
Two-Level Adaptive Training Branch Predict ion

Abstract

Tse-Yu Yeh and Yale N. Patt

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, Michigan 48109-2122

High-performance microarchitectures use, among other

structures, deep pipelines to help speed up execution.

The importance of a good branch predictor to the effec-

tiveness of a deep pipeline in the presence of conditional

branches is well-known. In fact, the literature contains

proposals for a number of branch prediction schemes.

Some are static in that they use opcode information

and profiling statistics to make predictions. Others are

dynamic in that they use run-time execution history to

make predictions.

This paper proposes a new dynamic branch predictor,

the Two-Level Adaptive Training scheme, which alters

the branch prediction algorithm on the basis of infor-

mation collected at run-time.

Several configurations of the Two-Level Adaptive

Training Branch Predictor are introduced, simulated,

and compared to simulations of other known static and

dynamic branch prediction schemes. Two-Level Adap-

tive Training Branch Prediction achieves 97 percent ac-

curacy on nine of the ten SPEC benchmarks, compared

to less than 93 percent for other schemes. Since a predic-

tion miss requires flushing of the speculative execution

already in progress, the relevant metric is the miss rate.

The miss rate is 3 percent for the Two-Level Adaptive

Training scheme vs. 7 percent (best case) for the other

schemes. This represents more than a 100 percent im-

provement in reducing the number of pipeline flushes

required.

Permission to copy without fee all or part of this material is grantrd pro.
vialed that the copiesare not made or distributed for direct conurremal

advantage, the ACM ropyright notice and the title of the publication and
its date appesr, and notire is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

@ 1991 ACM 0-89791-460-0/91/001 1/0051 $1.50

1 Introduction

Pipelining, at least as early as [18] and continuing to the

present time [6], has been one of the most effective ways

to improve performance on a single processor. On the

other hand, branches impede machine performance due

to pipeline stalls for unresolved branches. As pipelines

get deeper or issuing bandwidth becomes greater, the

negative effect of branches on performance increases.

Among different types of branches, conditional

branches have to wait for the condition to be resolved

and the target address to be calculated before the tar-

get instruction can be fetched. Unconditional branches

have to wait for the target address to be calculated. In

conventional computers, instruction issuing stalls until

the target address is determined, resulting in pipeline

bubbles. When the number of cycles taken to resolve a

branch is large, the performance loss due to the pipeline

stalls is considerable. There are two ways to reduce the

loss: the first is to resolve the branch as early as pos-

sible to reduce the instruction fetch pipeline bubbles.

The second is to provide fast fetching and decoding of

the target instruction to reduce the execution pipeline

bubbles. Branch prediction is a way to reduce the execu-

tion penalty due to branches by predicting, prefetching

and initiating execution of the branch target before the

branch is resolved.

Branch prediction schemes can be classified into static

schemes and dynamic schemes depending on the infor-

mation used to make predictions. Static branch pre-

diction schemes can be as simple as predicting that all

branches are not taken or predicting that all branches

are taken. Predicting that all branches are taken can

achieve approximately 68 percent prediction accuracy

as reported by Lee and Smith [13]. In the dynamic in-

structions of the benchmarks used in this study, about

60 percent of conditional branches are taken. Static

predictions can also be based on the opcode. Certain

classes of branch instructions tend to branch more in one

direction than the other. The branch direction can also

be taken into consideration such as the Backward Taken

51

and Forward Not Taken scheme [16] which is fairly ef-

fective in loop-bound programs, because it misses only

once over all iterations of a loop. However, this scheme

does not work well on programs with irregular branches.

Profiling [12, 5] can also be used to predict the branch

path by measuring the tendencies of the branches and

presetting a static prediction bit in the opcode. How-

ever, program profiling has to be performed in advance

with certain sample data sets which may have differ-

ent branch tendencies than the data sets that occur at

run-time.

Dynamic branch prediction takes advantage of the

knowledge of branches’ run-time behavior to make pre-

dictions. Lee and Smith proposed a structure they

called a Branch Target Buffer [13] which uses 2-bit sat-

urating up-down counters to collect history information

which is then used to make predictions. The execution

history dynamically changes the state of the branch’s

entry in the buffer. In their scheme, branch prediction

is based on the state of the entry. The Branch Tar-

get Buffer design can also be simplified to record only

the result of the last execution of the branch. Another

dynamic scheme also proposed by Lee and Smith is the

Static Training scheme [13] which uses the statistics col-

lected from a pre-run of the program and a history pat-

tern consisting of the last n run-time execution results of

the branch to make a prediction. The major disadvan-

tage of the Static Training scheme is that the program

has to be run first to accumulate the statistics and the

same statistics may not be applicable to different data

sets.

There is serious performance degradation in deep-

pipelined and/or superscalar machines caused by pre-

diction misses due to the large amount of speculative

work that has to be discarded [1, 8]. This is the mo-

tivation for proposing a new, higher-accuracy dynamic

branch prediction scheme. The new scheme uses two

levels of branch history information to make predictions.

The first level is the history of the last n branches. The

second is the branch behavior for the last s occurrences

of that unique pattern of the last n branches. The his-

tory information is collected on the fly without execut-

ing the program beforehand, eliminating the major dis-

advantage of Static Training Prediction. The scheme

proposed here is called Two-Level Adaptive Training

Branch Prediction, because predictions are based not

only on the record of the last n branches, but moreover

on the record of the last s occurrences of the particular

record of the last n branches.

Trace-driven simulations were used in this study. The

Two-Level Adaptive Training branch prediction scheme

aa well as the other dynamic and static branch pre-

diction schemes were simulated on the SPEC bench-

mark suite. By using Two-Level Adaptive Training

Branch Prediction, the average prediction accuracy for

the benchmarks reaches 97 percent, while most of the

other schemes achieve under 93 percent. This represents

more than 100 percent reduction in mispredictions by

using the Twc-Level Adaptive Training scheme. This

reduction can lead directly to a large performance gain

on a high-performance processor.

Section two gives an introduction to the pro-

posed Two-Level Adaptive Training Branch Prediction

scheme. Section three discusses the methodology used

in this study and the simulated prediction models. Sec-

tion four repozts the simulation results of a wide se-

lection of schemes including both the dynamic and the

static branch predictors. Section five contains some con-

cluding remarks.

2 Two-Level Adaptive Training

Branch Prediction

The Two-Level Adaptive Training Branch Prediction

scheme has the following characteristics:

Branch prediction is based on the history of

branches executed during the current execution of

the program.

Execution history pattern information is collected

on the fly of the program execution by updating the

pattern history information in the branch history

pattern table of the predictor. Therefore, no pre-

runs of the program are necessary.

2.1 Concept of Two-Level Adaptive

Training Branch Prediction

The Two-Level Adaptive Training scheme has two ma-

jor data structures, the branch history register (HR)

and the branch history pattern table (PT), similar to

those used in the Static Training scheme of Lee and

Smith [13]. In Tw&Level Adaptive Training, instead of

accumulating statistics by profiling the programs, the

execution history information on which branch predic-

tions are based is collected by updating the contents

of the history registers and the pattern history bits in

the entries of the pattern table depending on the out-

comes of the branches. The history register is a shift
register which shifts in bits representing the branch re-

sults of the most recent history information. All the

history registers are contained in a history register ta-

ble (HRT). The pattern history bits represent the most

recent branch results for the particular contents of the

history register. Branch predictions are made by check-

ing the pattern history bits in the pattern table entry

indexed by the content of the history register for the

particular branch that is being predicted.

Since the history register table is indexed by branch

instruction addresses, the history register table is called

52

Pat&n Table (PT)

BraDchmtllry
Pattero

BrauchEistmy B.egk& (Eli) OQ-...oo—
(Mftleftwheoupiate) 00...0I
RwBi@+I RwR~.I 00-,10_

7 ~ @

s:
II ~~~~~ I o Pattern m)

Hie4tK0’yedidion

‘*’y= Bit(a) ofB

“’$,“ ,,,,,0 s, $*!=6(SGM
11.....11

l’ramitim

Figure 1: The structure of the Two-Level Adaptive

Training scheme.

a per-address history register table (PHRT). The pat-

tern table is called a global pattern table, because all

the history registers access the same pattern table.

The structure of Two-Level Adaptive Training Branch

Prediction is shown in Figure 1. The prediction of a

branch Bj is based on the history pattern of the last k

out comes of executing the branch; therefore, k bits are

needed in the history register for each branch to keep

track of the history. If the branch was taken, then a” 1“

is recorded; if not, a “ O“ is recorded. Since there are k

bits in the history register, at most 2k different patterns

appear in the history register. In order to keep track

of the history of the patterns, there are 2k entries in

the pattern table; each entry is indexed by one distinct

history pattern.

When a conditional branch Bi is being predicted, the

contents of its history register, HE, whose content is

denoted ss &,c-kRi,c-k+~ Ri.c-l for the last k out-
comes of executing the branch, is used to address the

pattern table. The pattern history bits SC in the ad-

dressed entry PTR ,,=-kR,,c-k+l , R..=_l in the pattern
table are then used for predicting the branch. The pre-

diction of the branch is

Zc = A(SC), (1)

where A is the prediction decision function.

After the conditional branch is resolved, the out-

come &,e is shifted left into the history register H~

in the least significant bit position and is also used

to update the pattern history bits in the pattern ta-

ble entry pTRi,=_kR,,c_k+ l Ri.c_l. After being up-

dated, the content of the history register becomes
Rj,C-k+~~,C_k+z &,C and the state represented by

the pattern history bits becomes SC+l. The transition

of the pattern history bits in the pattern table entry

is done by the state transition function 6 which takes

Autanatm Ime-t-Time (LT) Auta!mtnn Al Automaton AZ
eat 8mwlnml# up&uvl Ox.nt,.)

Auto-n M Automaton A4

Figure 2: The state transition diagrams of the finite-

state machines used for updating the pattern history in

the pattern table entry.

in the old pattern history bits and the outcome of the

branch as inputs to generate the new pattern history

bits. Therefore, the new pattern history bits S.+l be-

come

$%+1 = 6(s., Ri,c) (2)

A straightforward combinational logic circuit is used

to implement the function 6 to update the pattern his-

tory bits in the entries of the pattern table. The tran-

sition function 6, pattern history bits S and the out-

come R of the branch comprise a finite-state machine,

which can be characterized by equations 1 and 2. Since

the prediction is based on the pattern history bits, the

finite-state machine is a Moore machine with the output

z characterized by equation 1.

The state transition diagrams of the finite-state ma-

chines used in this study for updating the pattern his-

tory in the pattern table entry are shown in the Figure

2. The automaton Last-Time stores in the pattern his-

tory bit only the outcome of the last execution of the

branch when the history pattern appeared. The next

time the same history pattern appears the prediction

will be what happened last time. Only one bit is needed

to store the pattern history information. The automa-

ton Al records the results of the last two times the same

history pattern appeared. Only when there is no taken

branch recorded, the next execution of the branch when

the history register has the same history pattern will be

predicted as not taken; otherwise, the branch will be

predicted as taken. The automaton A2 is a saturat-

ing up-down counter, which is also used, but differently,

in Lee and Smith’s Branch Target Buffer design [13].

The counter is incremented when the branch is taken

and is decremented when the branch is not taken. The

next execution of the branch will be predicted as taken

53

when the counter value is greater than or equal to two;

otherwise, the branch will be predicted as not taken.

Automata A3 and A4 are both similar to A2.

Both Static Training and Two-Level Adaptive Train-

ing are dynamic branch predictors, because their pre-

dictions are based on run-time information, i.e. the dy-

namic branch history. The major difference between

these two schemes is that the pattern history informa-

tion in the pattern table changes dynamically in Two-

Level Adaptive Training but is preset in Static Training

from profiling. In Static Training, the input to the pre-

diction decision function, J, for a given branch history

pattern is determined before execution. Therefore, the

output of A is determined before execution for a given

branch history pattern, That is, the same branch pre-

dictions are made if the same history pattern appears

at different times during execution. Two-Level Adap-

tive Training, on the other hand, updates the appropri-

ate pattern history information with the actual result

of each branch, As a result, given the same branch his-

tory pattern, different pattern history information can

be found in the pattern table; therefore, there can be

different inputs to the prediction decision function for

Two-Level Adaptive Training. Predictions of Two-Level

Adaptive Training change adaptively in accordance with

the program execution behavior.

Since the pattern history bits change in Two-Level

Adaptive Training, the predictor can adjust to the cur-

rent branch execution behavior of the program to make

proper predictions. With the updates, Two-Level Adap-

tive Training can still be highly accurate over many dif-

ferent programs and data sets. Static Training, on the

contrary, may not predict well if changing data sets re-

sults in different execution behavior.

3 Implementation Methods

3.1 Implementations of the Per-address

History Register Table

It is not feasible to have a big enough history register

table for each static branch to have its own history regis-

ter in real implementations. Therefore, two approaches

are propoeed for implementing the Per-addrew Hi~tory

Register Table.

The first approach is to implement the per-address

register table as a set-associative cache. A fixed num-

ber of entries in the table are grouped together as a

set. Within a set, the Least-Recently-Used (LRU) al-

gorithm is used for replacement. The lower part of a

branch address is used to index into the table and the

higher part is used as a tag which is recorded in the

entry allocated for the branch. The per-address his-

tory register table implemented in this way is called the

Associative History Register Table (AHRT). When a

conditional branch is to be predicted, the branch’s en-

try in the AHRT is located first. If the branch has an

entry in the AHRT, the contents of the corresponding

history register is used to address the pattern table. If

the branch does not have an entry in the AHRT, a new

entry is allocated for the branch. There is an extra cost

for implementing the tag store in this approach.

The second approach is to implement the history reg-

ister table w a hash table. The address of a condi-

tional branch is used for hashing into the table. The

per-address history table using this approach is called

the Hash History Register Table (HHRT). Since colli-

sions can occur when accessing a hash table, this imple-

mentation results in more interference in the execution

history. As one would expect, the prediction accuracy

for this approach is lower than what would be obtained

with an AHRT, but the cost of the tag store is saved.

In this study, the above two practical approaches and

the Ideal History Register Table (IHRT), in which there

is a history register for each static conditional branch,

were simulated for the Two-Level Adaptive Training

Branch Predictor. The AHRT was simulated with two

configurations: 512-entry 4-way set-associative and 256-

entry 4-way set-associative. The HHRT was also simu-

lated with 512 entries and 256 entries. The IHRT sim-

ulation data is provided to show how much accuracy

is lost due to the history interference in the practical

history register table designs.

3.2 Prediction Latency

The Two-Level Adaptive Training Branch Predictor

needs two sequential table lookups to make a predic-

tion. It is hard to squeeze the two lookups into one cycle,

which is usually the requirement for a high-performance

processor in determining the next instruction address.

The solution to this problem is to perform the pat-

tern table lookup with the updated history pattern of a

branch at the time the history register is updated, pro-

duce a prediction from the pattern table, and store the

prediction as a prediction bit in the history register ta-

ble with the history register for the branch. Therefore,

the next time the branch must be predicted, the pre-

diction is available in the history register table, and the

pattern table does not have to be accessed that cycle.

Another problem occurs when the prediction of a

branch is required before the result of the previous ex-

ecution of the branch has been confirmed. This case

appears very often when a tight loop is being executed

by a deep-pipelined superscalar machine, but not usu-

ally otherwise. Since this kind of branch has a high ten-

dency to be taken, the branch is predicted taken and

the machine does not have to staIl until the previous

branch result is confirmed.

54

Dynamic Indmwti.n DMribution

10

I Nm+sntiInu
❑ bum h Sub hsl

El Im 5rdl km

■ J“m mallw Imt

0

7&A ~ oqnt q+. ~. 1, FPA tic fpWP maw. ,mca 1-.
m son 2*

Mwhmarh

Figure 3: Distribution of dynamic instructions.

4 Methodology and Simulation

Model

Trace-driven simulations were used in this study, A Mo-

torola 88100 instruction level simulator (ISIM) is used

for generating instruction traces. The instruction and

address traces are fed into the branch prediction simu-

lator which decodes instructions, predicts branches, and

verifies the predictions with the branch results to collect

statistics for branch prediction accuracy.

The branch instructions in the M88100 instruction set

[4] are classified into four classes: conditional branches,

subroutine return branches, immediate unconditional

branches, and unconditional branches on registers. In-

structions other than the branches are classified into the

non-branch instruction class.

Conditional branches have to wait for condition codes

in order to decide the branch targets. Subroutine return

branches can be predicted by using a return address

stack. A return address is pushed onto the stack when

a subroutine is called and is popped as the prediction

for the branch target address when a return instruction

is detected. The return address prediction may miss

when the return address stack overflows. For instruction

sets without special instructions for returns from sub-

routines, the double stacks scheme proposed by Kaeli

and Emma in [2] is able to perform the return address

prediction. An immediate unconditional branch’s tar-

get address is calculated by adding the offset in the in-

struction to the program counter; therefore, the target

address can be generated immediately. Unconditional

branches on registers have to wait for the register value

which is the target address to become ready.

4.1

Nine
used

Description of Traces

benchmarks from the SPEC benchmark suite are

in this branch prediction study. Five are float-

55

100

@o

80

P 70
e

r 80
c

: 60

t
a 40

0
e 30

20

10

0

=i-
\
~
i

r❑ ml. Fmm‘sub hs!

❑ Ihm mlti h!,

■ WV IWSU Iml

O CuWuwl Bmmh Ins!

A

Figure 4: Distribution of dynamic branch instructions.

Benchmark Number of Bencbrnark Number of

Name Static Cnd. Br. Name Static Cnd. Br.
eqntott 277 espresso 556
gcc 6922 Ii 489
doduc 1149 fpppp 653
matrix300 213 spice2@ 606
tomcat v 370

Table 1: The number of static conditional branches in

each benchmark.

ing point benchmarks and four are integer benchmarks.

The floating point benchmarks include doduc, fpppp,
matrix300, spice2g6 and torncatv and the integer ones

include eqntott, espresso, gee, and li. Nasa7 is not in-

cluded because it takes too long to capture the branch

behavior of all seven kernels. Among the five floating

point benchmarks, matrix300 and tomcatv have repet-

itive loop execution; thus, a very high prediction accu-

racy is attainable. The integer benchmarks tend to have

many conditional branches and irregular branch behav-

ior. Therefore, it is on the integer benchmarks where

the mettle of the branch predictor is tested.

Since this study focuses on the prediction for condi-

tional branches, all benchmarks except fpppp and gcc

were simulated for twenty million conditional branch in-

structions. The benchmarks f pppp and gcc finish exe-

cution before twenty millions conditional branches are

executed. The number of dynamic instructions simu-

lated for the benchmarks range from fifty million to 1.8

billion.

The dynamic instruction distribution is shown in Fig-

ure 3. About 24 percent of the dynamic instructions for

the integer benchmarks and about 5 percent of the dy-

namic instructions for the floating point benchmarks are

branch instructions.

The distribution of the dynamic branch instructions

NaIu.

AT(AHRT(2S6,12SR),

PT(212,A2),)

AT(AHRT(512,12sR),

PT(212,A2),)

AT(AHRT(512,12SR),

PTGJ2,A3),)

AT(AHRT(512,1!JSR),

PT(212 ,A4),)

AT(AHRT(512,12SR),

PT(212,LT),)

AT(AHRT(512,1OSR),

PT(210,A2),)

AT(AHRT(512,8SR),

PT(28,A2),)

AT(AHRT(512,6SR),

PT(26,A2),)

AT(HHRT(256,12SR),

PT(#z ,Aa)>)
AT(HHRT(512,12SR),

PT(212 ,A2),)

AT(1HRT(,12SR),

PT(212,A2),)

ST(AHRT(512,12SR),

PT(_J12 ,PB),SaIXIe)

ST(HHRT(51;,12SR),

PT(212 ,PB),SaIIIe)

ST(IHRT(,12SR),

PT(212 ,PB),SaIIIe)

ST(AHRT(512,12SR),

PT(212 ,PB)$DM)

ST(HHRT(512,12SR),

PT(212,PB),Diff)

ST(1HRT(,12SR),

PT(212 ,PB),Diff)
LS(AHRT(512,A2),,)
LS(AHRT(512,LT),,)
LS(HHRT(512,A2),,)
LS(HHRT(512,LT),,)
LS(lHRT(,A2),,)
LS(lHRT(,LT),,)

HRT 1.

~
Entries

256

512

512

512

512

612

512

.512

256

512

512

.512

612

512

.

512
512
512
512
.

!Lner. tatmzl
Entry

content

12-bii SR

12. bit SR

I%bit SR

12-bit SR

12-bit SR

10-bit SR

8-bit SR

6-bit SR

12-bit SR

12-bit SR

12-bit SR

12-bit SR

12-bit SR

12-bit SR

12-bit SR

+

12-bit SR

12-bit SR

Atm A2
Aim LT
AiIII A2
A*UI LT
Aim Al
A* III LT

Ilelliat*o Il
Eniry

C.rlten<

At= A2

AtDI A2

Aim A3

At= A4

Atra LT

AtuI AZ

AtIU A2

Atm AX

A41u AZ

AtIU A2

Atza A2

PB

PB

PB

PB

PB

PB

AT – Two-Level Adapt%ve Z%ain%ng, ST – .%at$c lkainmg, LS – Lee

and Smsth’s Branch Target Buffer Des$gn, AHRT – Four-way Set-

Associative History Register Table, HHRT – Hash Hzstory Regwter

Table, IHRT – Ideal Hwtory Regwter Table, SR - Shift Register,

Atm – Automaton, LT - Last- Tzme, PB - Preset Prediction Bit.

Table 2: Configurations of simulated branch predictors.

is shown in Figure 4. As can be seen from the distribu-

tion, about 80 percent of the dynamic branch instruc-

tions are conditional branches. The conditional branch

is the branch class that should be studied to improve the

prediction accuracy. The number of static conditional

branches in the trace tapes of the benchmarks are listed

in Table 1.

4.2 Simulation Model

Several configurations were simulated for the Two-Level

Adaptive Training scheme. For the per-address his-

tory register table (PHRT), two practical implementa-

tions, the associative HRT (AHRT) and the hash HRT

(HHRT), along with the ideal HRT (IHRT) were sim-

ulated. In order to distinguish the different schemes,

the naming convention for the branch prediction

schemes is Scheme (History (Size, Entry.Content),

Putt ern(Size, Entry-Content), Data). Scheme speci-

fies the scheme, for example, Two-Level Adaptive Train-

ing (AT), Static Training (ST), or Lee and Smith’s

Branch Target Buffer design (LS). In History (Size,

Entry-Content), History is the implementation for

keeping history information of branches, for example,

IHRT, AHRT, or HHRT. Size specifies the number

of entries in the implementation, and Ent ry.Cent ent

specifies the content in each entry. The content of

an entry in the history register table can be any au-

tomaton shown in Figure 2 or a history register. In

Pattern(Size, Entry_Content), Pattern is the imple-

mentation for keeping history information for history

patterns, Size specifies the number of entries in the im-

plementation, and Entry_Content specifies the content

in each entry. The content of an entry in the pattern

history table can be any automaton shown in Figure

2. For Lee and Smith’s Branch Target Buffer designs,

the Putt ern part is not included, because there is no

pattern history information kept in their designs. Data

specifies how the data sets are used. When Data is

specified as Same, the same data set is used for both

training and testing. When Data is specified as Diff,
different data sets are used for training and testing. If

Data is not specified, no training data set is needed for

the shemes, as in Two-Level Adaptive Training schemes

or Lee and Smith’s Branch Target Buffer designs. The

configuration and scheme of each simulation model in

this study are listed in Table 2.

Since about 60 percent of branches are taken accord-

ing to our simulation results, the contents of the his-

tory register usually should contain more 1‘s than 0’s.

Accordingly, all the bits in the history register of each

entry in the HRT are initialized to 1‘s at the beginning

of program execution. During execution, when an entry

is re-allocated to a different static branch, the history

register is not re-initialized.

The pattern history bits in the pattern table entries

are also initialized at the beginning of execution. Since

taken branches are more likely, for those pattern ta-

bles using automata, Al, A2, A3, and A4, all entries

are initialized to state 3. For Last-Time, all entries are

initialized to state 1 such that the branches at the be-

ginning of execution will be more likely to be predicted

taken.

In addition to the Two-Level Adaptive Training

schemes, Lee and Smith’s Static Training schemes and

Branch Target Buffer designs, and some dynamic and

static branch prediction schemes were simulated for

comparison purposes. Lee and Smith’s Static Training

scheme is similar to the Two-Level Adaptive Training

scheme with an IHRT but with the important difference

that the prediction for a given pattern is pre-determined

by profiling. The two practical approaches for the HRT

were also simulated for Static Training with the same

accessing method introduced above.

Lee and Smith’s Branch Target Buffer designs were

simulated with automata A2, A3, A4, and Last-Time.

The static branch prediction schemes simulated include

56

the Always Taken, Backward Taken and Forward Not

taken, and a simple profiling scheme. The profiling

scheme is done by counting the frequency of taken and

not-taken for each static branch in the profiling execu-

tion. The predicted direction of a branch is the one the

branch takes most frequently. Since the same data set

was used for profiling and execution in this study, the

prediction accuracy was calculated by taking the ratio of

the sum of the larger number in the two numbers for two

possible directions of every static branch over the total

number of the dynamic conditional branch instructions.

‘Wo-I.avd khPth ‘l%ddIw SdIme4 Udq Dlffmmnt State ‘lhndth
1

1
Om -

‘\

~ 0.92 - -

c -. AT(A”~T(SI z,,2S~,PT(400AA2L)
c

: OM - - .
+ ATIAHflTIS!2.12SR),PT140WA4).).

. L O AT(AHIIT(5M! 2SRWWW.LTI.I

y 0.24 .

0.81..
5 Simulation Results

The simulation results presented in this section were

run with the Two-Level Adaptive Training schemes, the

Static Training Schemes, the Branch Target Buffer de-

signs, and some static branch prediction schemes. Fig-

ures 5 through 10 show the prediction accuracy across

the nine benchmarks. On the horizontal axis, the cat-

egory labeled as “Tot G Mean” shows the geometric

mean across all the benchmarks, “ Int G Mean” shows

the geometric mean across all integer benchmarks, and

“ FP G Mean” shows the geometric mean across all float-

ing point benchmarks. The vertical axis shows the pre-

diction accuracy scaled from 76 percent to 100 percent.

This section concludes with a comparison between dif-

ferent branch prediction schemes.

5.1 Two-Level Adaptive Training

The Two-Level Adaptive Training schemes were sim-

ulated with different state transition automata, differ-

ent HRT implementations, and different history register

lengths to show their effects on prediction accuracy. The

simulations of the Two-Level Adaptive Training scheme

using an IHRT demonstrate the accuracy the scheme

can achieve without history table miss effect and is used

as a comparison to Lee and Smith’s Static Training

scheme which also uses the ideal history register table.

5.1.1 Effect of State Transition Automata

Figure 5 shows the efficiency of different state transition

automata. Four state transition automata, A2, A3, A4,

and Last- Time were simulated. Al is not included, be-

cause early experiments indicated it was inferior to the

other four-state automata, A2, A3, and A4. The scheme

using Last- Time performs about 1 percent worse than

the ones using the other automata which achieve similar

accuracy around 97 percent. The four-state finite-state

machines maintain more history information than the

Last- Time which only records what happened last time;

A2, A3, and A4 are therefore more tolerant to noise in

the execution history.

Figure 5: Two-Level Adaptive Training schemes using

different state transition automata.

‘r90-Z.awl Ad@iveTn2mhw -. mugDitrelentxmr ImdEemA8A2m

*

,2’.>;.V$Z......I...
0“’”~v’’-k$y~n.n . -$$.

c
c v:0,22 - ----------------------- .

a
c

Y
#u- - .

0.8 -- .

0.78 i !

TaIJ itG q.lt, “w. We II WO tifPPwm.ti, Xm 10MS
km w 300 qc

3
* ATIHRTI!6, MI%?T(4wLA21.I

a ATIAHITISW.1UlUPT(401qMLl

- ATIHHIAW2,1~Tw2v2L)

* ATlN41T@2t.m2Wl(401&A2L)

- ATWRTP2t1 z3RI,PT(4s90,W

Figure 6: Two-Level Adaptive Training schemes using

different history register table implementations.

In order to show the curves clearly in the following

figures, each scheme is shown with the state transition

automata A2 which usually performs the best among

the state transition automata used in this study.

5.1.2 Effect of History Register Table Imple-

ment ation

Figure 6 shows the effects of the HRT implementations

on the prediction accuracy of the Two-Level Adaptive

Training schemes. Every scheme in the graph was sim-

ulated with the same history register length. With the

equivalent history register length, the IHRT scheme per-

forms the best, the 512-entry AHRT scheme the sec-

ond, the 512-entry HHRT scheme the third, the 256-

entry AHRT scheme the fourth and the 256-entry HHRT

scheme the worst, in the decreasing order of the HRT

hit ratio. This is due to the increasing interference in

the branch history as the hit ratio decreases.

57

WO.Lwd Ad@iw ‘rnkJvg Safnmm U,hlgaf.lnrys@stelUof —t f.a@u

1~
.

s n

?

. ~$:..:.................*.... .-;..*“-“ -
~...

... .,,
0“

//

a 8,
A

,g-----------------------------------

c . ,:.,’
c El

* AT(N+IT(6,2.IaPT(4M1.A2L)
e

; ala
a ATlAtM17512.tmPT(lm). .

*
- AqWiT@latSlyT@6v,q)

* AlpWT(siaamMAf))c

Y
0s4 .

0,1

t

. .

I

Figure 7: Two-Level Adaptive Training schemes using

history registers of different lengths.

5.1.3 Effect of History Register Length

Figure 7 shows the effect of history register length on

the prediction accuracy of Twc-Level Adaptive Train-

ing schemes. The Two-Level Adaptive Training schemes

using four different history register lengths were simu-

lated. The accuracy increases for about 0.5 percent by

lengthening the history registers for 2 bits. According

to the simulation results, increasing the history register

length often improves the prediction accuracy until the

accuracy asymptote is reached.

5.2 Static ~aking

Static Training Branch Prediction examines the his-

tory pattern of the last n executions of a branch and

the statistics gathered from profiling the program with

a training data set to calculate the probabilities the

branch will be taken or not-taken with the given his-

tory pattern to predict the branch path.

Although the accounting required to gather the the

training statistics can be done in software, the Static

Training scheme needs to keep track of the execution

history of every static branch in the program, which re-

quires hardware support. History registers must be used

to keep track of the branch execution history of each

static branch during run-time. When a branch is being

predicted, its recorded history pattern is used to index

the branch pattern table which contains preset branch

prediction information. The preset prediction bit is then

used for predicting the branch. Because the number

of static branches varies from one program to another,

the number of history registers required changes, which

requires the hardware to offer a big enough table like

IHRT to hold all the static branches in the programs.

In order to consider the effects of practical implementa-

tions, in addition to the IHRT, the two practical HRT

Benchmark Name

eqntott

espresso

gcc

li

doduc

fpppp

matrix300

spice2g6

tomcat v

Training ‘Data Set

NA

Cps

cexp.i

tower of hanoi

tiny doducin

NA

NA

short greycode.in

NA

Testing Data S=

int.pri~.eqn

bca

dbxout .i

eight queens

doducin

nat oms

NA

greycode.in

NA

Table 3: Training and testing data sets of each bench-

mark.

implementations used in this study were simulated with

the Static Training schemes. The cost to implement

Static Training is not any less expensive than for Two-

Level Adaptive Training, because the history register

table and pattern table required by both schemes are

similar. However, the state transition logic in the pat-

tern table is simpler for the Static Training scheme.

In order to show the effects of the training data sets,

the simulation results for the schemes (with Same in

their names) which were trained and tested on the same

data set and those for the schemes (with lli~~ in their

names) which were trained and tested on different data

sets are both presented. All the testing data sets are

the same as those used by other schemes in order for

a fair comparison. In the schemes which were trained

and executed on the same data set, the results are the

best the Static Training schemes can achieve with that

data set, because the best predictions for branches are

known beforehand.

Five of nine benchmarks were trained with other ap-

plicable data sets. The other four benchmarks, eqntott,

matrix300, fpppp, and tomcatv, are excluded because

there are no other applicable data sets or the applicable

data sets are too similar to each other. The data sets

used in training and testing are shown in Table 3.

The Static Training schemes with similar configura-

tions to the Two-Level Adaptive Tkaining schemes in

Figure 6 are shown in Figure 8. The highest predic-

tion accuracy of the schemes using the same data set

for training and execution is about 97 percent. This

is achieved by the Static Training scheme using 12 bit

history registers and an IHRT. The accuracy is about

the same as that achieved by the Two-Level Adaptive

Training scheme using 12 bit history registers and an

512-entry 4-way AHRT. However, when different data

sets are used for training and execution, the prediction

accuracy for gcc and espresso is about 1 percent lower

respectively. The drop in the accuracy for Ii is more

significant. It is about 5 percent lower. For the floating

point benchmarks, the degradations are not so appar-

ent due to the regular branch behavior of the programs.

The degradations are within 0.5 percent. Since the data

58

camu190a d Srmdl Plwdictlm sch-

Figure 8: Prediction accuracy of

schemes.

Static Training

1
* W4RT@t.LTI,J

a LY+mT@,f*\,)

- U3(AMIT(512LT).J

0 LS(MIYT(5WA2).)

* L.SWIMT(SULTM

a L$$+HRT@12#2).)

Xm

- N.q, Wal

~ Pm’$llnj(,,samo)

Figure 9: Prediction accuracy of Branch Target Buffer

designs, BTFN, Always Taken, and the Profiling

scheme.

for the Static Training Schemes using different data sets

for training and testing is not complete, the average ac-

curacy for the schemes is not graphed.

5.3 Other Schemes

Figure 9 shows the simulation results of Lee and smith’s

Branch Target Buffer designs, Backward Taken and For-

ward Not taken (BTFN), Always Taken, and the profil-

ing scheme. The Branch Target Buffer designs were sim-

ulated with automata, Al, A2, A3, A4, and Last-Time.

Only the results of the designs using A2 and Last-Time

are shown in the figure, because the results of the de-

signs using A3 and A4 are similar to those of the designs

using A2. The designs using Al predict about 2 to 3

percent lower than those using A2. Three buffer config-

urations, similar to IHRT, AHRT, and HHRT, were sim-

ulated. Using an IHRT in those schemes sets the upper

59

1

+’ Pr&h@(..s.fnl)

Figure 10: Comparison of branch prediction schemes

bound at 93 percent for the same schemes with practi-

cal HRT implementations. Using Last-Time is about 4

percent lower than using A2.

BTFN and Always Taken predict poorly compared to

the other schemes. Some of the data points fall below

76 percent,

The Backward Taken and Forward Not taken scheme

(BTFN) is effective for the loop-bound benchmarks like

matrix300 and tomcatv but not for other benchmarks.

For the loop-bound benchmarks, the prediction accu-

racy is as high as 98 percent. However, for the other

benchmarks, its accuracy is often lower than 70 percent.

The average accuracy is approximate 69 percent.

The accuracy of the Always Taken scheme changes

quite markedly from one benchmark to another. Its

average is about 60 percent.

The simple profiling scheme simulated here is to run

the program once to accumulate the statistics of how

many times the branch is taken and how many times the

branch is not taken for each branch. The prediction bit

in the opcode of the branch is set or cleared depending

on whether the taken branch count is larger than the

not-taken branch count or not. The run-time prediction

of the branch is made according to the prediction bit.

The average of this scheme is about 92.5 percent. This

scheme is fairly simple but at the cost of profiling and

low prediction accuracy.

5.4 Comparison of Schemes

Figure 10 illustrates the comparison between the

schemes mentioned above. The 512-entry 4-way AHRT

was chosen for all the uses of HRT, because it is sim-
ple enough to be implemented. Tmm-Level Adaptive

and Static training schemes are chosen on the basis of

similar costs. At the top is the Two-Level Adaptive

Training scheme whose average prediction accuracy is

about 97 percent. As can be seen from the graph, the

Static Training scheme predicts about 1 to 5 percent

lower than the top curve. The profiling scheme pre-

dicts almost as well as Lee and Smith’s Branch Target

Buffer design with accuracy around 92.5 percent. The

scheme which predicts a branch with the lsst result of

the execution of the branch achieves about 89 percent

accuracy.

6 Concluding Remarks

This paper proposes a new branch predictor, Two-Level

Adaptive Training. The scheme predicts a branch by

examining the history of the last n branches and the

branch behavior for the lasts occurrences of that unique

pattern of the last n branches.

The Two-Level Adaptive Training schemes were sim-

ulated with three HRT configurations: the IHRT which

is an ideal history register table large enough to hold

all stat ic branches, the AHRT which is a set-associative

cache, and the HHRT which is a hash table. The IHRT

data was included to obtain upper bounds for each of

the other schemes. A scheme using an AHRT usually

has higher prediction accuracy than the same scheme

using an HHRT of the same size, because the AHRT

has lower miss rate than the HHRT.

Each Two-Level Adaptive Training scheme was sim-

ulated with various history register lengths. As seen

from the simulation results, prediction accuracy is usu-

ally improved by lengthening the history register.

In addition to the Two-Level Adaptive Training

scheme, several other dynamic or static branch predic-

tion schemes such as Lee and Smith’s Static Training

schemes, Branch Target Buffer designs, Always Taken,

Backward Taken and Forward Not taken, and a simple

profiling scheme were simulated.

The Twc-Level Adaptive Training scheme has been

shown to have an average prediction accuracy of 97 per-

cent on nine benchmarks from the SPEC benchmark

suite. The prediction accuracy is about 4 percent bet-

ter than most of the other static or dynamic branch pre-

diction schemes, which means more than a 100 percent

reduction in the number of pipeline flushes required.

Since a prediction miss causes flushing of the specu-

lative execution already in progrem, the performance

improvement on a high-performance processor can be

considerable by using the Two-Level Adaptive Training

scheme.

Deep-pipelining and superscalar execution are effec-

tive methods for exploiting instruction level parallelism

to improve single processor performance. This effective-

ness, however, depends critically on the accuracy of a

good branch predictor. Two-Level Adaptive Training

Branch Prediction is proposed as a way to support high

performance processors by minimizing the penalty as-

sociated with mispredicted branches.

60

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

M. Butler, T-Y Yeh, Y.N. Patt, M. Alsup, H.

Scales, and M. Shebanow, “Instruction Level Par-

allelism is Greater Than Two”, Proceedings of the

18th International Symposium on Computer Archi-

tecture, (May. 1991), pp. 276–286.

D. R. Kaeli and P. G. Emma, “Branch History Ta-

ble Prediction of Moving Target Branches Due to

Subroutine Returns” , Proceedings of the 18th In-

ternational Symposium on Computer Architecture,

(May 1991), pp. 34-42.

Tse-Yu Yeh, “Two-Level Adaptive Training

Branch Prediction”, Technical Report, University

of Michigan, (1991).

Motorola Inc., “M881OO User’s Manual”, Phoeniz,

Arizona, (March 13, 1989).

W.W. Hwu, T. M. Conte, and P. P. Chang, “Compar-

ing Software and Hardware Schemes for Reducing

the Cost of Branches”, Proceedings of the 16th in-

ternational Symposium on Computer Architecture,

(May 1989).

N.P. Jouppi and D. Wall, “Available Instruction-

Level Parallelism for Superscalar and Super-

pipelined Machines.”, Proceedings of the Third In-

ternational Conference on Architectural Support

for Programming Languages and Operating Sys-

tems, (April 1989), pp. 272-282.

D. J. Lilja, “Reducing the Branch Penalty in

Pipelined Processors “, IEEE Computer, (July

1988), pp.47-55.

W.W. Hwu and Y.N. Patt, “Checkpoint Repair for

Out-of-order Execution Machines”, IEEE Trans-

actions on Computers, (December 1987), pp. 1496-

1514.

P. G. Emma and E. S. Davidson, “Characterization

of Branch and Data Dependencies in Programs for

Evaluating Pipeline Performance” , IEEE Trans-

actions on Computers, (July 1987), pp.859-876.

J. A. DeRosa and H. M. Levy, “An Evaluation of

Branch Architectures “, Proceedings of the ldth in-

ternational Symposium on Computer Architecture,

(June 1987), PP.1O-16.

D-R. Ditzel and H.R. McLellan, “Branch Folding

in the CRISP Microprocessor: Reducing Branch

Delay to Zero”, Proceedings of the Idth Interna-
tional Symposium on Computer Architecture, (June

1987), pp.2-9.

[12] S. McFarling and J. Hennessy, “Reducing the

Cost of Branches”, Proceedings of the 13th In-

ternational Symposium on Computer Architecture,

(1986), pp.396-403.

[13] J. Lee and A. J. Smith, “Branch Prediction Strat&

gies and Branch Target Buffer Design”, IEEE

Computer, (January 1984), pp.6-22.

[14] T.R. Gross and J. Henneasy, “Optimizing Delayed

Branches”, Proceedings of the l$th Annual Work-

shop on Microprogramming, (Oct. 1982), pp.114

120.

[15] D.A. Patterson and C.H. Sequin, “RISC-I: A Re-

duced Instruction Set VLSI Computer”, Proceed-

ings of the 8th International Symposium on Com-

puter Architecture, (May. 1981), pp.443-458.

[16] J.E. Smith, “A Study of Branch Prediction Strate-

gies”, Proceedings of the $ih International &m-

posium on Computer Architecture, (May. 1981),

pp.443-458.

[17] L.E. Shar and E.S. Davidson, “A MdtiminiPr~

cessor System Implemented Through Pipelining.”,

IEEE Computer, (Feb. 1974), pp.42-51.

[18] T. C. Chen, “parallelism, Pipelining and Computer

Efficiency”, Computer Design, Vol. 10, No. 1, (Jan.
1971), pp.69-74.

61

