |

Figure 7: The distribution of difference between inferred and
actual hop counts.

fromT to S. Our results suggest that this heuristic works very well
in practice.

Toinferhe(T, D) andhc(S, D), we take advantage of the Time-
To-Live (TTL) value contained in IP packet. Specifically,evhwe
send aping packet {.e., an ICMP echo request) to a remote host
H, H sends a response back with the TTL value of the response
packet initialized byH and decremented by one at each router on
the return path. Therefore, if we can guess the initial TTluea
(T'T Ly), then based on the TTL value of the received response
packet 'T'L,), we can estimate the path length frdthto D as
(TTLo — TTL: + 1). In practice, there are only a small num-
ber of common values fdf'T'L,. The most common values and
the corresponding operating systems are 32 (Windows 9863/

64 (Linux, Compaq Tru64), 128 (Windows NT/2000/XP), and 255
(most UNIX systems). If we assume that the reverse path has
fewer than 32 hops, which is often the case in today’s Interne
then we can easily estimalél’ L, from T'T L, using the formula

TT Lo = min {255, 32 - [TTL;/32]}.

6.2 Evaluation

In this section, we evaluate the accuracy of our algorithm fo
inferring the first hop AS. We conduct a large-scale Intemet
periment using a collection of 85 PlanetLab nodes and 35liqgoub
traceroute gateways shown in Table 2 in the following foapst

1. Apply our inference algorithm to infer the first hop AS from
each traceroute gateway to each PlanetLab node;

2. Launchtracerouteprobes from each traceroute gateway to
each PlanetLab node to obtain the actual router-level path;

3. Compare the inferred and the actual hop count from tracer-
oute gateways to PlanetLab nodes;

4. Use IP-to-AS mapping obtained in [9] to map the routeelev
forwarding paths into AS path to extract the actual first hop
AS, and then compare it against the inferred first hop AS.

6.2.1 Accuracy of Hop Count Inference

Since the heuristic for inferring the reverse path hop caictit-
ical to the overall inference algorithm, we first evaluate #étcu-
racy of this heuristic. Figure 7 shows the distribution & thiffer-
ence between inferred and actual hop counts for paths fracertr
oute gateways to PlanetLab nodes. The difference is at niost 1
92% of the paths. So the inferred hop counts are fairly ateura

6.2.2 Accuracy of First-hop AS Inference



Location Total | Match length| Improvement
AS 7018 18085 86% 3%
AS 2152 11990 76% 12%
AS 8121 15757 48% 21%
US BGP gatewayy 1907 70% 8%
All BGP gateways| 2457 88% 15%

Table 10: Accuracy of inferring AS paths, when the first AS
hop is given.

[ Notation | Link type | AS relationship |

— FLAT Peering
> DOWN | Provider-customer
< UpP Customer-provider|

Table 11: AS relationship notations used in our discussion.

Next we evaluate the accuracy of first-hop AS inference as fol
lows. We focus on paths with two candidate first hop ASes sxau
this is a common case—among the 2,500 prefixes with multiple
original ASes (MOASes) in all of our BGP tables, 2,440 (97)6%
have two original ASes. In our experiments, there are 2,4tb9
with two candidate first hop ASes. Our heuristic is able toacity
identify the first hop AS for 2,028 (84%) paths. For the reriran
387 paths, 346 (14.3%) have tieé®,,a transition poinf” in the ac-
tual first hop AS also minimizéé&c(S, T')+he(T, D)—he(S, D),
but is not chosen because we break the tie incorrectly (weretly
break a tie by simply picking the AS with the largest number of
transition points). As the number of candidate first hop ABes
creases to 3, the actual first hop AS minimizes the differdoece
tweenhc(S, D) andhc(S,T) + he(T, D) about 75% of the time.
However, the number of ties significantly increases ancethede-
grading the accuracy to about 65%. A lot of the ties are likely
caused by aliasese., different interfaces on the same router have
different IP addresses. Therefore, it is likely that we carihier
improve the accuracy of our inference algorithm by applyatigs
resolution techniques such as those used in Rocketfuelddd]
Mercator [5].

6.2.3 Accuracy of AS Path Inference Given the First
AS Hop

Finally we examine how much AS path inference can benefit

AS paths contain two consecutive FLAT links. Consider path-

B — (", where ASesA andC are both large regional ISPs and AS
B is an international ISP. This could happen if ASésandC do
not have direct relationship (possibly due to geographieasons),
they can reach each other through BS Since ASesA andC are
large, ASB may have incentive to form peering relationship with
both of them. This would result in two consecutive FLAT links
A — BandB — C, inthe AS paths.

Scenario 2:DOWN link followed by FLAT linkSome of the AS
paths contain a DOWN link followed by a FLAT link. This could
happen in a case similar to Scenario 1, except that ASasd B

are provider and customer, instead of peers. For exampiejder
pathA > B — C. AS B has presence in Europe, but its presence is
not significant enough foB to establish peering relationship with
any local large ISPs in Europe. So instdadecomes a customer
of local ISP A in Europe. Note that this shows that tier-1 ISP in
North America may still have upstream provider in a global AS
graph.

Scenario 3FLAT link followed by UP linkWe also observe a few
cases where an AS path contains a FLAT link followed by an UP
link (i.e., C — B < A). This is just the reverse of Scenario 2.
Though rarely occurs, this could result in the inferred gaging
longer than the actual path if we enforce that no more tharflahe
link in each path in our inference algorithm.

Scenario 4:Dual transit/peering relationship.As mentioned in
Section 3, two international ISPs may have dual transitipgee-
lationship,i.e., they are customer and provider in one continent,
but peers in another continent. In such cases, assumingtvey
one or the other relationship can create illegal paths (agiored
above).

7.2 Routing Policies

We assume that ASes use the shortest path routing to choose
among all legal policy paths. However, in practice, this may
always be true for the following reasons.

7.2.1 Shortest Path Versus Customer Routes

Itis well known that ISPs often first prefer customer routesro
peer routes, and then prefer peer routes over providergolute to
economic incentives. To study the effect of such a policyten t
accuracy of our inference, we modify our algorithm in Figlire
take into account of this factor. However, this can only ekpll%

from knowing the first hop. To answer this question, we assume of the paths inferred incorrectly. Therefore, this effecirisignifi-

the first AS hop is given, and compare the inferred AS pathk wit
the AS paths extracted from BGP tables and AS paths queded fr

BGP gateways. Table 10 shows path inference accuracy based o 7.2.2

our AS relationship inference presented in Section 5. As are ¢
see, knowing the first hop helps to improve the inferenceracgu
by 3 - 21%, bringing the final accuracy up to 70 - 88%.

7. DISCUSSION

In this section, we discuss other challenges involved in At p
inference. We use the notation listed in Table 11.

7.1 Complicated AS Relationships

In practice, the AS relationships are more complicated tiaat
we assumed in our inference algorithm. As we have shown in Sec

cant.

Inconsistent Advertisement to Different Peer-
ing Locations

Example

Source AS =A, Destination AS =D

Inferred path =ABC'D, Actual path =ABEF D

Definition: LCP = Longest Common subPath

between Inferred path and all AS paths/io

Case 1 LCP =BCD (First-hop ASB appears in Actual path)
Case 2 LCP =C'D (No common AS with Actual path)

Peers may not consistently advertise the same length fa#iis t
peering locations (e.g., due to inconsistent export phli¢y this
case, our inferred paths may be indeed legal, but not sesntfre

tions 3 and 4, over 15% of the cases where the paths between aneasurement location. To quantify this, we calculate thegest

pair of source and destination ASes are not the shortest A8 pa
conforming to the “valley-free” rules and about 2% of the B&P
paths even violate the “valley-free” rules. Such compi@atn AS
relationships limits the accuracy of Internet path inferen

Scenario 1:Two consecutive FLAT link&Ve have observed a few

Common subPath (LCP) between the inferred path and all the AS
paths to thesamedestination AS. This represents how many mis-
matched inferred paths contain legal AS paths from BGP $able
We start from the beginning of the AS paths and eliminate o8e A
at a time until the remaining path exists in the BGP tables.oWe



serve that 70% of the mismatches contain legal AS paths. Amon
them, 13% of the mismatched cases are identical to the agfial
paths except the first-hop AS, whereas in the remaining 57&teof
mismatched cases, inferred paths do not share any AS onttra ac
BGP path. Note that the first case indicates that our inferegh is
indeedlegal.

We now analyze these two cases in more detail. In both cédmes, t
inferred AS paths contain legal paths observed from BGResabl
thus it is less likely to violate actual AS relationships. nSiler
the example: actual AS path B EF D and inferred BGP path is
ABCD.

Case 1:There exists a patBC D in BGP tables. In such scenar-
ios, the fact thad BEF D is selected is likely due to inconsistent
advertisement by AR to AS A. AS B itself or part of ASB is
using AS pathBC' D, as itis available in the BGP tables. However,
AS B must have advertised to ASpathBEF D, leading ASA to
choose the longer path. Note that &Scould not have advertised
two paths to the same destination at the same location.

Case 2:There exists a patt'D in BGP tables, but there does not
exist any partial path oA BC D that shares a common AS with
the actual AS path. There are several possibilities whyahgér
pathABEF D is chosen, assuming the inferred path is a legal path.
(i) The same reason as in Case 1, where(A®as not consistent
in advertising the routes to destination A% It did not advertise
route CD to AS B, leading ASB to choose a longer AS path
BEFD. (ii) AS B deliberately chooses a longer AS patl+ D
over C'D for traffic engineering purposes for example. (iii) AS
prepended the AS pati D (e.g.,to CCCC D) making it appear
longer than the alternate path#' D. (iv) Transient routing changes
or failures made the shorter path unavailable.

7.2.3 BGP Tie-breaking Rules

BGP sometimes uses tie-breaking rules to select amongpieulti
available paths [2]. In a stub-AS, the tie-breaking rulessome-
times deterministic (e.g., based on the router ID), and siomes
non-deterministic (e.g., based on the oldest route). Igeldran-
sit ASes, the tie-breaking rules also depends on the utdizaf
hot or cold potato routing. This complicated tie-breakimggess
makes it challenging to infer AS paths with high accuracy.

7.3 AS Prepending

paths because any single inferred path without prependiBgsA
could be chosen and eliminate the effect of prepending. We ob
serve that 94% of the mismatched inferred paths contairepiep
ing ASes, whereas 88% of the matched inferred paths coniam s
ASes. The higher likelihood for mismatched inferred pathsan-
tain prepended AS suggests that it is likely that AS prepandc-
counts for some of the mismatches.

In the above analysis we choose a simple binary metric taeval
ate how likely prepending affects path selection. In pcastprepend-
ing may occur on a per peer basis. We thus compug&care
based on the following definition to reflect how likely an AS
prepends itself based on the neighbor ASand how frequently it
is prepended across all AS paths. pé#d_N) be the probability
that AS A prepends itself on a path advertised to AScomputed
using a large number of BGP table paths. The Score for a given
path L is > p(Ai-N;)/(|L| — 1), where A; is AS i on the path
except the first AS)V; is the previous AS of ASA; on the path,
or the AS receiving the route|L| is the length of the AS path.
We find that mismatched inferred paths are more likely to @iont
prepending ASes than matched inferred paths (Score 0.8@is/er
Score 0.73). This score is an average across all paths. Based
the above results, it seems plausible that AS prependingoithar
contributing factor for the inaccuracy in AS path inference

8. CONCLUSIONS AND FUTURE WORK

In this paper, we explore the feasibility of inferring AS#
paths without direct access to either end-points. To this are
develop RouteScope, a tool to infer AS paths by finding thetsho
est policy paths in an AS graph obtained from BGP tables at mul
tiple vantage points. We also propose two enhancemensn@jyv
AS relationship inference algorithm that achieves higleeueacy,
and (ii) a novel technique for inferring the first AS hop by kep
ing the TTL information contained in IP packet. Our resuliews
that our enhanced tool can achieve up to 88% accuracy in AS pat
inference.

A number of future avenues remain. First, we would like to fur
ther improve the accuracy of path inference. Our study shibets
there is a inherent limit on the accuracy of path inferencA%it
level. Therefore it is useful to explore the possibility oférring
paths at the prefix level. Second, our heuristic for infeytime first
hop AS can be improved by leveraging the existing alias el

AS prepending is a common practice where ISPs repeat its own techniques such as those used in Rocketfuel [18] and Merigdto

AS number in its route advertisements sent to its neighloithe
hope that these paths will be less preferred due to the iseriea
path length. It is questionable how effective this is, sinne can
still observe many paths containing prepending in any fodwa
ing tables from large ISPs; if prepending were indeed &ffect
such paths would not be there. On the other hand, the presénce
prepended paths in the forwarding table does not necesgadlit
cate the ineffectiveness of prepending. It could also bedise that
the prepended path is the only available path, and it has thbe
sen regardless. Since we do not have information of all thd-av
able paths, it is difficult to directly estimate how many lengaths
are chosen because the alternate paths are prependedijrappea
be longer but in fact shorter.

We take the following approach to quantify the effect of AS
prepending. We firstidentify which ASes have a tendencyé¢p@nd.
We find 4,891 ASes are prepended at least once in the colhectio

Finally, there are many interesting applications that catetially
benefit from the path inference, including network diagsoper-
formance optimization and reliability enhancement in ihoitn-
ing, content distribution, and peer-to-peer applicatioive would
like to explore these applications in depth.
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