

1

Computing Reaching Definitions

Assumption

- At most one definition per node
- We can refer to definitions by their node number

Gen[n]: Definitions that are generated by node n (at most one)Kill[n]: Definitions that are killed by node n

statement	Gen[s]	Kill[s]	statement	Gen[s]	Kill[s]
s: $t = b op c$	{s}	$def[t] - \{s\}$	s: goto L	{}	{}
s: t = M[b]	{s}	$def[t] - \{s\}$	s: L:	{ }	{}
s: M[a] = b	{s}	$\{*\} - \{s\}$	s: f(a,)	{ }	{}
s: if a op b go	to L { }	{}	s: t=f(a,)	{s}	$def[t] - {s$

Recall Liveness Analysis		
Data-flow equations for liveness $in[n] = use[n] \cup (out[n] - def[n])$ $out[n] = \bigcup in[s]$		
Liveness equations in terms of Gen a $in[n] = gen[n] \cup (out[n] - kill[n])$ $out[n] = \bigcup_{s \in succ[n]} in[s]$	nd Kill A use of a variable generates liveness A def of a variable kills liveness	
Can define almost any data-flow and Gen: New information that's added Kill: Old information that's remove	l <mark>lysis in terms of Gen and Kill</mark> at a node d at a node	
February 4, 2015 Generalizing Da	ta-flow Analysis	12

Calvin Lin The University of Texas at Austin

Must information		
– Implies a guarante	e	
Aay information		
– Identifies possibili	ties	
iveness? Available o	expressions?	
	May	Must
safe	overly large set	overly small set
desired information	small set	large set
Gen	add everything that might be true	add only facts that are guaranteed to be true
Kill	remove only facts that are guaranteed to be false	remove everything that might be false
merge	union	intersection
		universal set

Calvin Lin The University of Texas at Austin

Must or may Information?	Must	
Direction?	Forward	
Flow values?	Sets of expressions	
Initial guess?	Universal set	
Kill?	Set of expressions killed by statement s	
Gen?	Set of expressions evaluated by s	
Merge?	Intersection	

