
Calvin Lin

The University of Texas at Austin

CS380C Compilers 1

January 21, 2015 Introduction 1

CS380C Compilers

Instructor: Calvin Lin

lin@cs.utexas.edu

Office Hours: Mon/Wed 3:30-4:30

GDC 5.512

TA: Jia Chen

jchen@cs.utexas.edu

Office Hours: Tue 3:30-4:30

Thu 3:30-4:30

GDC 5.440

January 21, 2015 Introduction 2

Today’s Plan

 Motivation

 Why study compilers?

 Let’s get started

 Look at some sample optimizations and assorted issues

 A few administrative matters

 Course details

Calvin Lin

The University of Texas at Austin

CS380C Compilers 2

January 21, 2015 Introduction 3

Motivation

 Q: Why study compilers?

January 21, 2015 Introduction 4

Life B.C.

 Before compilers

Machine

Code

Hardware

Calvin Lin

The University of Texas at Austin

CS380C Compilers 3

January 21, 2015 Introduction 5

Liberation

Along came Backus

High-level

Code

Hardware

Compilers liberate the programmer from the machine

January 21, 2015 Introduction 6

Traditional View of Compilers

 Translate high-level language to machine code

 High-level programming languages

 Increase programmer productivity

 Improve program maintenance

 Improve portability

 Low-level architectural details

 Instruction set

 Addressing modes

 Registers, cache, and the rest of the memory hierarchy

 Pipelines, instruction-level parallelism

Calvin Lin

The University of Texas at Austin

CS380C Compilers 4

January 21, 2015 Introduction 7

Optimization

 Translation is not enough

 Backus recognized the importance of obtaining good

performance

 Can perform tedious optimizations that programmers won’t do

January 21, 2015 Introduction 8

Consider Matrix Multiplication

 Obvious code

 Tiled code– can be significantly faster

for i = 1 to n

for j = 1 to n

for k = 1 to n

c[i,j] = c[i, j] + a[i, k]* b[k,j]

for it = 1 to n by t

for jt = 1 to n by t

for kt = 1 to n by t

for i = it to it+t-1

for j = jt to jt+t-1

for k = kt to kt+t-1

c[i,j] = c[i, j] + a[i, k]* b[k,j]

Why don’t we want

programmers to write this code?

Calvin Lin

The University of Texas at Austin

CS380C Compilers 5

January 21, 2015 Introduction 9

Translation + Optimization

 Enable language design to flourish

 Functional languages

 Object oriented languages

 . . .

 Logic languages

Compilers liberate language designers

January 21, 2015 Introduction 10

Isn’t Compilation A Solved Problem?

 “Optimization for scalar

machines is a problem that

was solved ten years ago”

-- David Kuck, 1990

 Machines keep changing

 New features present new

problems (e.g., MMX,

IA64, trace caches)

 Changing costs lead to

different concerns (e.g.,

loads)

 Languages keep changing

 Wacky ideas (e.g., OOP

and GC) have gone

mainstream

 Applications keep changing

 Interactive, real-time,

mobile

Calvin Lin

The University of Texas at Austin

CS380C Compilers 6

January 21, 2015 Introduction 11

Isn’t Compilation A Solved Problem? (cont)

 Values keep changing

 We used to just care about run-time performance

 Now?

 Compile-time performance

 Code size

 Correctness

 Energy consumption

 Security

 Fault tolerance

January 21, 2015 Introduction 12

Value-Added Compilation

 The more we rely on software, the more we demand more of it

 Compilers can help– treat code as data

 Analyze the code

 Correctness

 Security

Calvin Lin

The University of Texas at Austin

CS380C Compilers 7

January 21, 2015 Introduction 13

Correctness and Security

 Can we check whether pointers and addresses are valid?

 Can we detect when untrusted code accesses a sensitive part

of a system?

 Can we detect whether locks are used properly?

 Can we use compilers to certify that code is correct?

 Can we use compilers to verify that a given compiler

transformation is correct?

January 21, 2015 Introduction 14

Value-Added Compilation

 The more we rely on software, the more we demand more of it

 Compilers can help– treat code as data

 Analyze the code

 Correctness

 Security

 Reliability

 Program understanding

 Program evolution

 Software testing

 Reverse engineering

 Program obfuscation

 Code compaction

 Energy efficiency

Computation important understanding computation important

Calvin Lin

The University of Texas at Austin

CS380C Compilers 8

January 21, 2015 Introduction 15

Freedom Cuts Both Ways

 Just as compilers liberate the language designer, they also

liberate the computer architect

 Can we change the ISA from one generation to the next?

 Yes, if we trust our compilers

 Enables richer design space

 VLIW

 IA64

 TRIPS

 Multicore

 Heterogeneous multi-core

 Reconfigurable architectures

January 21, 2015 Introduction 16

Benefits to the Architect (cont)

 Two benefits of the compiler

 Can simplify the hardware by shifting burden to the

compiler

 VLIW, IA64, TRIPS, software controlled caches, Cell

 Can let the compiler inform the hardware

 Bias bits

 Prefetch instructions

Calvin Lin

The University of Texas at Austin

CS380C Compilers 9

January 21, 2015 Introduction 17

Virtualization is a Virtue

 High-level languages provide virtualization

 Why is virtualization good?

 We can virtualize at many levels

 Transmeta: dynamically compile x86 to VLIW

 GPUs rely on dynamic compilation

 JVMs and JITs

January 21, 2015 Introduction 18

The Point

 Compilers are a fundamental building block of modern

systems

 We need to understand their power and limitations

 Computer architects

 Language designers

 Software engineers

 OS/Runtime system researchers

 Security researchers

 Formal methods researchers (model checking, automated

theorem proving)

Calvin Lin

The University of Texas at Austin

CS380C Compilers 10

January 21, 2015 Introduction 19

Plan For Today

 Motivation

 Why study compilers?

 Let’s get started

 Look at some sample optimizations and assorted issues

 A few administrative matters

 Course details

January 21, 2015 Introduction 20

Types of Optimizations

 Definition

 An optimization is a transformation that is expected to

improve the program in some way; often consists of

analysis and transformation

e.g., decreasing the running time or decreasing memory

requirements

 Machine-independent optimizations

 Eliminate redundant computation

 Move computation to less frequently executed place

 Specialize some general purpose code

 Remove useless code

Calvin Lin

The University of Texas at Austin

CS380C Compilers 11

January 21, 2015 Introduction 21

Types of Optimizations (cont)

 Machine-dependent optimizations

 Replace a costly operation with a cheaper one

 Replace a sequence of operations with a cheaper one

 Hide latency

 Improve locality

 Reduce power consumption

 Enabling transformations

 Expose opportunities for other optimizations

 Help structure optimizations

January 21, 2015 Introduction 22

Sample Optimizations

 Arithmetic simplification

Constant folding
e.g., x = 8/2; x = 4;

Strength reduction
e.g., x = y * 4; x = y << 2;

Calvin Lin

The University of Texas at Austin

CS380C Compilers 12

January 21, 2015 Introduction 23

Sample Optimizations (cont)

 Constant propagation

 e.g., x = 3; x = 3; x = 3;

y = 4+x; y = 4+3; y = 7;

 Copy propagation

 e.g., x = z; x = z;

y = 4+x; y = 4+z;

January 21, 2015 Introduction 24

Sample Optimizations (cont)

 Common subexpression elimination (CSE)

 e.g., x = a + b;

y = a + b;

t = a + b;

x = t;

y = t;

Calvin Lin

The University of Texas at Austin

CS380C Compilers 13

January 21, 2015 Introduction 25

Sample Optimizations (cont)

 Dead (unused) assignment elimination

 e.g., x = 3;

... x not used...

x = 4;

 Dead (unreachable) code elimination

 e.g., if (false == true) {

printf(“debugging...”);

}

This assignment is dead

This statement is dead

January 21, 2015 Introduction 26

Sample Optimizations (cont)

 Loop-invariant code motion

 e.g., for i = 1 to 10 do

x = 3;

...

x = 3;

for i = 1 to 10 do

...

Calvin Lin

The University of Texas at Austin

CS380C Compilers 14

January 21, 2015 Introduction 27

Sample Optimizations (cont)

 Induction variable elimination

 e.g., for i = 1 to 10 do

a[i] = a[i] + 1;

for p = &a[1] to &a[10] do

*p = *p + 1

January 21, 2015 Introduction 28

Sample Optimizations (cont)

 Loop unrolling

 e.g., for i = 1 to 10 do

a[i] = a[i] + 1;

for i = 1 to 10 by 2 do

a[i] = a[i] + 1;

a[i+1] = a[i+1] + 1;

Calvin Lin

The University of Texas at Austin

CS380C Compilers 15

January 21, 2015 Introduction 29

Is an Optimization Worthwhile?

 Criteria for evaluating optimizations

 Safety: Does it preserve behavior?

 Profitability: Does it actually improve the code?

 Opportunity: Is it widely applicable?

 Cost (compilation time): Can it be practically performed?

 Cost (complexity): Can it be practically implemented?

January 21, 2015 Introduction 30

Scope of Analysis/Optimizations

 Peephole

 Consider a small window

of instructions

 Usually machine-specific

 Local

 Consider blocks of straight

line code (no control flow)

 Simple to analyze

Calvin Lin

The University of Texas at Austin

CS380C Compilers 16

January 21, 2015 Introduction 31

Scope of Analysis/Optimizations (cont)

 Global (intraprocedural)

 Consider entire procedures

 Must consider branches, loops, merging of control flow

 Use data-flow analysis

 Make simplifying assumptions at procedure calls

 Whole program (interprocedural)

 Consider multiple procedures

 Analysis even more complex (calls, returns)

 Hard with separate compilation

January 21, 2015 Introduction 32

Time of Optimization

 Compile time

 Link time

 Configuration time

 Runtime

Calvin Lin

The University of Texas at Austin

CS380C Compilers 17

Optimization Dimensions: A Rich Space

 Abstraction level

 Machine-dependent, machine-independent

 Goal

 Performance, correctness, etc

 Enabling transformation

 Scope

 Peephole, local, global, interprocedural

 Timing

 Compile time, link time, configuration time,run time
January 21, 2015 Introduction 33

January 21, 2015 Introduction 34

Limits of Compiler Optimizations

 Fully Optimizing Compiler (FOC)

 FOC(P) = Popt

 Popt is the smallest program with same I/O behavior as P

 Observe

 If program Q produces no output and never halts, FOC(Q) =
L: goto L

 Aha! We’ve solved the halting problem?!

 Moral

 Cannot build FOC

 Can always build a better optimizing compiler
(full employment theorem for compiler writers!)

Calvin Lin

The University of Texas at Austin

CS380C Compilers 18

January 21, 2015 Introduction 35

Optimizations Don’t Always Help

 Common Sub-expression Elimination

t = a + b

x = t

y = t

2 adds 1 add

x = a + b

y = a + b

4 variables 5 variables

January 21, 2015 Introduction 36

for i = 1 to n

T[i] = A[i] + B[i]

for i = 1 to n

C[i] = D[i] + T[i]

Optimizations Don’t Always Help (cont)

 Fusion and Contraction

t fits in a register, so no loads

or stores in this loop.

Huge win on most machines.

Degrades performance on

machines with hardware

managed stream buffers.

for i = 1 to n

t = A[i] + B[i]

C[i] = D[i] + t

Calvin Lin

The University of Texas at Austin

CS380C Compilers 19

January 21, 2015 Introduction 37

In Java, the address of foo() is often not

known until runtime (due to dynamic class

loading), so the method call requires a table

lookup.

After the first execution of this statement,

backpatching replaces the table lookup with a

direct call to the proper function.

o.foo();

Optimizations Don’t Always Help (cont)

 Backpatching

Q: How could this optimization ever hurt?

January 21, 2015 Introduction 38

Phase Ordering Problem

 In what order should optimizations be performed?

 Simple dependences

 One optimization creates opportunity for another

e.g., copy propagation and dead code elimination

 Cyclic dependences

 e.g., constant folding and constant propagation

 Adverse interactions

 e.g., common sub-expression elimination and register

allocation

e.g., register allocation and instruction scheduling

Calvin Lin

The University of Texas at Austin

CS380C Compilers 20

January 21, 2015 Introduction 39

Engineering Issues

 Building a compiler is an engineering activity

 Balance multiple goals

 Benefit for typical programs

 Complexity of implementation

 Compilation speed

 Overall Goal

 Identify a small set of general analyses and optimization

 Easier said than done: just one more...

Two Approaches– Which is Better?

 Build a compiler from scratch

 Clean and simple

 Typically implement a toy language

 Can only build the basics

 Extend an existing compiler

 Stand on the shoulders of others (can build more complex

and complete solutions)

 Can do more interesting things

 More complex and more to learn

January 21, 2015 Introduction 40

Calvin Lin

The University of Texas at Austin

CS380C Compilers 21

January 21, 2015 Introduction 41

Administrative Matters

 Turn to your syllabus

January 21, 2015 Introduction 42

Next Time

 Reading

 Syllabus

 Lecture

 Undergraduate compilers in a day!

