Reaching Definitions: Must or May Analysis?

Consider constant propagation

We need to know if d' might reach node n

Improving Iterative DFA Algorithm

Problem

 If any node's in[] or out[] set changes after an iteration, our algorithm computes all of the equations again, even though many of the equations may not be affected by the change

How can we do better?

Solution

- Use a work-list algorithm, which keeps track of those nodes whose out[] sets must be recalculated
- If node n is recomputed and its out[] set is found to change, all successors of n are added to the work list
- (For a backwards problem, substitute in[] for out[] and predecessor for successor.)

Work-List Algorithm for IDFA

```
Algorithm
for each node n
    in[n] = U; out[n] = U
worklist = {entry node}
while worklist not empty
    Remove some node n from worklist
    out' = out[n]
    in[n] = \bigcap_{p \in pred[n]} out[p]
    out[n] = gen[n] \cup (in[n] - kill[n])
    if out[n] \neq out'
        for each s \in succ[n]
           if s \notin worklist, add s to worklist
```

Is this a forwards or backwards analysis? Is it a must or may analysis?

Improving Iterative DFA Algorithm (cont)

Problem

- CFG is bloated when each statement is represented by a node

Solution

- Perform IDFA on CFG of basic blocks

Approach

- (1) Build CFG of basic blocks
- (2) Perform local data-flow analysis within each basic block to summarize Gen and Kill information for each node
- (3) Perform global analysis on the smaller CFG
- (4) Propagate global information inside of basic block: push information throughout the basic block from the entrance to the exit (or from the exit to the entrance if it's a backwards problem)

Example

Liveness

Reality Check!

Some definitions and uses are ambiguous

- We can't tell whether or what variable is involved
 - e.g., *p = x; /* what variable are we assigning?! */
- Unambiguous assignments are called **strong updates**
- Ambiguous assignments are called weak updates

Solutions

- Be conservative
 - For liveness analysis, if we see print (*p);
 what should *p refer to?
 - For liveness analysis, if we see ***p = 4**;
 what should ***p** refer to?
- Compute a more precise answer:
 - Pointer analysis (more in a few weeks)

Concepts

Many data-flow analyses have the same character

Computed in the same way

Distinguished by

- Flow values (initial guess, type)
- May/must
- Direction
- Gen
- Kill
- Merge

Complication

- Ambiguous references (strong/weak updates)

Next Time

Lecture

- Lattice theoretic foundation for data-flow analysis

Lattice-Theoretic Framework for Data-Flow Analysis

Last time

- Generalizing data-flow analysis

Today

- Introduce lattice-theoretic framework for data-flow analysis

Goals

- Provide a single formal model that describes all data-flow analyses
- Formalize the notions of **safe**, **conservative**, and **optimistic**
- Place bounds on time complexity of data-flow analysis

Approach

- Define domain of program properties (flow values) computed by dataflow analysis, and organize the domain of elements as a lattice
- Define flow functions and a merge function over this domain using lattice operations
- Exploit lattice theory in achieving goals

Lattices

Define lattice $L = (V, \Box)$ - V is a set of elements of the lattice 010 100 001 $\neg \square$ (meet or greatest lower bound) is a binary relation over the elements of V 011 101 110**Properties of** ⊓ 111 (closure) $-x, y \in V \Longrightarrow x \sqcap y \in V$ $-x, y \in V \Longrightarrow x \sqcap y = y \sqcap x$ (commutativity) $-x,y,z \in V \Longrightarrow (x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$ (associativity)

Semi-Lattices

- Technically, these are semi-lattices
- A full lattice would also define a join function that allows us to move up the lattice

000

Lattices (cont)

Under (⊑)

- Imposes a partial order on V
- $x \sqsubseteq y \Leftrightarrow x \sqcap y = x$

Top (T)

- A unique greatest element of V (if it exists)
- $\forall x \in V \{T\}, x \sqsubset T$

Bottom (\bot)

- A unique least element of V (if it exists)
- $\ \forall x \in V \{\bot\}, \bot \sqsubset x$

Height of lattice L

 The longest path through the partial order from greatest to least element (top to bottom)

Data-Flow Analysis via Lattices

Relationship

- Elements of the lattice (V) represent flow values (in[] and out[] sets)
 - e.g., Sets of live variables for liveness
- T represents best-case information (initial flow value)
 - e.g., Empty set
- \perp represents worst-case information
 - *e.g.*, Universal set
- \square (meet) merges flow values
 - -e.g., Set union
- If $x \sqsubseteq y$, then x is a conservative approximation of y
 - e.g., Superset

Data-Flow Analysis and the Lattice

Imagine a lattice at every program point

- The lattice element represents an in[] set or an out[] set
- As the analysis iterates, the flow value at each point moves down the lattice

When does the iteration stop?

Data-flow analysis framework

- A set of **flow values** (V)
- A binary **meet operator** (\Box)
- A set of flow functions (F) (also known as transfer functions)

A lattice

Flow Functions

 $- F = \{f: V \rightarrow V\}$

f describes how each node in CFG affects the flow values

- Flow functions map program behavior onto lattices

Visualizing DFA Frameworks as Lattices

Inferior solutions are lower on the lattice More conservative solutions are lower on the lattice

February 9, 2015

Generalizing Data-flow Analysis

More Examples

Reaching definitions

- V: 2^{S} (S = set of all defs)
- ⊓: U
 - _⊑:___⊇
 - Top(T): Ø
 - Bottom (\perp): **v**
- F: ...

Reaching Constants

- V: 2^{v×c}, variables v and constants c
- □: ∩

- Тор(Т): о
- Bottom (\perp): Ø

– F: ...

Tuples of Lattices

Problem

Simple analyses may require very complex lattices (*e.g.*, Reaching constants)

Solution

- Use a tuple of lattices, one per variable

$\mathbf{L} = (\mathbf{V}, \Box) \equiv (\mathbf{L}_{\mathrm{T}} = (\mathbf{V}_{\mathrm{T}}, \Box_{\mathrm{T}}))^{\mathrm{N}}$

 $- V = (V_T)^N$

- Meet (\Box): point-wise application of \Box_T
- $\ (..., v_i, ...) \ \sqsubseteq \ (..., u_i, ...) \ \equiv \ v_i \sqsubseteq_T u_i, \forall \ i$
- Top (T): tuple of tops (T_T)
- Bottom (\perp): tuple of bottoms (\perp_T)
- Height (L) = N × height(L_T)

Tuples of Lattices Example

Reaching constants (previously)

- $P = v \times c$, for variables v & constants c
- V: 2^P

Alternatively

 $- V = c \cup \{\mathsf{T}, \bot\}$

The whole problem is a tuple of lattices, one lattice for each variable

Examples of Lattice Domains

Two-point lattice (T and \perp)

- Examples?
- Implementation?

Set of incomparable values (and T and \perp)

- Examples?

Powerset lattice (2^S)

- $-T = \emptyset$ and $\bot = S$, or vice versa
- Isomorphic to tuple of two-point lattices

Goal

- For a forward problem, consider all possible paths from the entry to a given program point, compute the flow values at the end of each path, and then meet these values together
- Meet-over-all-paths (MOP) solution at each program point
- $\prod_{all \text{ paths } n1, n2, ..., ni} (f_{ni}(...f_{n2}(f_{n1}(v_{entry}))))$

Problems with this goal?

Problems

- Loops result in an infinite number of paths
- Statements following merge must be analyzed for all preceding paths
 - Exponential blow-up

Solution

- Compute meets early (at merge points) rather than at the end
- Maximum fixed-point (MFP)

Questions

- Is this solution legal?
- Is this solution efficient?
- Is this solution accurate?

Legality

"Is v_{MFP} legal?" = "Is $v_{MFP} \sqsubseteq v_{MOP}$?"

Look at Merges

$$-\mathbf{v}_{\mathrm{MOP}} = \mathbf{F}_{\mathrm{r}}(\mathbf{v}_{\mathrm{p}1}) \sqcap \mathbf{F}_{\mathrm{r}}(\mathbf{v}_{\mathrm{p}2})$$

$$- \mathbf{v}_{\mathrm{MFP}} = \mathbf{F}_{\mathrm{r}}(\mathbf{v}_{\mathrm{p1}} \sqcap \mathbf{v}_{\mathrm{p2}})$$

$$- \mathbf{v}_{\mathrm{MFP}} \sqsubseteq \mathbf{v}_{\mathrm{MOP}} \equiv F_{\mathrm{r}}(\mathbf{v}_{\mathrm{p1}} \sqcap \mathbf{v}_{\mathrm{p2}}) \sqsubseteq F_{\mathrm{r}}(\mathbf{v}_{\mathrm{p1}}) \sqcap F_{\mathrm{r}}(\mathbf{v}_{\mathrm{p2}})$$

Observation

 $\begin{array}{lll} \forall x,y \in V \\ f(x \sqcap y) \ \sqsubseteq \ f(x) \sqcap f(y) & \Leftrightarrow & x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y) \end{array}$

 \therefore v_{MFP} legal when F_r (really, the flow functions) are monotonic

p2

V_{MOP}

p1

V_{p1}

V_{MFP}

Reading Assignments

Written responses

- Your reading responses can discuss any of a variety of topics, including the following:
 - You can ask questions about aspects of the paper that you do not understand
 - You can criticize or praise aspects of the paper, including its goals, assumptions, approach, methodology, evaluation, or presentation
 - You can pose questions or suggestions for improving upon or extending the work
 - You can draw connections with previously read papers, previously discussed topics, or previously submitted programming assignments
- Your response does not have to be long (though it might be), but we do hope that it's thoughtful
- Submit your responses using Canvas

Next Time

Assignments

– Assignment 2 is due Friday February 13th at 5:00pm

Reading

- "Finding and Understanding Bugs in C Compilers"
- The reading response is due 5:00pm on Sunday February 15th

Lecture

- Program representations (static single assignment)